Skip to main content
Applied Microbiology logoLink to Applied Microbiology
. 1971 Aug;22(2):147–152. doi: 10.1128/am.22.2.147-152.1971

Cellulase Production by Thermomonospora curvata Isolated from Municipal Solid Waste Compost

Fred J Stutzenberger 1,1
PMCID: PMC377403  PMID: 4938097

Abstract

A cellulolytic, thermophilic actinomycete (previously isolated from municipal refuse compost samples) was identified as Thermomonospora curvata. A determination was made of the optimal conditions for cellulase production by T. curvata when grown at 55 C in a medium containing mineral salts, cellulose, and yeast extract. The pH and temperature optima (pH 6.0 and 65 C) for the cellulase produced by T. curvata were identical to those previously observed for the cellulase extracted from crude compost samples. Such similarities, together with the prevalence of T. curvata in compost samples and its ability to grow at composting temperatures, indicate that this actinomycete could possibly be considered as a major cellulose decomposer in the municipal refuse composting process.

Full text

PDF
147

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. DOWD J. E., RIGGS D. S. A COMPARISON OF ESTIMATES OF MICHAELIS-MENTEN KINETIC CONSTANTS FROM VARIOUS LINEAR TRANSFORMATIONS. J Biol Chem. 1965 Feb;240:863–869. [PubMed] [Google Scholar]
  2. Eriksson K. E., Hollmark B. H. Kinetic studies of the action of cellulase upon sodium carboxymethyl cellulose. Arch Biochem Biophys. 1969 Sep;133(2):233–237. doi: 10.1016/0003-9861(69)90450-0. [DOI] [PubMed] [Google Scholar]
  3. GILLIGAN W., REESE E. T. Evidence for multiple components in microbial cellulases. Can J Microbiol. 1954 Oct;1(2):90–107. doi: 10.1139/m55-013. [DOI] [PubMed] [Google Scholar]
  4. HALLIWELL G. The action of cellulolytic enzymes from Myrothecium verrucaria. Biochem J. 1961 Apr;79:185–192. doi: 10.1042/bj0790185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. HENSSEN A. Beiträge zur Morphologie und Systematik der thermophilen Actinomyceten. Arch Mikrobiol. 1957;26(4):373–414. [PubMed] [Google Scholar]
  6. Hanes C. S. Studies on plant amylases: The effect of starch concentration upon the velocity of hydrolysis by the amylase of germinated barley. Biochem J. 1932;26(5):1406–1421. doi: 10.1042/bj0261406. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Henssen A., Schnepf E. Zur Kenntnis thermophiler Actinomyceten. Arch Mikrobiol. 1967 Jun 21;57(3):214–231. [PubMed] [Google Scholar]
  8. MANDELS M., REESE E. T. Induction of cellulase in Trichoderma viride as influenced by carbon sources and metals. J Bacteriol. 1957 Feb;73(2):269–278. doi: 10.1128/jb.73.2.269-278.1957. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. MANDELS M., REESE E. T. Induction of cellulase in fungi by cellobiose. J Bacteriol. 1960 Jun;79:816–826. doi: 10.1128/jb.79.6.816-826.1960. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Okada G., Nisizawa K., Suzuki H. Cellulase components from Trichoderma viride. J Biochem. 1968 May;63(5):591–607. doi: 10.1093/oxfordjournals.jbchem.a128818. [DOI] [PubMed] [Google Scholar]
  11. Sietsma J. H., Eveleigh D. E., Haskins R. H. The purification of cellulase and exo-laminaranase and their role in the formation of Pythium sp. "protoplasts". Antonie Van Leeuwenhoek. 1968;34(3):331–340. doi: 10.1007/BF02046455. [DOI] [PubMed] [Google Scholar]
  12. Stutzenberger F. J., Kaufman A. J., Lossin R. D. Cellulolytic activity in municipal solid waste composting. Can J Microbiol. 1970 Jul;16(7):553–560. doi: 10.1139/m70-093. [DOI] [PubMed] [Google Scholar]

Articles from Applied Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES