Skip to main content
Applied Microbiology logoLink to Applied Microbiology
. 1971 Aug;22(2):242–249. doi: 10.1128/am.22.2.242-249.1971

Regulation of Staphylococcal Enterotoxin B: Effect of Thiamine Starvation

Stephen A Morse 1,1, Jack N Baldwin 1
PMCID: PMC377421  PMID: 4328865

Abstract

During the transition between the exponential and stationary phases of growth, there was a rapid accumulation of both cell-associated and extracellular enterotoxin B. Extracellular enterotoxin was synthesized until the cells entered the stationary phase during which cell-bound toxin was not detected. The differential rate of toxin synthesis relative to that of total protein synthesis was greater at pH 7.7 than at 6.0. Addition of glucose decreased the differential rate of toxin synthesis. This decrease was greater at pH 7.7 than at 6.0. Addition of pyruvate decreased the differential rate at pH 7.7 but not at 6.0. Analysis of the nongaseous end products of glucose and pyruvate metabolism showed that conditions which favor the oxidative decarboxylation of pyruvate also favor the repression of toxin synthesis. Elimination of thiamine from the medium prevented the oxidative decarboxylation of pyruvate by Staphylococcus aureus S-6 and partially or completely reversed the repression of toxin synthesis by glucose and pyruvate. In the absence of an added energy source, thiamine starvation caused a decrease in protein synthesis but an increased differential rate of toxin synthesis which was greater at pH 7.7 than at 6.0. In the absence of thiamine, pyruvate was not metabolized but caused a decrease in the rate of protein synthesis. This resulted in a twofold increase in the differential rate of toxin synthesis. Thus, conditions which altered the oxidative decarboxylation of pyruvate or decreased the rate of protein synthesis increased the rate of enterotoxin B synthesis.

Full text

PDF
242

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BLACKWOOD A. C., LEDINGHAM G. A., NEISH A. C. Dissimilation of glucose at controlled pH values by pigmented and non-pigmented strains of Escherichia coli. J Bacteriol. 1956 Oct;72(4):497–499. doi: 10.1128/jb.72.4.497-499.1956. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bluhm L., Ordal Z. J. Effect of sublethal heat on the metabolic activity of Staphylococcus aureus. J Bacteriol. 1969 Jan;97(1):140–150. doi: 10.1128/jb.97.1.140-150.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Dobrogosz W. J. Altered end-product patterns and catabolite repression in Escherichia coli. J Bacteriol. 1966 Jun;91(6):2263–2269. doi: 10.1128/jb.91.6.2263-2269.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. FRIEDMAN M. E., WHITE J. D. IMMUNOFLUORESCENT DEMONSTRATION OF CELL-ASSOCIATED STAPHYLOCOCCAL ENTEROTOXIN B. J Bacteriol. 1965 Apr;89:1155–1155. doi: 10.1128/jb.89.4.1155-1155.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. GALLANT J., STAPLETON R. DEREPRESSION OF ALKALINE PHOSPHATASE SYNTHESIS BY CHLORAMPHENICOL AND CANAVANINE INHIBITION. J Mol Biol. 1964 Apr;8:442–451. doi: 10.1016/s0022-2836(64)80002-4. [DOI] [PubMed] [Google Scholar]
  6. GARDNER J. F., LASCELLES J. The requirement for acetate of a streptomycin-resistant strain of Staphylococcus aureus. J Gen Microbiol. 1962 Sep;29:157–164. doi: 10.1099/00221287-29-1-157. [DOI] [PubMed] [Google Scholar]
  7. Garrard W., Lascelles J. Regulation of Staphylococcus aureus lactate dehydrogenase. J Bacteriol. 1968 Jan;95(1):152–156. doi: 10.1128/jb.95.1.152-156.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. HOLZER H. Regulation of carbohydrate metabolism by enzyme competition. Cold Spring Harb Symp Quant Biol. 1961;26:277–288. doi: 10.1101/sqb.1961.026.01.034. [DOI] [PubMed] [Google Scholar]
  9. Horowitz N. H., Feldman H. M., Pall M. L. Derepression of tyrosinase synthesis in Neurospora by cycloheximide, actinomycin D, and puromycin. J Biol Chem. 1970 Jun 10;245(11):2784–2788. [PubMed] [Google Scholar]
  10. Krebs H. A. Dismutation of pyruvic acid in Gonococcus and Staphylococcus. Biochem J. 1937 Apr;31(4):661–671. doi: 10.1042/bj0310661. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. LEVY H. B., SOBER H. A. A simple chromatographic method for preparation of gamma globulin. Proc Soc Exp Biol Med. 1960 Jan;103:250–252. doi: 10.3181/00379727-103-25476. [DOI] [PubMed] [Google Scholar]
  12. Mah R. A., Fung D. Y., Morse S. A. Nutritional requirements of Staphylococcus aureus S-6. Appl Microbiol. 1967 Jul;15(4):866–870. doi: 10.1128/am.15.4.866-870.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Markus Z. H., Silverman G. J. Factors affecting the secretion of staphylococcal enterotoxin A. Appl Microbiol. 1970 Sep;20(3):492–496. doi: 10.1128/am.20.3.492-496.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Markus Z., Silverman G. J. Enterotoxin B production by nongrowing cells of Staphylococcus aureus. J Bacteriol. 1968 Oct;96(4):1446–1447. doi: 10.1128/jb.96.4.1446-1447.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Markus Z., Silverman G. J. Enterotoxin B synthesis by replicating and nonreplicating cells of Staphylococcus aureus. J Bacteriol. 1969 Feb;97(2):506–512. doi: 10.1128/jb.97.2.506-512.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. McLean R. A., Lilly H. D., Alford J. A. Effects of meat-curing salts and temperature on production of staphylococcal enterotoxin B. J Bacteriol. 1968 Apr;95(4):1207–1211. doi: 10.1128/jb.95.4.1207-1211.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Morse S. A., Mah R. A., Dobrogosz W. J. Regulation of staphylococcal enterotoxin B. J Bacteriol. 1969 Apr;98(1):4–9. doi: 10.1128/jb.98.1.4-9.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. RIGGS J. L., LOH P. C., EVELAND W. C. A simple fractionation method for preparation of fluorescein-labeled gamma globulin. Proc Soc Exp Biol Med. 1960 Dec;105:655–658. doi: 10.3181/00379727-105-26207. [DOI] [PubMed] [Google Scholar]
  19. STRECKER H. J., HARARY I. Bacterial butylene glycol dehydrogenase and diacetyl reductase. J Biol Chem. 1954 Nov;211(1):263–270. [PubMed] [Google Scholar]
  20. STRECKER H. J., OCHOA S. Pyruvate oxidation system and acetoin formation. J Biol Chem. 1954 Jul;209(1):313–326. [PubMed] [Google Scholar]
  21. Stark R. L., Middaugh P. R. Immunofluorescent detection of enterotoxin B in food and a culture medium. Appl Microbiol. 1969 Oct;18(4):631–635. doi: 10.1128/am.18.4.631-635.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Weirether F. J., Lewis E. E., Rosenwald A. J., Lincoln R. E. Rapid quantitative serological assay of staphylococcal enterotoxin B. Appl Microbiol. 1966 Mar;14(2):284–291. doi: 10.1128/am.14.2.284-291.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Witt I., Neufang B. Studies on the influence of thiamine on the synthesis of thiamine pyrophosphate-dependent enzymes in Saccharomyces cerevisiae. Biochim Biophys Acta. 1970 Aug 14;215(2):323–332. doi: 10.1016/0304-4165(70)90031-0. [DOI] [PubMed] [Google Scholar]

Articles from Applied Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES