Skip to main content
Applied Microbiology logoLink to Applied Microbiology
. 1969 Feb;17(2):214–218. doi: 10.1128/am.17.2.214-218.1969

Frequency of R Factor-mediated Multiple Drug Resistance in Klebsiella and Aerobacter

Virginia Hinshaw 1, James Punch 1, Marvin J Allison 1, Harry P Dalton 1
PMCID: PMC377651  PMID: 4887281

Abstract

A comparative study was done on the transfer frequency of R factors from 90 strains of multiple drug-resistant Aerobacter and 81 strains of Klebsiella to Escherichia coli CSH-2 (F-, met-, pro-, Nal-r). The most common resistance patterns for the Aerobacter isolants were ampicillin streptomycin chloramphenicol tetracycline and ampicillin streptomycin chloramphenicol tetracycline kanamycin neomycin; for the Klebsiella isolants, the most common resistance pattern was ampicillin kanamycin streptomycin tetracycline chloramphenicol neomycin. R factors were isolated from 14.1% of the Aerobacter strains; 61.5% of these R factors harbored R determinants for ampicillin streptomycin tetracycline. R factors were isolated from 79.1% of the Klebsiella strains; four R factors were isolated with significant frequency; streptomycin chloramphenicol kanamycin neomycin, 37.5%; ampicillin streptomycin tetracycline kanamycin neomycin, 14.1%; ampicillin streptomycin tetracycline, 12.5%; and streptomycin chloramphenicol tetracycline, 12.5%.

Chloramphenicol, kanamycin, and neomycin resistance was rarely transferred from the Aerobacter strains, although over 50% of the clinical isolants possessed resistance to these antibiotics. In contrast, over 75% of the Klebsiella strains transferred resistance to chloramphenicol, kanamycin, neomycin. Highest frequency of transferred resistance to individual drugs in the Aerobacter strains was to streptomycin (14.8%), whereas in the Klebsiella group resistance to four drugs was transferred at a very high frequency: streptomycin (80.8%), chloramphenicol (78.5%), kanamycin (76.4%), and neomycin (75.9%).

Full text

PDF
214

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bulger R. J., Roberts C. E., Sherris J. C. Changing incidence of antibiotic resistance among Staphylococcus aureus, Escherichia coli, Aerobacter-Klebsiella, and Pseudomonas encountered in a teaching hospital over a 7-year period. Antimicrob Agents Chemother (Bethesda) 1966;6:42–46. [PubMed] [Google Scholar]
  2. Dalton H. P., Allison M. J. Etiology of bacteremia. Appl Microbiol. 1967 Jul;15(4):808–814. doi: 10.1128/am.15.4.808-814.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Datta N. Infectious drug resistance. Br Med Bull. 1965 Sep;21(3):254–259. doi: 10.1093/oxfordjournals.bmb.a070405. [DOI] [PubMed] [Google Scholar]
  4. Demerec M., Adelberg E. A., Clark A. J., Hartman P. E. A proposal for a uniform nomenclature in bacterial genetics. J Gen Microbiol. 1968 Jan;50(1):1–14. doi: 10.1099/00221287-50-1-1. [DOI] [PubMed] [Google Scholar]
  5. Farrar W. E., Jr, Dekle L. C. Tranferable antibiotic resistance associated with an outbreak of shigellosis. Ann Intern Med. 1967 Dec;67(6):1208–1215. doi: 10.7326/0003-4819-67-6-1208. [DOI] [PubMed] [Google Scholar]
  6. Gill F. A., Hook E. W. Changing patterns of bacterial resistance to antimicrobial drugs. Am J Med. 1965 Nov;39(5):780–795. doi: 10.1016/0002-9343(65)90097-5. [DOI] [PubMed] [Google Scholar]
  7. Gill F. A., Hook E. W. Salmonella strains with transferable antimicrobial resistance. JAMA. 1966 Dec 19;198(12):1267–1269. [PubMed] [Google Scholar]
  8. Jeljaszewicz J., Hawiger J. The resistance to antibiotics of strains of Streptococcus viridans, Streptococcus faecalis, Escherichia coli, Pseudomonas aeruginosa, Proteus and Klebsiella isolated in Poland. Bull World Health Organ. 1966;35(2):243–246. [PMC free article] [PubMed] [Google Scholar]
  9. Kabins S. A., Cohen S. Resistance-transfer factor in Enterobacteriaceae. N Engl J Med. 1966 Aug 4;275(5):248–252. doi: 10.1056/NEJM196608042750504. [DOI] [PubMed] [Google Scholar]
  10. Meynell E., Meynell G. G., Datta N. Phylogenetic relationships of drug-resistance factors and other transmissible bacterial plasmids. Bacteriol Rev. 1968 Mar;32(1):55–83. doi: 10.1128/br.32.1.55-83.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Mitsuhashi S., Hashimoto H., Egawa R., Tanaka T., Nagai Y. Drug resistance of enteric bacteria. IX. Distribution of R factors in gram-negative bacteria from clinical sources. J Bacteriol. 1967 Apr;93(4):1242–1245. doi: 10.1128/jb.93.4.1242-1245.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Salzman T. C., Klemm L. Transferable drug resistance (R factors) in Enterobacteriaceae: relationship to nosocomial infections. Antimicrob Agents Chemother (Bethesda) 1966;6:212–220. [PubMed] [Google Scholar]
  13. Smith D. H., Armour S. E. Transferable R factors in enteric bacteria causing infection of the genitourinary tract. Lancet. 1966 Jul 2;2(7453):15–18. doi: 10.1016/s0140-6736(66)91745-4. [DOI] [PubMed] [Google Scholar]
  14. Turck M. The problem of infections due to gram-negative organisms. Antimicrob Agents Chemother (Bethesda) 1966;6:265–273. [PubMed] [Google Scholar]
  15. WATANABE T. Infective heredity of multiple drug resistance in bacteria. Bacteriol Rev. 1963 Mar;27:87–115. doi: 10.1128/br.27.1.87-115.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Watanabe T. Infectious drug resistance. Sci Am. 1967 Dec;217(6):19–28. doi: 10.1038/scientificamerican1267-19. [DOI] [PubMed] [Google Scholar]

Articles from Applied Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES