Abstract
The presence of high concentrations of sulfate, iron, and hydrogen (acid) ions in drainage from coal mines and other areas containing waste pyritic materials is a serious water pollution problem. Sulfate can be removed from solution by microbial reduction to sulfide and subsequent precipitation as FeS. A mixed culture of microorganisms degraded wood dust cellulose, and the degradation products served as carbon and energy sources for sulfate-reducing bacteria. Metabolism of carbon compounds resulted in a net pH increase in the system. Oxidation-reduction potential (Eh) and temperature and carbon supplements were studied in an effort to accelerate the sulfate reduction process, with the ultimate objective of utilizing the process as a pollution abatement procedure.
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- POSTGATE J. R. Versatile medium for the enumeration of sulfate-reducing bacteria. Appl Microbiol. 1963 May;11:265–267. doi: 10.1128/am.11.3.265-267.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Postgate J. R. Recent advances in the study of the sulfate-reducing bacteria. Bacteriol Rev. 1965 Dec;29(4):425–441. doi: 10.1128/br.29.4.425-441.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tuttle J. H., Dugan P. R., Macmillan C. B., Randles C. I. Microbial dissimilatory sulfur cycle in acid mine water. J Bacteriol. 1969 Feb;97(2):594–602. doi: 10.1128/jb.97.2.594-602.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tuttle J. H., Randles C. I., Dugan P. R. Activity of microorganisms in acid mine water. I. Influence of acid water on aerobic heterotrophs of a normal stream. J Bacteriol. 1968 May;95(5):1495–1503. doi: 10.1128/jb.95.5.1495-1503.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
