Abstract
Fifteen sulfonamide-resistant cultures isolated from urinary tract infections in eastern Nebraska were screened for transferable drug resistance by three methods. Seven of the 15 resistant cultures could transfer resistance of varying levels to two or more chemotherapeutic agents. Transfer of drug resistance occurred without accompanying transfer of chromosomal traits and required cell to cell contact. In mixed culture, the number of drug-resistant recipients increased exponentially, reaching a plateau 2 hr after mixing. Spontaneous or artificial elimination of resistance was found to be a rare event. In addition, several drug-sensitive isolates from urinary tract infections were shown to be competent recipients of drug resistance determinants. From these data, it appears that the transferable drug resistance observed was mediated by R factors.
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- DAVIS B. D., MINGIOLI E. S. Mutants of Escherichia coli requiring methionine or vitamin B12. J Bacteriol. 1950 Jul;60(1):17–28. doi: 10.1128/jb.60.1.17-28.1950. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gill F. A., Hook E. W. Salmonella strains with transferable antimicrobial resistance. JAMA. 1966 Dec 19;198(12):1267–1269. [PubMed] [Google Scholar]
- Kabins S. A., Cohen S. Resistance-transfer factor in Enterobacteriaceae. N Engl J Med. 1966 Aug 4;275(5):248–252. doi: 10.1056/NEJM196608042750504. [DOI] [PubMed] [Google Scholar]
- MATNEY T. S., ACHENBACH N. E. New uses for membrane filters III. Bacterial mating procedure. J Bacteriol. 1962 Oct;84:874–875. doi: 10.1128/jb.84.4.874-875.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Salzman T. C., Klemm L. Transferable drug resistance (R factors) in Enterobacteriaceae: relationship to nosocomial infections. Antimicrob Agents Chemother (Bethesda) 1966;6:212–220. [PubMed] [Google Scholar]
- Smith D. H., Armour S. E. Transferable R factors in enteric bacteria causing infection of the genitourinary tract. Lancet. 1966 Jul 2;2(7453):15–18. doi: 10.1016/s0140-6736(66)91745-4. [DOI] [PubMed] [Google Scholar]
- Smith D. H. R factors mediate resistance to mercury, nickel, and cobalt. Science. 1967 May 26;156(3778):1114–1116. doi: 10.1126/science.156.3778.1114. [DOI] [PubMed] [Google Scholar]
- Smith D. H. Salmonella with transferable drug resistance. N Engl J Med. 1966 Sep 22;275(12):625–630. doi: 10.1056/NEJM196609222751201. [DOI] [PubMed] [Google Scholar]
- Tomoeda M., Inuzuka M., Kubo N., Nakamura S. Effective elimination of drug resistance and sex factors in Escherichia coli by sodium dodecyl sulfate. J Bacteriol. 1968 Mar;95(3):1078–1089. doi: 10.1128/jb.95.3.1078-1089.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WATANABE T., FUKASAWA T. Episome-mediated transfer of drug resistance in Enterobacteriaceae. II. Elimination of resistance factors with acridine dyes. J Bacteriol. 1961 May;81:679–683. doi: 10.1128/jb.81.5.679-683.1961. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WATANABE T. Infective heredity of multiple drug resistance in bacteria. Bacteriol Rev. 1963 Mar;27:87–115. doi: 10.1128/br.27.1.87-115.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WATANABE T. SELECTED METHODS OF GENETIC STUDY OF EPISOME-MEDIATED DRUG RESISTANCE IN BACTERIA. Methods Med Res. 1964;10:202–220. [PubMed] [Google Scholar]
