Skip to main content
Elsevier Sponsored Documents logoLink to Elsevier Sponsored Documents
. 2011 Jan 15;226(1):139–175. doi: 10.1016/j.aim.2010.06.010

Fractal tiles associated with shift radix systems

Valérie Berthé a,c, Anne Siegel b, Wolfgang Steiner c,, Paul Surer d, Jörg M Thuswaldner d
PMCID: PMC3778876  PMID: 24068835

Abstract

Shift radix systems form a collection of dynamical systems depending on a parameter r which varies in the d-dimensional real vector space. They generalize well-known numeration systems such as beta-expansions, expansions with respect to rational bases, and canonical number systems. Beta-numeration and canonical number systems are known to be intimately related to fractal shapes, such as the classical Rauzy fractal and the twin dragon. These fractals turned out to be important for studying properties of expansions in several settings.

In the present paper we associate a collection of fractal tiles with shift radix systems. We show that for certain classes of parameters r these tiles coincide with affine copies of the well-known tiles associated with beta-expansions and canonical number systems. On the other hand, these tiles provide natural families of tiles for beta-expansions with (non-unit) Pisot numbers as well as canonical number systems with (non-monic) expanding polynomials.

We also prove basic properties for tiles associated with shift radix systems. Indeed, we prove that under some algebraic conditions on the parameter r of the shift radix system, these tiles provide multiple tilings and even tilings of the d-dimensional real vector space. These tilings turn out to have a more complicated structure than the tilings arising from the known number systems mentioned above. Such a tiling may consist of tiles having infinitely many different shapes. Moreover, the tiles need not be self-affine (or graph directed self-affine).

Keywords: Beta expansion, Canonical number system, Shift radix system, Tiling

Communicated by Kenneth Falconer

Footnotes

This research was supported by the Austrian Science Fund (FWF), project S9610, which is part of the national research network FWF-S96 “Analytic combinatorics and probabilistic number theory”, by the Agence Nationale de la Recherche, grant ANR–06–JCJC-0073 “DyCoNum”, by the “Amadée” grant FR–13–2008 and the “PHC Amadeus” grant 17111UB.

Contributor Information

Valérie Berthé, Email: berthe@lirmm.fr.

Anne Siegel, Email: Anne.Siegel@irisa.fr.

Wolfgang Steiner, Email: steiner@liafa.jussieu.fr.

Paul Surer, Email: me@palovsky.com.

Jörg M. Thuswaldner, Email: joerg.thuswaldner@mu-leoben.at.

References

  • 1.Adamczewski B., Frougny C., Siegel A., Steiner W. Rational numbers with purely periodic β-expansion. Bull. Lond. Math. Soc. 2010;42:538–552. [Google Scholar]
  • 2.Akiyama S. Self affine tilings and Pisot numeration systems. In: Győry K., Kanemitsu S., editors. Number Theory, Its Applications. Kluwer; 1999. pp. 1–17. [Google Scholar]
  • 3.Akiyama S. On the boundary of self affine tilings generated by Pisot numbers. J. Math. Soc. Japan. 2002;54:283–308. [Google Scholar]
  • 4.Akiyama S., Barat G., Berthé V., Siegel A. Boundary of central tiles associated with Pisot beta-numeration and purely periodic expansions. Monatsh. Math. 2008;155:377–419. [Google Scholar]
  • 5.Akiyama S., Borbély T., Brunotte H., Pethő A., Thuswaldner J.M. Generalized radix representations and dynamical systems. I. Acta Math. Hungar. 2005;108:207–238. [Google Scholar]
  • 6.Akiyama S., Brunotte H., Pethő A., Thuswaldner J.M. Generalized radix representations and dynamical systems. II. Acta Arith. 2006;121:21–61. [Google Scholar]
  • 7.Akiyama S., Brunotte H., Pethő A., Thuswaldner J.M. Generalized radix representations and dynamical systems. III. Osaka J. Math. 2008;45:347–374. [Google Scholar]
  • 8.Akiyama S., Brunotte H., Pethő A., Thuswaldner J.M. Generalized radix representations and dynamical systems. IV. Indag. Math. (N.S.) 2008;19:333–348. [Google Scholar]
  • 9.Akiyama S., Frougny C., Sakarovitch J. Powers of rationals modulo 1 and rational base number systems. Israel J. Math. 2008;168:53–91. [Google Scholar]
  • 10.Akiyama S., Scheicher K. Intersecting two dimensional fractals and lines. Acta Sci. Math. (Szeged) 2005;71:555–580. [Google Scholar]
  • 11.Akiyama S., Thuswaldner J.M. Topological properties of two-dimensional number systems. J. Théor. Nombres Bordeaux. 2000;12:69–79. [Google Scholar]
  • 12.Akiyama S., Thuswaldner J.M. A survey on topological properties of tiles related to number systems. Geom. Dedicata. 2004;109:89–105. [Google Scholar]
  • 13.Arnoux P., Ito S. Pisot substitutions and Rauzy fractals. Bull. Belg. Math. Soc. Simon Stevin. 2001;8:181–207. Journées Montoises d'Informatique Théorique, Marne-la-Vallée, 2000. [Google Scholar]
  • 14.Barat G., Berthé V., Liardet P., Thuswaldner J. Dynamical directions in numeration. Ann. Inst. Fourier (Grenoble) 2006;56:1987–2092. [Google Scholar]
  • 15.Barnsley M. Academic Press Inc.; Orlando: 1988. Fractals Everywhere. [Google Scholar]
  • 16.Barnsley M. Cambridge University Press; 2006. Superfractals. [Google Scholar]
  • 17.Berthé V., Siegel A. Tilings associated with beta-numeration and substitutions. Integers. 2005;5:A2. 46 pp. (electronic) [Google Scholar]
  • 18.Chekhova N., Hubert P., Messaoudi A. Propriétés combinatoires, ergodiques et arithmétiques de la substitution de Tribonacci. J. Théor. Nombres Bordeaux. 2001;13:371–394. [Google Scholar]
  • 19.Falconer K.J. John Wiley and Sons; Chichester: 1990. Fractal Geometry. [Google Scholar]
  • 20.Frougny C., Solomyak B. Finite beta-expansions. Ergodic Theory Dynam. Systems. 1992;12:713–723. [Google Scholar]
  • 21.M. Hollander, Linear numeration systems, finite beta expansions, and discrete spectrum of substitution dynamical systems, PhD thesis, Washington University, Seattle, 1996.
  • 22.Hubert P., Messaoudi A. Best simultaneous diophantine approximations of Pisot numbers and Rauzy fractals. Acta Arith. 2006;124:1–15. [Google Scholar]
  • 23.Hutchinson J.E. Fractals and self-similarity. Indiana Univ. Math. J. 1981;30:713–747. [Google Scholar]
  • 24.Ito S., Rao H. Atomic surfaces, tilings and coincidence. I. Irreducible case. Israel J. Math. 2006;153:129–155. [Google Scholar]
  • 25.C. Kalle, W. Steiner, Beta-expansions, natural extensions and multiple tilings associated with Pisot units, Trans. Amer. Math. Soc., in press.
  • 26.Kátai I., Kőrnyei I. On number systems in algebraic number fields. Publ. Math. Debrecen. 1992;41:289–294. [Google Scholar]
  • 27.Knuth D.E. 3rd ed. Addison–Wesley; London: 1998. The Art of Computer Programming, vol. 2: Seminumerical Algorithms. [Google Scholar]
  • 28.Kovács B., Pethő A. Number systems in integral domains, especially in orders of algebraic number fields. Acta Sci. Math. (Szeged) 1991;55:286–299. [Google Scholar]
  • 29.Kuratowski K. Academic Press, Polish Scientific Publishers; New York, London, Warsaw: 1966. Topology, vol. I. [Google Scholar]
  • 30.Lagarias J., Wang Y. Self-affine tiles in Rn. Adv. Math. 1996;121:21–49. [Google Scholar]
  • 31.Lagarias J., Wang Y. Integral self-affine tiles in Rn. II. Lattice tilings. J. Fourier Anal. Appl. 1997;3:83–102. [Google Scholar]
  • 32.Mauldin R.D., Williams S.C. Hausdorff dimension in graph directed constructions. Trans. Amer. Math. Soc. 1988;309:811–829. [Google Scholar]
  • 33.Parry W. On the β-expansions of real numbers. Acta Math. Acad. Sci. Hungar. 1960;11:401–416. [Google Scholar]
  • 34.Pethő A. On a polynomial transformation and its application to the construction of a public key cryptosystem. Computational Number Theory; Debrecen, 1989; Berlin: de Gruyter; 1991. pp. 31–43. [Google Scholar]
  • 35.Rauzy G. Nombres algébriques et substitutions. Bull. Soc. Math. France. 1982;110:147–178. [Google Scholar]
  • 36.Rényi A. Representations for real numbers and their ergodic properties. Acta Math. Acad. Sci. Hungar. 1957;8:477–493. [Google Scholar]
  • 37.Scheicher K., Surer P., Thuswaldner J.M., van de Woestijne C. Digit systems over commutative rings. http://arxiv.org/abs/1004.3729v1 preprint, available at.
  • 38.Scheicher K., Thuswaldner J.M. Canonical number systems, counting automata and fractals. Math. Proc. Cambridge Philos. Soc. 2002;133:163–182. [Google Scholar]
  • 39.Siegel A. Représentation des systèmes dynamiques substitutifs non unimodulaires. Ergodic Theory Dynam. Systems. 2003;23:1247–1273. [Google Scholar]
  • 40.Surer P. Characterisation results for shift radix systems. Math. Pannon. 2007;18:265–297. [Google Scholar]
  • 41.W.P. Thurston, Groups, tilings and finite state automata: Summer AMS Colloquium Lectures, 1989.
  • 42.Vince A. Directions in Mathematical Quasicrystals. vol. 13. Amer. Math. Soc.; Providence, RI: 2000. Digit tiling of Euclidean space; pp. 329–370. (CRM Monogr. Ser.). [Google Scholar]
  • 43.Wang Y. Self-affine tiles. Advances in Wavelets; Hong Kong, 1997; Singapore: Springer; 1999. pp. 261–282. [Google Scholar]

RESOURCES