Skip to main content
NIHPA Author Manuscripts logoLink to NIHPA Author Manuscripts
. Author manuscript; available in PMC: 2014 Jul 19.
Published in final edited form as: Org Lett. 2013 Jul 10;15(14):3790–3793. doi: 10.1021/ol401771a

Ruthenium Catalyzed Reductive Coupling of Paraformaldehyde to Trifluoromethyl Allenes: CF3-Bearing All-Carbon Quaternary Centers

Brannon Sam 1, T Patrick Montgomery 1, Michael J Krische 1,*
PMCID: PMC3779475  NIHMSID: NIHMS504705  PMID: 23841678

Abstract

graphic file with name nihms-504705-f0001.jpg

Trifluoromethyl substituted allenes engage in ruthenium catalyzed reductive couplings with paraformaldehyde to form products of hydrohydroxymethylation as single regioisomers. This method enables generation of CF3-bearing all-carbon quaternary stereocenters.


Alkene hydroformylation can be performed in an efficient and regioselective manner and represents the largest volume application of homogeneous metal catalysis. 1 Although significant progress toward the hydroformylation of other π-unsaturated reactants has been made (dienes, 2 alkynes, 3 allenes 4), incomplete regioselectivities and “over-hydroformylation” to form dialdehyde products is often problematic. Alcohol mediated reductive couplings 5 of paraformaldehyde to allenes, 6a alkynes6b and dienes,6c,d which form related products of hydrohydroxymethylation, provide an alternative to hydroformylation wherein alternate regioisomers are efficiently partitioned through the use of ruthenium and nickel catalysts.6b,c,d To advance this emergent technology further, a study of the reductive coupling of CF3-substituted allenes to paraformaldehyde was undertaken.6a Here, we report a ruthenium catalyzed reductive coupling of paraformaldehyde to CF3-substituted allenes that displays complete levels of branched regioselectivity, thus delivering all-carbon quaternary stereocenters bearing CF,3 groups.7,8,9

Our study required a method for the synthesis of 1-aryl-1-trifluoromethylallenes. Although syntheses involving propargyl substitution using CF3 nucleophiles are reported,10 these methods do not permit formation of 1-aryl-1-trifluoromethylallenes. Syntheses involving introduction of the CF3 group at an early stage have been reported, but do not employ readily accessible starting materials and are not step-economic.11 Classical strategies for allene synthesis, such as the Doering-LaFlamme method,12 were unsuccessful. Hence, an effective protocol for the synthesis of 1-aryl-1-trifluoromethylallenes was developed (Scheme 1). Corey-Fuchs olefination of the aryl trifluoromethyl ketones 1a–1f13 delivers the corresponding methylene dibromides 2a–2f. Lithiation14 of the resulting methylene dibromides 2a–d followed by treatment with paraformaldehyde and quenching with methanesulfonyl chloride delivers the allylic sulfonates 4a–4d, which appear as single geometrical isomers. The allylic sulfonates 4a–4d were converted to the corresponding allylic bromides in situ and then exposed to zinc dust15 to form allenes 5a–5d in good isolated yield. The vinyllithium species derived from methylene dibromides 2e,f did not react efficiently with paraformaldehyde, but could be methylated in good yield to form adducts 3e,f as single geometrical isomers. Allylic bromination, which occurs with scrambling of olefin geometry, followed by treatment with zinc dust provided allenes 5e,f.

Scheme 1.

Scheme 1

Synthesis of CF3-Substituted Allenes 5a5f.a

Having defined serviceable routes to allenes 5a–5f, the reductive coupling of allene 5a to paraformaldehyde was explored. Exposure to conditions previously developed for ruthenium catalyzed reductive coupling of 1,1-disubstituted allenes to paraformaldehyde provided the desired reductive coupling product 6a in poor yield (Table 1, entry 1).6a Various ruthenium(II) complexes were evaluated (Table 1, entries 2–4). The commercially available complex RuHCl(CO)(PPh3)3 provided a promising 37% yield of 6a (Table 1, entry 3).16 Upon addition of DPPF, the isolated yield of 6a increased to 68%, however, small quantities of over-reduction product 7a were apparent (Table 1, entry 6). In fact, the extent of over-reduction and conversion exhibited a dramatic dependence on ligand (Table 1, entries 6–15). Eventually, it was found that the combination of RuHCl(CO)(PPh3)3 and DPPM provided a 74% isolated yield of 6a with nearly complete suppression of over-reduction (Table 1, entry 9).

Table 1.

Selected Optimization Experiments in the Ruthenium Catalyzed Reductive Coupling of CF3-Substituted Allene 5a and Paraformaldehyde.agraphic file with name nihms-504705-t0004.jpg

entry [Ru] ligand yield % 6a:7a
1 RuBr(CO)3(B3-C3H5) t-BuPPh2b 12 20:1
2 RuH2(CO)(PPh3)3 - 18 >20:1
3 RuHCI(CO)(PPh3)3 - 37 12:1
4 RuTFA2(CO)(PPh3)2 - 41 13:1
5 RuTFA2(CO)(PPh3)2 DPPF 40 1:4
6 RuHCI(CO)(PPh3)3 DPPF 68 12:1
7 RuHCI(CO)(PPh3)3 DiPPF 37 >20:1
8 RuHCI(CO)(PPh3)3 DtBPF 58 >20:1
9 RuHCI(CO)(PPh3)3 DPPM 74 20:1
10 RuHCI(CO)(PPh3)3 DPPM 78 20:1
11 RuHCI(CO)(PPh3)3 DPPE 70 9:1
12 RuHCI(CO)(PPh3)3 DPPP 35 3:1
13 RuHCI(CO)(PPh3)3 DPPB 70 1:4
14 RuHCI(CO)(PPh3)3 DCyPM 68 10:1
15 RuHCI(CO)(PPh3)3 DCyPE 67 17:1
16 RuHCI(CO)(PPh3)3 BINAP 31 10:1
a

Yields are of material isolated by silica gel chromatography. Ratios of 6:7 were determined by 19F NMR analyses of crude reaction mixtures.

DCyPM = 1,1-bis(dicyclohexylphosphino)methane, DCyPE = 1,1-bis(dicyclohexylphosphino)ethane.

See Supporting Information for ligand definitions and experimental details.

b

t-BuPPh2 (15 mol %).

Under these conditions, 1-aryl-1-trifluoromethylallenes 5a–5f were reductively coupling to paraformaldehyde to provide the CF3-substituted primary neopentyl alcohols 6a–6f in moderate to good isolated yields (Figure 1). In all cases, complete levels of branched-regioselectivity were observed. Only in the coupling of allene 5e was any significant quantity of over-reduction product 7e observed. To illustrate the utility of the reaction products, neopentyl alcohol 6a was converted to the corresponding p-toluenesulfonate and reacted with sodium cyanide in DMSO solvent. Despite the notoriously low rates typically observed in SN2 reactions of neopentyl electrophiles, nitrile 8a was formed in moderate yield (eq. 1). Jones oxidation of neopentyl alcohol 6a followed by Fischer esterification provides the methyl ester 9a (eq. 2).

figure 1.

figure 1

Ruthenium Catalyzed Reductive Coupling of Allenes 5a5f to Paraformaldehyde to Form CF3-Substituted Neopentyl Alcohols 6a6f.a

graphic file with name nihms-504705-f0002.jpg (eq. 1)
graphic file with name nihms-504705-f0003.jpg (eq. 2)

A plausible catalytic mechanism for the ruthenium catalyzed reductive coupling of CF3-substituted allenes 5a–5f to paraformaldehyde has been proposed (Scheme 2). Ruthenium hydride I hydrometallates the allene to provide the allylruthenium haptomers IIa and IIb.17,18 Addition to formaldehyde from the primary σ-allylruthenium haptomer IIa provides the ruthenium alkoxide III. At this stage, isopropanol can protonolytically cleave the ruthenium alkoxide III to liberate the product 6 and generate ruthenium isopropoxide IV, which upon β-hydride elimination regenerates ruthenium hydride I. Alternatively, ruthenium alkoxide III can undergo formaldehyde addition to form ruthenium alkoxide V, which upon β-hydride elimination provides the ester 6-formate. In all prior ruthenium catalyzed reductive couplings of paraformaldehyde developed in our laboratory,6 including reactions of allenes,6a formate esters are generated to a significant extent and are cleaved upon isolation of the product.

Scheme 2.

Scheme 2

Proposed Mechanism for Ruthenium Catalyzed Reductive Coupling of CF3-Substituted Allenes 5a5f to Paraformaldehyde.

In summary, we report a ruthenium catalyzed reductive coupling of allenes 5a–5f to paraformaldehyde to form CF3- substituted neopentyl alcohols 6a–6f under the conditions of isopropanol mediated transfer hydrogenation. This is one of very few methods available for the generation of all-carbon quaternary stereocenters bearing CF3 groups.8 Beyond access to these elusive functional group arrays, the present study also describes novel synthetic routes to 1-aryl-1-trifluoromethylallenes 5a–5f, which may find use in other methodological endeavors. Future studies will focus on the development of related C-C bond forming transfer hydrogenations, including asymmetric variants of the transformations reported herein.

Supplementary Material

1_si_001

Acknowledgments

Acknowledgment is made to the Robert A. Welch Foundation (F-0038), the NIH-NIGMS (RO1 GM069445) and the Center for Green Chemistry and Catalysis for partial support of this research.

Footnotes

Supporting Information Available. Spectral data for all new compounds (1H NMR, 13C NMR, 19F NMR, IR, MS). This material is available free of charge via the internet at http://pubs.acs.org.

References

  • (1).For selected reviews on hydroformylation, see: Weissermel K, Arpe HJ. Industrial Organic Chemistry. Wiley-VCH; Weinheim: 2003. p. 127.. van Leeuwen PWNM, Claver C, editors. Rhodium Catalyzed Hydroformylation. Kluwer Academic Publishers; Dordrecht, Netherlands: 2000. . Breit B, Seiche W. Synthesis. 2001:1.. Kalck P, Peres Y, Jenck J. Adv. Organomet. Chem. 1991;32:121.. Franke R, Selent D, Börner A. Chem. Rev. 2012;112:5675. doi: 10.1021/cr3001803.
  • (2).For selected examples of conjugated diene hydroformylation, see: Clement WH, Orchin M. Ind. Eng. Chem. Prod. Res. Dev. 1965;4:283.. Fell B, Bahrmann H. J. Mol. Catal. 1977;2:211.. Bahrmann H, Fell B. J. Mol. Catal. 1980;8:329.. Botteghi C, Branca M, Saba A. J. Organomet. Chem. 1980;184:C17.. van Leeuwen PWNM, Roobeek CF. J. Mol. Catal. 1985;31:345.. Chalchat JC, Garry R. Ph., Lecomte E, Michet A. Flavour Fragrance J. 1991;6:178.. Bertozzi S, Campigli N, Vitulli G, Lazzaroni R, Salvadori P. J. Organomet. Chem. 1995;487:41.. Horiuchi T, Ohta T, Nozaki K, Takaya H. Chem. Commun. 1996:155.. Horiuchi T, Ohta T, Shirakawa E, Nozaki K, Takaya H. Tetrahedron. 1997;53:7795. doi: 10.1021/jo9624051.. Liu P, Jacobsen EN. J. Am. Chem. Soc. 2001;123:1072. doi: 10.1021/ja016893s.. Barros HJV, Hanson BE, dos Santos EN, Gusevskaya EV. Appl. Catal., A. 2004;278:57.. Barros HJV, da Silva JG, Guimarães CC, dos Santos EN, Gusevskaya EV. Organometallics. 2008;27:4523.. Watkins AL, Landis CR. Org. Lett. 2011;13:164. doi: 10.1021/ol102797t.
  • (3).For selected examples of alkyne hydroformylation, see: Doyama K, Joh T, Takahashi S, Shiohara T. Tetrahedron Lett. 1986;27:4497.. Johnson JR, Cuny GD, Buchwald SL. Angew. Chem. Int. Ed. 1995;34:1760.. Ishii Y, Miyashita K, Kamita K, Hidai M. J. Am. Chem. Soc. 1997;119:6448.. Van den Hoven BG, Alper H. J. Org. Chem. 1999;64:2964. doi: 10.1021/jo000230w.. Van den Hoven BG, Alper H. J. Org. Chem. 1999;64:9640. doi: 10.1021/jo000230w. Agabekov V, Seiche W, Breit B. Chem. Sci. 2013;4:2418.. Fang X, Zhang M, Jackstell R, Beller M. Angew. Chem. Int. Ed. 2013;52:4645. doi: 10.1002/anie.201300759.
  • (4).For selected examples of allene hydroformylation, see: Fell B, Beutler M. Erdöl & Kohle, Erdgas. 1976;29:149.. Guo H, Ma S. Adv. Synth. Catal. 2008;350:1213.
  • (5).For selected reviews on C-C bond forming hydrogenation and transfer hydrogenation, see: Bower JF, Krische MJ. Top. Organomet. Chem. 2011;43:107. doi: 10.1007/978-3-642-15334-1_5.. Hassan A, Krische MJ. Org. Proc. Res. Devel. 2011;15:1236. doi: 10.1021/op200195m.. Moran J, Krische MJ. Pure Appl. Chem. 2012;84:1729. doi: 10.1351/PAC-CON-11-10-18.
  • (6).Ngai M-Y, Skucas E, Krische MJ. Org. Lett. 2008;10:2705. doi: 10.1021/ol800836v.. Smejkal T, Han H, Breit B, Krische MJ. J. Am. Chem. Soc. 2009;131:10366. doi: 10.1021/ja904124b.. Bausch CC, Patman RL, Breit B, Krische MJ. Angew. Chem. Int. Ed. 2011;50:5687. doi: 10.1002/anie.201101496.. Köpfer A, Sam B, Breit B, Krische MJ. Chem. Sci. 2013;4:1876.
  • (7).Organofluorine compounds represent over 20% of approved pharmaceutical agents and 30–40% of commercially available agrochemicals: Thayer AM. Chem. Eng. News. 2006;84:15.. Mueller K, Faeh C, Diederich F. Science. 2007;317:1881. doi: 10.1126/science.1131943.. Thayer AM. Chem. Eng. News. 2007;85:11.. 80% of the small molecule drugs entering the market are estimated to contain one or more chiral centers: Carey JS, Laffan D, Thomson C, Williams MT. Org. Biomol. Chem. 2006;4:2337. doi: 10.1039/b602413k.. Farina V, Reeves JT, Senanayake CH, Song JJ. Chem. Rev. 2006;106:2734. doi: 10.1021/cr040700c.
  • (8).CF3-bearing all-carbon quaternary stereocenters are uncommon: Fuchigami T, Nakagawa Y. J. Org. Chem. 1987;52:5276.. Gosmini C, Rollin Y, Perichon J, Wakselman C, Tordeux M, Marival L. Tetrahedron. 1997;53:6027.. Hiraoka S, Yamazaki T, Kitazume T. Chem. Commun. 1997:1497.. Sato K, Takiguchi Y, Yoshizawa Y, Iwase K, Shimizu Y, Tarui A, Omote M, Kumadaki I, Ando A. Chem. Pharm. Bull. 2007;55:1593. doi: 10.1248/cpb.55.1593.. Kimura M, Yamazaki T, Kitazume T, Kubota T. Org. Lett. 2004;6:4651. doi: 10.1021/ol0481941.
  • (9).For preparation of organofluorine substructures via iridium catalyzed C-C bond forming transfer hydrogenation, see: Gao X, Zhang YJ, Krische MJ. Angew. Chem. Int. Ed. 2011;50:4173. doi: 10.1002/anie.201008296.. Hassan A, Montgomery TP, Krische MJ. Chem. Commun. 2012:4692. doi: 10.1039/c2cc31743e.
  • (10).(a) Burton DJ, Hartgraves GA, Hsu J. Tetrahedron Lett. 1990;31:3699. [Google Scholar]; (b) Wiemers DM, Burton DJ. J. Am. Chem. Soc. 1986;108:832. [Google Scholar]; (c) Zhao TSN, Szabo KJ. Org. Lett. 2012;14:3966. doi: 10.1021/ol3017287. [DOI] [PubMed] [Google Scholar]
  • (11).(a) Werner H, Laubender M, Wiedemann R, Windmuller B. Angew. Chem., Int. Ed. 1996;35:1237. [Google Scholar]; (b) Werner H, Wiedemann R, Laubender M, Windmuller B, Steinet P, Gevert O, Wolf J. J. Am. Chem. Soc. 2002;124:6966. doi: 10.1021/ja012479g. [DOI] [PubMed] [Google Scholar]; (c) Han HY, Kim MS, Son JB, Jeong IH. Tetrahedron Lett. 2006;47:209. [Google Scholar]
  • (12).Doering W. von E., LaFlamme PM. Tetrahedron. 1958;2:75. [Google Scholar]
  • (13).(a) Morken PA, Baenziger NC, Burton DJ, Bachand PC, Davis CR, Pedersen SD, Hansen SW. J. Chem. Soc., Chem. Commun. 1991:566. [Google Scholar]; (b) Morken PA, Bachand PC, Swenson DC, Burton DJ. J. Am. Chem. Soc. 1993;115:5430. [Google Scholar]; (c) Uno H, Nibu N, Misobe N. Bull. Chem. Soc. Jpn. 1999;72:1365. [Google Scholar]
  • (14).Li Y, Lu L, Zhao X. Org. Lett. 2004;6:4467. doi: 10.1021/ol0482341. [DOI] [PubMed] [Google Scholar]
  • (15).Lin M-H, Tsai W-S, Lin L-Z, Hung S-F, Chuang T-H, Su Y-J. J. Org. Chem. 2011;76:8518. doi: 10.1021/jo2015104. [DOI] [PubMed] [Google Scholar]
  • (16).The complex RuHCl(CO)(PPh3)3 served as an effective precatalyst in the redox neutral coupling of 1,1-disubstituted allenes and primary alcohols: Zbieg JR, McInturff EL, Leung JC, Krische MJ. J. Am. Chem. Soc. 2011;133:1141. doi: 10.1021/ja1104156.
  • (17).For leading references on the stoichiometric reaction of HXRu(CO)(PR3)3 (X = Cl, Br) with allenes or dienes to furnish π-allylruthenium complexes, see: Hiraki K, Ochi N, Sasada Y, Hayashida H, Fuchita Y, Yamanaka S. J. Chem. Soc., Dalton Trans. 1985:873.. Hill AF, Ho CT, Wilton-Ely DET. Chem. Commun. 1997:2207.. Xue P, Bi S, Sung HHY, Williams ID, Lin Z, Jia G. Organometallics. 2004;23:4735.
  • (18).For studies involving π-allylruthenium complexes of the type Ru(η3-allyl)(X)(CO)(PR3)2, see: Barnard CFJ, Daniels BJA, Holland PR, Mawby RJ. J. Chem. Soc., Dalton Trans. 1980:2418.. Hiraki K, Matsunaga T, Kawano H. Organometallics. 1994;13:1878.. Sasabe H, Nakanishi S, Takata T. Inorg. Chem. Commun. 2002;5:177.. Cadierno V, Crochet P, Diez J, Garcia-Garrido SE, Gimeno J. Organometallics. 2003;22:5226.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

1_si_001

RESOURCES