Full text
PDF![2](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9d1/378212/04599f0d08d1/bactrev00059-0011.png)
![3](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9d1/378212/ef7c85658226/bactrev00059-0012.png)
![4](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9d1/378212/ee95f4e48f42/bactrev00059-0013.png)
![5](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9d1/378212/7858f299d581/bactrev00059-0014.png)
![6](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9d1/378212/7cca5ac0d7f8/bactrev00059-0015.png)
![7](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9d1/378212/1b4032f2a4c3/bactrev00059-0016.png)
![8](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9d1/378212/8f5500d32063/bactrev00059-0017.png)
![9](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9d1/378212/d095e707858c/bactrev00059-0018.png)
![10](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9d1/378212/263f020696bc/bactrev00059-0019.png)
![11](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9d1/378212/6eb433297ab2/bactrev00059-0020.png)
![12](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9d1/378212/60b79f8a3592/bactrev00059-0021.png)
![13](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9d1/378212/ca9e28e2ca4d/bactrev00059-0022.png)
![14](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9d1/378212/274fa7912de4/bactrev00059-0023.png)
![15](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9d1/378212/d5b471f26949/bactrev00059-0024.png)
![16](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9d1/378212/2c39c3586f34/bactrev00059-0025.png)
![17](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9d1/378212/f089ffe04000/bactrev00059-0026.png)
![18](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9d1/378212/5e06cabe3d53/bactrev00059-0027.png)
![19](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9d1/378212/df67cc3be028/bactrev00059-0028.png)
![20](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9d1/378212/b111e5cedf39/bactrev00059-0029.png)
![21](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9d1/378212/a84587d106c1/bactrev00059-0030.png)
![22](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9d1/378212/da3675f824f6/bactrev00059-0031.png)
![23](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9d1/378212/b898c241a65d/bactrev00059-0032.png)
![24](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9d1/378212/1ba1e32fe877/bactrev00059-0033.png)
![25](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9d1/378212/484cc67b2a3d/bactrev00059-0034.png)
![26](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9d1/378212/dae295f71eeb/bactrev00059-0035.png)
![27](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9d1/378212/6e57035de851/bactrev00059-0036.png)
![28](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9d1/378212/764f0b69d4e0/bactrev00059-0037.png)
![29](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9d1/378212/f7c7294e8569/bactrev00059-0038.png)
![30](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9d1/378212/6bb07ef32693/bactrev00059-0039.png)
![31](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9d1/378212/e74d2a6929e5/bactrev00059-0040.png)
![32](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9d1/378212/a384f576ae48/bactrev00059-0041.png)
Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ARONSON A. I., SPIEGELMAN S. Protein and ribonucleic acid synthesis in a chloramphenicol-inhibited system. Biochim Biophys Acta. 1961 Oct 14;53:70–84. doi: 10.1016/0006-3002(61)90795-8. [DOI] [PubMed] [Google Scholar]
- BARNER H. D., COHEN S. S. The isolation and properties of amino acid requiring mutants of a thymineless bacterium. J Bacteriol. 1957 Sep;74(3):350–355. doi: 10.1128/jb.74.3.350-355.1957. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BERRAH G., KONETZKA W. A. Selective and reversible inhibition of the synthesis of bacterial deoxyribonucleic acid by phenethyl alcohol. J Bacteriol. 1962 Apr;83:738–744. doi: 10.1128/jb.83.4.738-744.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BONHOEFFER F., GIERER A. ON THE GROWTH MECHANISM OF THE BACTERIAL CHROMOSOME. J Mol Biol. 1963 Nov;7:534–540. doi: 10.1016/s0022-2836(63)80100-x. [DOI] [PubMed] [Google Scholar]
- CAIRNS J. The bacterial chromosome and its manner of replication as seen by autoradiography. J Mol Biol. 1963 Mar;6:208–213. doi: 10.1016/s0022-2836(63)80070-4. [DOI] [PubMed] [Google Scholar]
- FORRO F., Jr, WERTHEIMER S. A. The organization and replication of deoxyribonucleic acid in thymine-deficient strains of Escherichia coli. Biochim Biophys Acta. 1960 May 6;40:9–21. doi: 10.1016/0006-3002(60)91310-x. [DOI] [PubMed] [Google Scholar]
- Forro F., Jr Autoradiographic studies of bacterial chromosome replication in amino-acid deficient Escherichia coli 15T-. Biophys J. 1965 Sep;5(5):629–649. doi: 10.1016/S0006-3495(65)86741-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HANAWALT P. C., MAALOE O., CUMMINGS D. J., SCHAECHTER M. The normal DNA replication cycle. II. J Mol Biol. 1961 Apr;3:156–165. doi: 10.1016/s0022-2836(61)80042-9. [DOI] [PubMed] [Google Scholar]
- Hershey A. D., Burgi E., Ingraham L. COHESION OF DNA MOLECULES ISOLATED FROM PHAGE LAMBDA. Proc Natl Acad Sci U S A. 1963 May;49(5):748–755. doi: 10.1073/pnas.49.5.748. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LARK C., LARK K. G. Cyclic deoxyribonucleic acid synthesis induced in Escherichia coli following the addition of ribonucleosides to the growth medium. Biochim Biophys Acta. 1962 Mar 5;55:401–402. doi: 10.1016/0006-3002(62)90801-6. [DOI] [PubMed] [Google Scholar]
- LARK C., LARK K. G. EVIDENCE FOR TWO DISTINCT ASPECTS OF THE MECHANISM REGULATING CHROMOSOME REPLICATION IN ESCHERICHIA COLI. J Mol Biol. 1964 Oct;10:120–136. doi: 10.1016/s0022-2836(64)80032-2. [DOI] [PubMed] [Google Scholar]
- LARK K. G., MAALOE O. Nucleic acid synthesis and the division cycle of Salmonella typhimurium. Biochim Biophys Acta. 1956 Sep;21(3):448–458. doi: 10.1016/0006-3002(56)90181-0. [DOI] [PubMed] [Google Scholar]
- LARK K. G., REPKO T., HOFFMAN E. J. THE EFFECT OF AMINO ACID DEPRIVATION ON SUBSEQUENT DEOXYRIBONUCLEIC ACID REPLICATION. Biochim Biophys Acta. 1963 Sep 17;76:9–24. [PubMed] [Google Scholar]
- LARK K. G. Studies on the mechanism regulating periodic DNA synthesis in synchronized cultures of Alcaligenes fecalis. Biochim Biophys Acta. 1960 Dec 4;45:121–132. doi: 10.1016/0006-3002(60)91432-3. [DOI] [PubMed] [Google Scholar]
- Lark K. G., Bird R. E. Segregation of the conserved units of DNA in Escherichia coli. Proc Natl Acad Sci U S A. 1965 Nov;54(5):1444–1450. doi: 10.1073/pnas.54.5.1444. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lark K. G., Bird R. Premature chromosome replication induced by thymine starvation: restriction of replication to one of the two partially completed replicas. J Mol Biol. 1965 Sep;13(2):607–610. doi: 10.1016/s0022-2836(65)80125-5. [DOI] [PubMed] [Google Scholar]
- Lark K. G., Lark C. Regulation of chromosome replication in Escherichia coli: alternate replication of two chromosomes at slow growth rates. J Mol Biol. 1965 Aug;13(1):105–126. doi: 10.1016/s0022-2836(65)80083-3. [DOI] [PubMed] [Google Scholar]
- MAALOE O., HANAWALT P. C. Thymine deficiency and the normal DNA replication cycle. I. J Mol Biol. 1961 Apr;3:144–155. doi: 10.1016/s0022-2836(61)80041-7. [DOI] [PubMed] [Google Scholar]
- MARUYAMA Y., LARK K. G. Periodic synthesis of bacterial nucleic acids in the absence of protein synthesis. Exp Cell Res. 1961 Oct;25:161–169. doi: 10.1016/0014-4827(61)90316-0. [DOI] [PubMed] [Google Scholar]
- Meselson M., Stahl F. W. THE REPLICATION OF DNA IN ESCHERICHIA COLI. Proc Natl Acad Sci U S A. 1958 Jul 15;44(7):671–682. doi: 10.1073/pnas.44.7.671. [DOI] [PMC free article] [PubMed] [Google Scholar]
- NAGATA T. The molecular synchrony and sequential replication of DNA in Escherichia coli. Proc Natl Acad Sci U S A. 1963 Apr;49:551–559. doi: 10.1073/pnas.49.4.551. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nakada D. Formation of ribosomes by a "relaxed" mutant of Escherichia coli. J Mol Biol. 1965 Jul;12(3):695–725. doi: 10.1016/s0022-2836(65)80322-9. [DOI] [PubMed] [Google Scholar]
- PARDEE A. B., PRESTIDGE L. S. The dependence of nucleic acid synthesis on the presence of amino acids in Escherichia coli. J Bacteriol. 1956 Jun;71(6):677–683. doi: 10.1128/jb.71.6.677-683.1956. [DOI] [PMC free article] [PubMed] [Google Scholar]
- PETTIJOHN D., HANAWALT P. EVIDENCE FOR REPAIR-REPLICATION OF ULTRAVIOLET DAMAGED DNA IN BACTERIA. J Mol Biol. 1964 Aug;9:395–410. doi: 10.1016/s0022-2836(64)80216-3. [DOI] [PubMed] [Google Scholar]
- PRITCHARD R. H., LARK K. G. INDUCTION OF REPLICATION BY THYMINE STARVATION AT THE CHROMOSOME ORIGIN IN ESCHERICHIA COLI. J Mol Biol. 1964 Aug;9:288–307. doi: 10.1016/s0022-2836(64)80208-4. [DOI] [PubMed] [Google Scholar]
- SCHAECHTER M., BENTZON M. W., MAALOE O. Synthesis of deoxyribonucleic acid during the division cycle of bacteria. Nature. 1959 Apr 25;183(4669):1207–1208. doi: 10.1038/1831207a0. [DOI] [PubMed] [Google Scholar]
- SETLOW R. B., CARRIER W. L. THE DISAPPEARANCE OF THYMINE DIMERS FROM DNA: AN ERROR-CORRECTING MECHANISM. Proc Natl Acad Sci U S A. 1964 Feb;51:226–231. doi: 10.1073/pnas.51.2.226. [DOI] [PMC free article] [PubMed] [Google Scholar]
- STRACK H. B., KAISER A. D. ON THE STRUCTURE OF THE ENDS OF LAMBADA DNA. J Mol Biol. 1965 May;12:36–49. doi: 10.1016/s0022-2836(65)80280-7. [DOI] [PubMed] [Google Scholar]
- TREICK R. W., KONETZKA W. A. PHYSIOLOGICAL STATE OF ESCHERICHIA COLI AND THE INHIBITION OF DEOXYRIBONUCLEIC ACID SYNTHESIS BY PHENETHYL ALCOHOL. J Bacteriol. 1964 Dec;88:1580–1584. doi: 10.1128/jb.88.6.1580-1584.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
- VAN TUBERGEN R. P., SETLOW R. B. Quantitative radioautographic studies on exponentially growing cultures of Escherichia coli. The distribution of parental DNA, RNA, protein, and cell wall among progeny cells. Biophys J. 1961 Sep;1:589–625. doi: 10.1016/s0006-3495(61)86911-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- YOSHIKAWA H., SUEOKA N. Sequential replication of Bacillus subtilis chromosome. I. Comparison of marker frequencies in exponential and stationary growth phases. Proc Natl Acad Sci U S A. 1963 Apr;49:559–566. doi: 10.1073/pnas.49.4.559. [DOI] [PMC free article] [PubMed] [Google Scholar]