Skip to main content
Bacteriological Reviews logoLink to Bacteriological Reviews
. 1969 Mar;33(1):48–71. doi: 10.1128/br.33.1.48-71.1969

Sporulation and the production of antibiotics, exoenzymes, and exotonins.

P Schaeffer
PMCID: PMC378312  PMID: 4889149

Full text

PDF
48

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ARONSON A. I. CHARACTERIZATION OF MESSENGER RNA IN SPORULATING BACILLUS CEREUS. J Mol Biol. 1965 Mar;11:576–588. doi: 10.1016/s0022-2836(65)80012-2. [DOI] [PubMed] [Google Scholar]
  2. AUBERT J. P., MILLET J., CASTORIADIS-MAY C. [Relation between the rate of growth and sporulation in Bacillus megaterium]. C R Hebd Seances Acad Sci. 1961 Oct 16;253:1731–1733. [PubMed] [Google Scholar]
  3. AUBERT J. P., MILLET J., PINEAU E., MILHAUD G. [N-Succinyl-L-glutamic acid in Bacillus megaterium during sporulation]. Biochim Biophys Acta. 1961 Aug 19;51:529–537. doi: 10.1016/0006-3002(61)90610-2. [DOI] [PubMed] [Google Scholar]
  4. AUBERT J. P., MILLET J. [The influence of carbon nutrition on the level of sporulation of sporulation mutants of Bacillus megaterium]. C R Hebd Seances Acad Sci. 1961 Oct 23;253:1880–1882. [PubMed] [Google Scholar]
  5. Anagnostopoulos C., Spizizen J. REQUIREMENTS FOR TRANSFORMATION IN BACILLUS SUBTILIS. J Bacteriol. 1961 May;81(5):741–746. doi: 10.1128/jb.81.5.741-746.1961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Anderson T. J., Ivánovics G. Isolation and some characteristics of haemin dependent mutants of Bacillus subtilis. J Gen Microbiol. 1967 Oct;49(1):31–40. doi: 10.1099/00221287-49-1-31. [DOI] [PubMed] [Google Scholar]
  7. Aronson A. I., Fitz-James P. C. Biosynthesis of bacterial spore coats. J Mol Biol. 1968 Apr 14;33(1):199–212. doi: 10.1016/0022-2836(68)90288-x. [DOI] [PubMed] [Google Scholar]
  8. Aubert J. P., Millet J. Etude d'une L-leucyl-beta-naphtylamide hydrolase en relation avec la sporulation chez Bacillus megaterium. C R Acad Sci Hebd Seances Acad Sci D. 1965 Nov 15;261(20):4274–4277. [PubMed] [Google Scholar]
  9. Aubert J. P., Millet J., Schaeffer P. Croissance et sporulation de Bacillus megaterium en culture continue. C R Acad Sci Hebd Seances Acad Sci D. 1965 Sep 20;261(12):2407–2409. [PubMed] [Google Scholar]
  10. Aubert J. P., Ryter A., Schaeffer P. Comportement de l'ADN des bactéries et des spores au cours d'un cycle sporal chez B. subtilis. Ann Inst Pasteur (Paris) 1968 Dec;115(6):990–1007. [PubMed] [Google Scholar]
  11. BALASSA G., IONESCO H., SCHAEFFER P. PREUVE G'EN'ETIQUE D'UNE RELATION ENTRE LA PRODUCTION D'UN ANTIBIOTIQUE PAR BACILLUS SUBTILIS ET SA SPORULATION. C R Hebd Seances Acad Sci. 1963 Jul 22;257:986–988. [PubMed] [Google Scholar]
  12. BEALL F. A., TAYLOR M. J., THORNE C. B. Rapid lethal effect in rats of a third component found upon fractionating the toxin of Bacillus anthracis. J Bacteriol. 1962 Jun;83:1274–1280. doi: 10.1128/jb.83.6.1274-1280.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. BERNLOHR R. W., NOVELLI G. D. Antibiotic production as a function of spore formation in Bacillus licheniformis. Nature. 1959 Oct 17;184(Suppl 16):1256–1257. doi: 10.1038/1841256a0. [DOI] [PubMed] [Google Scholar]
  14. BERNLOHR R. W., NOVELLI G. D. BACITRACIN BIOSYNTHESIS AND SPORE FORMATION: THE PHYSIOLOGICAL ROLE OF AN ANTIBIOTIC. Arch Biochem Biophys. 1963 Oct;103:94–104. doi: 10.1016/0003-9861(63)90014-6. [DOI] [PubMed] [Google Scholar]
  15. BERNLOHR R. W. POSTLOGARITHMIC PHASE METABOLISM OF SPORULATING MICROORGANISMS. I. PROTEASE OF BACILLUS LICHENIFORMIS. J Biol Chem. 1964 Feb;239:538–543. [PubMed] [Google Scholar]
  16. BERNLOHR R. W., SIEVERT C. Preliminary chemical characterization of the spore coats of Bacillus licheniformis. Biochem Biophys Res Commun. 1962 Sep 25;9:32–37. doi: 10.1016/0006-291x(62)90082-7. [DOI] [PubMed] [Google Scholar]
  17. BERTAUD W. S., MORICE I. M., TAYLOR A., RUSSELL D. W. THE SPORE SURFACE IN PITHOMYCES CHARTARUM. J Gen Microbiol. 1963 Sep;32:385–395. doi: 10.1099/00221287-32-3-385. [DOI] [PubMed] [Google Scholar]
  18. BODANSZKY M., PERLMAN D. ARE PEPTIDE ANTIBIOTICS SMALL PROTEINS? Nature. 1964 Nov 28;204:840–844. doi: 10.1038/204840a0. [DOI] [PubMed] [Google Scholar]
  19. BONVENTRE P. F., KEMPE L. L. Physiology of toxin production by Clostridium botulinum types A and B. I. Growth, autolysis, and toxin production. J Bacteriol. 1960 Jan;79:18–23. doi: 10.1128/jb.79.1.18-23.1960. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. BONVENTRE P. F., KEMPE L. L. Physiology of toxin production by Clostridium botulinum types A and B. IV. Activation of the toxin. J Bacteriol. 1960 Jan;79:24–32. doi: 10.1128/jb.79.1.24-32.1960. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. BOROFF D. A. Study of toxins of Clostridium botulinum. III. Relation of autolysis to toxin production. J Bacteriol. 1955 Oct;70(4):363–367. doi: 10.1128/jb.70.4.363-367.1955. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. BRENNER M., GRAY E., PAULUS H. THE RELATION OF POLYMYXIN B TO THE SPORE COAT OF BACILLUS POLYMYXA. Biochim Biophys Acta. 1964 Aug 19;90:401–403. doi: 10.1016/0304-4165(64)90206-5. [DOI] [PubMed] [Google Scholar]
  23. BU'LOCK J. D. Intermediary metabolism and antibiotic synthesis. Adv Appl Microbiol. 1961;3:293–342. doi: 10.1016/s0065-2164(08)70514-8. [DOI] [PubMed] [Google Scholar]
  24. Baillie A. Antigens of Bacillus cereus: a comparison of a parent strain, an asporogenic variant and cell fractions. J Appl Bacteriol. 1967 Apr;30(1):230–238. doi: 10.1111/j.1365-2672.1967.tb00293.x. [DOI] [PubMed] [Google Scholar]
  25. Balassa G. Genetic control of RNA turnover in sporulation mutants of Bacillus subtilis. Biochem Biophys Res Commun. 1964 Mar 26;15(3):240–242. doi: 10.1016/0006-291x(64)90153-6. [DOI] [PubMed] [Google Scholar]
  26. Balassa G. Quantitative regulation of RNA synthesis during sporulation of Bacillus subtilis. Biochem Biophys Res Commun. 1964 Mar 26;15(3):236–239. doi: 10.1016/0006-291x(64)90152-4. [DOI] [PubMed] [Google Scholar]
  27. Bayen H., Frehel C., Ryter A., Sebald M. Etude cytologique de la sporulation chez Clostridium histolyticum. Souche sporogène et mutants de sporulation. Ann Inst Pasteur (Paris) 1967 Aug;113(2):163–173. [PubMed] [Google Scholar]
  28. Bernheimer A. W., Grushoff P., Avigad L. S. Isoelectric analysis of cytolytic bacterial proteins. J Bacteriol. 1968 Jun;95(6):2439–2441. doi: 10.1128/jb.95.6.2439-2441.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Bernheimer A. W., Grushoff P. Extracellular hemolysins of aerobic sporogenic bacilli. J Bacteriol. 1967 May;93(5):1541–1543. doi: 10.1128/jb.93.5.1541-1543.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Bhattacharyya P., Bose S. K. Amino acid composition of cell wall and spore coat of Bacillus subtilis in relation to mycobacillin production. J Bacteriol. 1967 Dec;94(6):2079–2080. doi: 10.1128/jb.94.6.2079-2080.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Bott K. F., Davidoff-Abelson R. Altered sporulation and respiratory patterns in mutants of Bacillus subtilis induced by acridine orange. J Bacteriol. 1966 Jul;92(1):229–240. doi: 10.1128/jb.92.1.229-240.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Bott K. F., Wilson G. A. Development of competence in the Bacillus subtilis transformation system. J Bacteriol. 1967 Sep;94(3):562–570. doi: 10.1128/jb.94.3.562-570.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Bureau G., Mazliak P. Apparition d'acides gras à chaîne ramifiée, au cours du développement en pénurie de phosphore de Bacillus subtilis var. niger. C R Acad Sci Hebd Seances Acad Sci D. 1967 Feb 20;264(8):1124–1127. [PubMed] [Google Scholar]
  34. CHALOUPKA J., KRECKOVA P. Protease repression in Bacillus megaterium KM. Biochem Biophys Res Commun. 1962 Jun 19;8:120–124. doi: 10.1016/0006-291x(62)90248-6. [DOI] [PubMed] [Google Scholar]
  35. CHALOUPKA J., KRECKOVA P., R'IHOVA L. REPRESSION OF PROTEASE IN BACILLUS MEGATERIUM BY SINGLE AMINO ACID. Biochem Biophys Res Commun. 1963 Aug 14;12:380–382. doi: 10.1016/0006-291x(63)90109-8. [DOI] [PubMed] [Google Scholar]
  36. COHN M., HORIBATA K. Physiology of the inhibition by glucose of the induced synthesis of the beta-galactosideenzyme system of Escherichia coli. J Bacteriol. 1959 Nov;78:624–635. doi: 10.1128/jb.78.5.624-635.1959. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Chaloupka J. Synthesis and degradation of surface structures by growing and non-growing Bacillus megaterium. Folia Microbiol (Praha) 1967;12(3):264–273. doi: 10.1007/BF02868742. [DOI] [PubMed] [Google Scholar]
  38. Cline A. L., Bock R. M. Translational control of gene expression. Cold Spring Harb Symp Quant Biol. 1966;31:321–333. doi: 10.1101/sqb.1966.031.01.042. [DOI] [PubMed] [Google Scholar]
  39. DAVIS B. D. The teleonomic significance of biosynthetic control mechanisms. Cold Spring Harb Symp Quant Biol. 1961;26:1–10. doi: 10.1101/sqb.1961.026.01.005. [DOI] [PubMed] [Google Scholar]
  40. DEMAIN A. L., BURG R. W., HENDLIN D. EXCRETION AND DEGRADATION OF RIBONUCLEIC ACID BY BACILLUS SUBTILIS. J Bacteriol. 1965 Mar;89:640–646. doi: 10.1128/jb.89.3.640-646.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. DOBROGOSZ W. J. THE INFLUENCE OF NITRATE AND NITRITE REDUCTION ON CATABOLITE REPRESSION IN ESCHERICHIA COLI. Biochim Biophys Acta. 1965 May 4;100:553–566. doi: 10.1016/0304-4165(65)90025-5. [DOI] [PubMed] [Google Scholar]
  42. DOI R. H., IGARASHI R. T. GENETIC TRANSCRIPTION DURING MORPHOGENESIS. Proc Natl Acad Sci U S A. 1964 Sep;52:755–762. doi: 10.1073/pnas.52.3.755. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Dasgupta B. R., Boroff D. A., Rothstein E. Chromatographic fractionation of the crystalline toxin of Clostridium botulinum type A. Biochem Biophys Res Commun. 1966 Mar 22;22(6):750–756. doi: 10.1016/0006-291x(66)90212-9. [DOI] [PubMed] [Google Scholar]
  44. Demain A. L., Hendlin D. Inhibition of nucleotide degradation in Bacillus subtilis broths by metallic salts. Appl Microbiol. 1966 Mar;14(2):297–298. doi: 10.1128/am.14.2.297-298.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Dubnau D., Goldthwaite C., Smith I., Marmur J. Genetic mapping in Bacillus subtilis. J Mol Biol. 1967 Jul 14;27(1):163–185. doi: 10.1016/0022-2836(67)90358-0. [DOI] [PubMed] [Google Scholar]
  46. Ellar D. J., Lundgren D. G. Fine structure of sporulation in Bacillus cereus grown in a chemically defined medium. J Bacteriol. 1966 Dec;92(6):1748–1764. doi: 10.1128/jb.92.6.1748-1764.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Ephrati-Elizur E. Spontaneous transformation in Bacillus subtilis. Genet Res. 1968 Feb;11(1):83–96. doi: 10.1017/s0016672300011216. [DOI] [PubMed] [Google Scholar]
  48. FOSTER J. W. Morphogenesis in bacteria: some aspects of spore formation. Q Rev Biol. 1956 Jun;31(2):102–118. doi: 10.1086/401259. [DOI] [PubMed] [Google Scholar]
  49. Feder J. Studies on the specificity of Bacillus subtilis neutral protease with synthetic substrates. Biochemistry. 1967 Jul;6(7):2088–2093. doi: 10.1021/bi00859a028. [DOI] [PubMed] [Google Scholar]
  50. Fortnagel P., Freese E. Analysis of sporulation mutants. II. Mutants blocked in the citric acid cycle. J Bacteriol. 1968 Apr;95(4):1431–1438. doi: 10.1128/jb.95.4.1431-1438.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Freese E., Fortnagel P. Analysis of sporulation mutants. I. Response of uracil incorporation to carbon sources, and other mutant properties. J Bacteriol. 1967 Dec;94(6):1957–1969. doi: 10.1128/jb.94.6.1957-1969.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. GREENBERG R. A., HALVORSON H. O. Studies on an autolytic substance produced by an aerobic sporeforming bacterium. J Bacteriol. 1955 Jan;69(1):45–50. doi: 10.1128/jb.69.1.45-50.1955. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. GRELET N. Le déterminisme de la sporulation de Bacillus megatherium. 1. L'effet de l'épuisement de l'aliment carboné en milieu synthétique. Ann Inst Pasteur (Paris) 1951 Oct;81(4):430–440. [PubMed] [Google Scholar]
  54. GRELET N. Le déterminisme de la sporulation de bacillus megatherium II. L'effet de la pénurie des constituants minéraux du milieu synthétique. Ann Inst Pasteur (Paris) 1952 Jan;82(1):66–77. [PubMed] [Google Scholar]
  55. GUNTELBERG A. V. A method for the production of the plakalbumin-forming proteinase from Bacillus subtilis. C R Trav Lab Carlsberg Chim. 1954;29(3-4):27–35. [PubMed] [Google Scholar]
  56. GUNTELBERG A. V., OTTESEN M. Purification of the proteolytic enzyme from Bacillus subtilis. C R Trav Lab Carlsberg Chim. 1954;29(3-4):36–48. [PubMed] [Google Scholar]
  57. Gevers W., Kleinkauf H., Lipmann F. The activation of amino acids for biosynthesis of gramicidin S. Proc Natl Acad Sci U S A. 1968 May;60(1):269–276. doi: 10.1073/pnas.60.1.269. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. HANSON R. S., SRINIVASAN V. R., HALVORSON H. O. BIOCHEMISTRY OF SPORULATION. II. ENZYMATIC CHANGES DURING SPORULATION OF BACILLUS CEREUS. J Bacteriol. 1963 Jul;86:45–50. doi: 10.1128/jb.86.1.45-50.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. HANSON R. S., SRINIVASAN V. R., HALVORSON H. O. Biochemistry of sporulation. I. Metabolism of acetate by vegetative and sporulating cells. J Bacteriol. 1963 Feb;85:451–460. doi: 10.1128/jb.85.2.451-460.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. HASHIMOTO T., BLACK S. H., GERHARDT P. Development of fine structure, thermostability, and dipicolinate during sporogenesis in a bacillus. Can J Microbiol. 1960 Apr;6:203–212. doi: 10.1139/m60-022. [DOI] [PubMed] [Google Scholar]
  61. Hall F. F., Kunkel H. O., Prescott J. M. Multiple proteolytic enzymes of Bacillus licheniformis. Arch Biochem Biophys. 1966 Apr;114(1):145–153. doi: 10.1016/0003-9861(66)90315-8. [DOI] [PubMed] [Google Scholar]
  62. Hanson R. S., Cox D. P. Effect of different nutritional conditions on the synthesis of tricarboxylic acid cycle enzymes. J Bacteriol. 1967 Jun;93(6):1777–1787. doi: 10.1128/jb.93.6.1777-1787.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. Holst E. C., Sturtevant A. P. Relation of Proteolytic Enzymes to Phase of Life Cycle of Bacillus larvae, and Two New Culture Media for this Organism. J Bacteriol. 1940 Nov;40(5):723–731. doi: 10.1128/jb.40.5.723-731.1940. [DOI] [PMC free article] [PubMed] [Google Scholar]
  64. Ionesco H. Etude quantitative de la transformation chez des mutants de sporulation de Bacillus subtilis. Ann Inst Pasteur (Paris) 1967 Aug;113(2):157–162. [PubMed] [Google Scholar]
  65. Ionesco H., Schaeffer P. Localisation chromosomique de certains mutants asporogènes de Bacillus subtilis Marburg. Ann Inst Pasteur (Paris) 1968 Jan;114(1):1–9. [PubMed] [Google Scholar]
  66. JACOB F., MONOD J. Genetic regulatory mechanisms in the synthesis of proteins. J Mol Biol. 1961 Jun;3:318–356. doi: 10.1016/s0022-2836(61)80072-7. [DOI] [PubMed] [Google Scholar]
  67. Johnson C. E., Bonventre P. F. Lethal toxin of Bacillus cereus. I. Relationships and nature of toxin, hemolysin, and phospholipase. J Bacteriol. 1967 Aug;94(2):306–316. doi: 10.1128/jb.94.2.306-316.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  68. Kerr I. M., Chien J. R., Lehman I. R. Exonucleolytic degradation of high molecular weight deoxyribonucleic acid and ribonucleic acid to nucleoside 3'-phosphates by a nuclease from Bacillus subtilis. J Biol Chem. 1967 Jun 10;242(11):2700–2708. [PubMed] [Google Scholar]
  69. LEITZMANN C., BERNLOHR R. W. CHANGES IN THE NUCLEOTIDE POLL OF BACILLUS LICHENIFORMIS DURING SPORULATION. J Bacteriol. 1965 Jun;89:1506–1510. doi: 10.1128/jb.89.6.1506-1510.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  70. LITMAN R. M., EPHRUSSI-TAYLOR H. [Inactivation and mutation of the genetic factors of the desoxyribonucleic acid of pneumococcus by ultraviolet light and by nitrous acid]. C R Hebd Seances Acad Sci. 1959 Aug 10;249:838–840. [PubMed] [Google Scholar]
  71. LOOMIS W. F., Jr, MAGASANIK B. THE RELATION OF CATABOLITE REPRESSION TO THE INDUCTION SYSTEM FOR BETA-GALACTOSIDASE IN ESCHERICHIA COLI. J Mol Biol. 1964 Mar;8:417–426. doi: 10.1016/s0022-2836(64)80205-9. [DOI] [PubMed] [Google Scholar]
  72. LUNDGREN D. G., BOTT K. F. GROWTH AND SPORULATION CHARACTERISTICS OF AN ORGANIC SULFUR-REQUIRING AUXOTROPH OF BACILLUS CEREUS. J Bacteriol. 1963 Sep;86:462–472. doi: 10.1128/jb.86.3.462-472.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  73. LUNDGREN D. G., COONEY J. J. Chemical analyses of asporogenic mutants of Bacillus cereus. J Bacteriol. 1962 Jun;83:1287–1293. doi: 10.1128/jb.83.6.1287-1293.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  74. Laishley E. J., Bernlohr R. W. Catabolite repression of "three sporulation enzymes" during growth of Bacillus licheniformis. Biochem Biophys Res Commun. 1966 Jul 6;24(1):85–90. doi: 10.1016/0006-291x(66)90414-1. [DOI] [PubMed] [Google Scholar]
  75. Lanyi J. K., Lederberg J. Fluorescent method for the detection of excreted ribonuclease around bacterial colonies. J Bacteriol. 1966 Nov;92(5):1469–1472. doi: 10.1128/jb.92.5.1469-1472.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  76. Leitzmann C., Bernlohr R. W. Threonine dehydratase of Bacillus licheniformis. II. Regulation during development. Biochim Biophys Acta. 1968 Feb 5;151(2):461–472. doi: 10.1016/0005-2744(68)90114-9. [DOI] [PubMed] [Google Scholar]
  77. Levisohn S., Aronson A. I. Regulation of extracellular protease production in Bacillus cereus. J Bacteriol. 1967 Mar;93(3):1023–1030. doi: 10.1128/jb.93.3.1023-1030.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  78. Loomis W. F., Jr, Magasanik B. Genetic control of catabolite repression of the lac operon in Escherichia coli. Biochem Biophys Res Commun. 1965 Jul 12;20(2):230–234. doi: 10.1016/0006-291x(65)90351-7. [DOI] [PubMed] [Google Scholar]
  79. Lundgren D. G., Remsen C. C. Fine structure of an asporogenic mutant of Bacillus cereus. J Bacteriol. 1966 May;91(5):2096–2098. doi: 10.1128/jb.91.5.2096-2098.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  80. MAGASANIK B. Catabolite repression. Cold Spring Harb Symp Quant Biol. 1961;26:249–256. doi: 10.1101/sqb.1961.026.01.031. [DOI] [PubMed] [Google Scholar]
  81. MAJUMDAR S. K., BOSE S. K. Mycobacillin, a new antifungal antibiotic produced by B. subtilis. Nature. 1958 Jan 11;181(4602):134–135. doi: 10.1038/181134a0. [DOI] [PubMed] [Google Scholar]
  82. MANDELSTAM J. The intracellular turnover of protein and nucleic acids and its role in biochemical differentiation. Bacteriol Rev. 1960 Sep;24(3):289–308. doi: 10.1128/br.24.3.289-308.1960. [DOI] [PMC free article] [PubMed] [Google Scholar]
  83. MANDELSTAM J. The repression of constitutive beta-galactosidase in Escherichia coli by glucose and other carbon sources. Biochem J. 1962 Mar;82:489–493. doi: 10.1042/bj0820489. [DOI] [PMC free article] [PubMed] [Google Scholar]
  84. MCCONN J. D., TSURU D., YASUNOBU K. T. BACILLUS SUBTILIS NEUTRAL PROTEINASE. I. A ZINC ENZYME OF HIGH SPECIFIC ACTIVITY. J Biol Chem. 1964 Nov;239:3706–3715. [PubMed] [Google Scholar]
  85. MILLET J., AUBERT J. P. R OLE D'UNE PROT'EASE EXOCELLULAIRE DE BACILLUS MEGATERIUM. C R Hebd Seances Acad Sci. 1964 Oct 12;259:2555–2558. [PubMed] [Google Scholar]
  86. MONRO R. E. Protein turnover and the formation of protein inclusions during sporulation of Bacillus thuringiensis. Biochem J. 1961 Nov;81:225–232. doi: 10.1042/bj0810225. [DOI] [PMC free article] [PubMed] [Google Scholar]
  87. May B. K., Elliott W. H. Characteristics of extracellular protease formation by Bacillus subtilis and its control by amino acid repression. Biochim Biophys Acta. 1968 May 21;157(3):607–615. doi: 10.1016/0005-2787(68)90158-5. [DOI] [PubMed] [Google Scholar]
  88. Michel J. F. An exocellular protease involved in the sporulation process of Bacillus subtilis Marburg. Folia Microbiol (Praha) 1967;12(3):296–300. doi: 10.1007/BF02868747. [DOI] [PubMed] [Google Scholar]
  89. Michel J. F., Cami B., Schaeffer P. Sélection de mutants de Bacillus subtilis bloqués au début de la sporulation. I. Mutants asporogènes pléotropes sélectionnés par croissance en milieu au nitrate. Ann Inst Pasteur (Paris) 1968 Jan;114(1):11–20. [PubMed] [Google Scholar]
  90. Michel J. F., Cami B., Schaeffer P. Sélection de mutants de Bacillus subtilis bloqués au début de la sporulation. II. Sélection par adaptation à une nouvelle source de carbone et par vieillissement de cultures sporulées. Ann Inst Pasteur (Paris) 1968 Jan;114(1):21–27. [PubMed] [Google Scholar]
  91. Michel J. F., Cami B. Sélection de mutants de Bacillus subtilis bloqués au début de la sporulation. Nature des mutations sélectionnées. Ann Inst Pasteur (Paris) 1969 Jan;116(1):3–18. [PubMed] [Google Scholar]
  92. Michel J. F. L'activité protéolytique du milieu de culture au cours de la croissance et de la sporulation de Bacillus subtilis. Ann Inst Pasteur (Paris) 1966 Jul;111(1):14–24. [PubMed] [Google Scholar]
  93. Millet J., Acher R. Spécificité "hydrophobique" d'une endopeptidase isolée de Bacillus megaterium. Biochim Biophys Acta. 1968 Jan 8;151(1):302–305. doi: 10.1016/0005-2744(68)90194-0. [DOI] [PubMed] [Google Scholar]
  94. Morihara K. The specificities of various neutral and alkaline proteinases from microorganisms. Biochem Biophys Res Commun. 1967 Mar 21;26(6):656–661. doi: 10.1016/s0006-291x(67)80122-0. [DOI] [PubMed] [Google Scholar]
  95. NAKADA D., MAGASANIK B. THE ROLES OF INDUCER AND CATABOLITE REPRESSOR IN THE SYNTHESIS OF BETA-GALACTOSIDASE BY ESCHERICHIA COLI. J Mol Biol. 1964 Jan;8:105–127. doi: 10.1016/s0022-2836(64)80153-4. [DOI] [PubMed] [Google Scholar]
  96. NAKAI M., MINAMI Z., YAMAZAKI T., TSUGITA A. STUDIES ON THE NUCLEASES OF A STRAIN OF BACILLUS SUBTILIS. J Biochem. 1965 Jan;57:96–99. doi: 10.1093/oxfordjournals.jbchem.a128063. [DOI] [PubMed] [Google Scholar]
  97. NAKATA H. M., HALVORSON H. O. Biochemical changes occurring during growth and sporulation of Bacillus cereus. J Bacteriol. 1960 Dec;80:801–810. doi: 10.1128/jb.80.6.801-810.1960. [DOI] [PMC free article] [PubMed] [Google Scholar]
  98. NEUMARK R., CITRI N. Repression of protease formation in Bacillus cereus. Biochim Biophys Acta. 1962 Jun 4;59:749–751. doi: 10.1016/0006-3002(62)90669-8. [DOI] [PubMed] [Google Scholar]
  99. NEWTON G. G. F. Antibiotics from a strain of B. subtilis; bacilipin A and B and bacilysin. Br J Exp Pathol. 1949 Aug;30(4):306-19, pl. [PMC free article] [PubMed] [Google Scholar]
  100. NISHIDA S., NAKAGAWARA G. ISOLATION OF TOXIGENIC STRAINS OF CLOSTRIDIUM NOVYI FROM SOIL. J Bacteriol. 1964 Dec;88:1636–1640. doi: 10.1128/jb.88.6.1636-1640.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
  101. NISHIDA S., NAKAGAWARA G. RELATIONSHIP BETWEEN TOXIGENICITY AND SPORULATING POTENCY OF CLOSTRIDIUM NOVYI. J Bacteriol. 1965 Apr;89:993–995. doi: 10.1128/jb.89.4.993-995.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  102. NISIDA S., TAMAI K., YAMAGISHI T. TAXONOMY OF CLOSTRIDIUM BIFERMENTANS AND CLOSTRIDIUM SORDELLII. I. THEIR TOXIGENICITY, UREASE ACTIVITY, AND SPORULATING POTENCY. J Bacteriol. 1964 Dec;88:1641–1646. doi: 10.1128/jb.88.6.1641-1646.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
  103. NORRIS J. R. A bacteriolytic principle associated with cultures of Bacillus cereus. J Gen Microbiol. 1957 Feb;16(1):1–8. doi: 10.1099/00221287-16-1-1. [DOI] [PubMed] [Google Scholar]
  104. Nakamura M., Cross W. R. The lecithinase (alpha toxin) activity of strains of Clostridium perfringens. Proc Soc Exp Biol Med. 1968 Mar;127(3):719–722. doi: 10.3181/00379727-127-32783. [DOI] [PubMed] [Google Scholar]
  105. Nishida S., Imaizumi M. Toxigenicity of Clostridium histolyticum. J Bacteriol. 1966 Feb;91(2):477–483. doi: 10.1128/jb.91.2.477-483.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  106. OHYE D. F., MURRELL W. G. Formation and structure of the spore of Bacillus coagulans. J Cell Biol. 1962 Jul;14:111–123. doi: 10.1083/jcb.14.1.111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  107. Okazaki R., Okazaki T., Sakabe K. An extracellular nuclease of Bacillus subtilis: some novel properties as a DNA exonuclease. Biochem Biophys Res Commun. 1966 Mar 22;22(6):611–619. doi: 10.1016/0006-291x(66)90190-2. [DOI] [PubMed] [Google Scholar]
  108. Paquette G., Fredette V. Avirulent Clostridium perfringens strains obtained by euflavine treatment. J Bacteriol. 1967 Nov;94(5):1437–1442. doi: 10.1128/jb.94.5.1437-1442.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  109. Pine M. J. Metabolic control of intracellular proteolysis in growing and resting cells of Escherichia coli. J Bacteriol. 1966 Oct;92(4):847–850. doi: 10.1128/jb.92.4.847-850.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  110. Pine M. J. Response of intracellular proteolysis to alteration of bacterial protein and the implications in metabolic regulation. J Bacteriol. 1967 May;93(5):1527–1533. doi: 10.1128/jb.93.5.1527-1533.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  111. RAPPAPORT H. P., RIGGSBY W. S., HOLDEN D. A. A BACILLUS SUBTILIS PROTEINASE. I. PRODUCTION, PURIFICATION, AND CHARACTERIZATION OF A PROTEINASE FROM A TRANSFORMABLE STRAIN OF BACILLUS SUBTILIS. J Biol Chem. 1965 Jan;240:78–86. [PubMed] [Google Scholar]
  112. RAYNAUD M., TURPIN A., MANGALO R., BIZZINI B. Croissance et toxinogenèse. II. Ann Inst Pasteur (Paris) 1955 Jan;88(1):24–43. [PubMed] [Google Scholar]
  113. RICHMOND M. H. Formation of a lytic enzyme by a strain of Bacillus subtilis. Biochim Biophys Acta. 1959 May;33(1):78–92. doi: 10.1016/0006-3002(59)90500-1. [DOI] [PubMed] [Google Scholar]
  114. RICHMOND M. H. Properties of a lytic enzyme produced by a strain of Bacillus subtilis. Biochim Biophys Acta. 1959 May;33(1):92–101. doi: 10.1016/0006-3002(59)90501-3. [DOI] [PubMed] [Google Scholar]
  115. RUSSELL D. W., BROWN M. E. Sporidesmolic acid B, a hydroxyacyldipeptide from Sporidesmium bakeri. Biochim Biophys Acta. 1960 Feb 26;38:382–383. doi: 10.1016/0006-3002(60)91270-1. [DOI] [PubMed] [Google Scholar]
  116. RYTER A. ETUDE MORPHOLOGIQUE DE LA SPORULATION DE BACILLUS SUBTILIS. Ann Inst Pasteur (Paris) 1965 Jan;108:40–60. [PubMed] [Google Scholar]
  117. RYTER A., JACOB F. ETUDE AU MICROSCOPE 'ELECTRONIQUE DE LA LIAISON ENTRE NOYAU ET M'ESOSOME CHEZ BACILLUS SUBTILIS. Ann Inst Pasteur (Paris) 1964 Sep;107:384–400. [PubMed] [Google Scholar]
  118. Remsen C. C., Lundgren D. G. Multiple septation in variants of Bacillus cereus. J Bacteriol. 1965 Nov;90(5):1426–1431. doi: 10.1128/jb.90.5.1426-1431.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  119. Rickenberg H. V., Hsie A. W., Janecek J. The CR mutation and catabolite repression in Escherichia coli. Biochem Biophys Res Commun. 1968 May 23;31(4):603–608. doi: 10.1016/0006-291x(68)90521-4. [DOI] [PubMed] [Google Scholar]
  120. Rogers H. J., Newton G. G., Abraham E. P. Production and purification of bacilysin. Biochem J. 1965 Nov;97(2):573–578. doi: 10.1042/bj0970573. [DOI] [PMC free article] [PubMed] [Google Scholar]
  121. Rogolsky M., Slepecky R. A. Elimination of a genetic determinant for sporulation of Bacillus subtilis with acriflavin. Biochem Biophys Res Commun. 1964 Jun 15;16(3):204–208. doi: 10.1016/0006-291x(64)90326-2. [DOI] [PubMed] [Google Scholar]
  122. Rouyard J. F., Ionesco H., Schaeffer P. Classification génétique de certains mutants de sporulation de Bacillus subtilis, Marburg. Ann Inst Pasteur (Paris) 1967 Nov;113(5):675–683. [PubMed] [Google Scholar]
  123. Ryter A., Bloom B., Aubert J. P. Localisation intracellulaire des acides ribonucléiques synthétisés pendant la sporulation chez Bacillus subtilis. C R Acad Sci Hebd Seances Acad Sci D. 1966 Mar 14;262(11):1305–1307. [PubMed] [Google Scholar]
  124. Ryter A., Schaeffer P., Ionesco H. Classification cytologique, par leur stade de blocage, des mutants de sporulation de Bacillus subtilis Marburg. Ann Inst Pasteur (Paris) 1966 Mar;110(3):305–315. [PubMed] [Google Scholar]
  125. SANADA I., NISHIDA S. ISOLATION OF CLOSTRIDIUM TETANI FROM SOIL. J Bacteriol. 1965 Mar;89:626–629. doi: 10.1128/jb.89.3.626-629.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  126. SHARON N., PINSKY A., TURNER-GRAFF R., BABAD J. Classification of the antifungal antibiotics from Bacillus subtilis. Nature. 1954 Dec 25;174(4443):1190–1191. doi: 10.1038/1741190a0. [DOI] [PubMed] [Google Scholar]
  127. SLOTNICK I. J. Asporogeny in Bacillus subtilis associated with development of resistance to actinomycin D. J Bacteriol. 1959 Dec;78:893–895. doi: 10.1128/jb.78.6.893-895.1959. [DOI] [PMC free article] [PubMed] [Google Scholar]
  128. SMEATON J. R., ELLIOTT W. H., COLEMAN G. AN INHIBITOR IN BACILLUS SUBTILIS OF ITS EXTRACELLULAR RIBONUCLEASE. Biochem Biophys Res Commun. 1965 Jan 4;18:36–42. doi: 10.1016/0006-291x(65)90878-8. [DOI] [PubMed] [Google Scholar]
  129. SPIZIZEN J. Genetic activity of deoxyribonucleic acid in the reconstitution of biosynthetic pathways. Fed Proc. 1959 Dec;18:957–965. [PubMed] [Google Scholar]
  130. STANLEY J. L., SMITH H. Purification of factor I and recognition of a third factor of the anthrax toxin. J Gen Microbiol. 1961 Sep;26:49–63. doi: 10.1099/00221287-26-1-49. [DOI] [PubMed] [Google Scholar]
  131. STRANGE R. E., DARK F. A. Cell-wall lytic enzymes at sporulation and spore germination in Bacillus species. J Gen Microbiol. 1957 Oct;17(2):525–537. doi: 10.1099/00221287-17-2-525. [DOI] [PubMed] [Google Scholar]
  132. SZULMAJSTER J. BIOCHIMIE DE LA SPOROG'EN'ESE CHEZ B. SUBTILIS. Bull Soc Chim Biol (Paris) 1964;46:443–481. [PubMed] [Google Scholar]
  133. SZULMAJSTER J., SCHAEFFER P. [Augmentation of the DPNH-oxidase activity during sporulation of Bacillus subtilis]. C R Hebd Seances Acad Sci. 1961 Jan 4;252:220–222. [PubMed] [Google Scholar]
  134. Schaeffer P. Asporogenous mutants of Bacillus subtilis Marburg. Folia Microbiol (Praha) 1967;12(3):291–296. doi: 10.1007/BF02868746. [DOI] [PubMed] [Google Scholar]
  135. Schaeffer P., Millet J., Aubert J. P. Catabolic repression of bacterial sporulation. Proc Natl Acad Sci U S A. 1965 Sep;54(3):704–711. doi: 10.1073/pnas.54.3.704. [DOI] [PMC free article] [PubMed] [Google Scholar]
  136. Schaeffer P. Probleme der Sporenbildung in Bakterien. Zentralbl Bakteriol Orig. 1965 Dec;198(1):72–75. [PubMed] [Google Scholar]
  137. Schatz A., Waksman S. A. Strain Specificity and Production of Antibiotic Substances: IV. Variations Among Actionomycetes, with Special Reference to Actinomyces Griseus. Proc Natl Acad Sci U S A. 1945 May;31(5):129–137. doi: 10.1073/pnas.31.5.129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  138. Sebald M., Schaeffer P. Toxinogenèse et sporulation chez Clostridium histolyticum. C R Acad Sci Hebd Seances Acad Sci D. 1965 May 17;260(20):5398–5400. [PubMed] [Google Scholar]
  139. Sebald M. Sur un mutant asporogène de Clostridium histolyticum incapable de synthétiser l'acide dipicolinique. Ann Inst Pasteur (Paris) 1968 Mar;114(3):265–276. [PubMed] [Google Scholar]
  140. Shaw M., Brown R., Martin A. G. Polypeptide antibiotic 4205 from a soil bacillus. Appl Microbiol. 1966 Jan;14(1):79–85. doi: 10.1128/am.14.1.79-85.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  141. Snoke J. E. Amino acid composition of Bacillus licheniformis. Biochem Biophys Res Commun. 1964;14:571–574. doi: 10.1016/0006-291x(64)90271-2. [DOI] [PubMed] [Google Scholar]
  142. Spizizen J. TRANSFORMATION OF BIOCHEMICALLY DEFICIENT STRAINS OF BACILLUS SUBTILIS BY DEOXYRIBONUCLEATE. Proc Natl Acad Sci U S A. 1958 Oct 15;44(10):1072–1078. doi: 10.1073/pnas.44.10.1072. [DOI] [PMC free article] [PubMed] [Google Scholar]
  143. Stewart C. R. Mutagenesis by acridine yellow in Bacillus subtilis. Genetics. 1968 May;59(1):23–31. doi: 10.1093/genetics/59.1.23. [DOI] [PMC free article] [PubMed] [Google Scholar]
  144. TAKAHASHI I. Genetic transduction in Bacillus subtilis. Biochem Biophys Res Commun. 1961 Jun 28;5:171–175. doi: 10.1016/0006-291x(61)90104-8. [DOI] [PubMed] [Google Scholar]
  145. TAKAHASHI I. LOCALIZATION OF SPORE MARKERS ON THE CHROMOSOME OF BACILLUS SUBTILIS. J Bacteriol. 1965 Apr;89:1065–1067. doi: 10.1128/jb.89.4.1065-1067.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  146. TAKAHASHI I. TRANSDUCTION OF SPOROGENESIS IN BACILLUS SUBTILIS. J Bacteriol. 1965 Feb;89:294–298. doi: 10.1128/jb.89.2.294-298.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  147. TAKAHASHI I. Transducing phages for Bacillus subtilis. J Gen Microbiol. 1963 May;31:211–217. doi: 10.1099/00221287-31-2-211. [DOI] [PubMed] [Google Scholar]
  148. TAMAI K., NISHIDA S. TAXONOMY OF CLOSTRIDIUM BIFERMENTANS AND CLOSTRIDIUM SORDELLII. II. TOXIGENIC AND SPORULATING POTENCIES IN SUBSTRAINS OF A CLOSTRIDIUM SORDELLII STRAIN. J Bacteriol. 1964 Dec;88:1647–1651. doi: 10.1128/jb.88.6.1647-1651.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
  149. THORNE C. B. Transduction in Bacillus subtilis. J Bacteriol. 1962 Jan;83:106–111. doi: 10.1128/jb.83.1.106-111.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  150. TINELLI R. Etude de la biochimie de la sporulation chez Bacillus megaterium. III. Etude du comportement d'une souche de B. megaterium asporogène mise dans les conditions de sporulation. Ann Inst Pasteur (Paris) 1955 May;88(5):642–649. [PubMed] [Google Scholar]
  151. Thangamani A., Hofmann T. The role of a protease in sporulation of Penicillium janthinellum. Can J Biochem. 1966 May;44(5):579–584. doi: 10.1139/o66-069. [DOI] [PubMed] [Google Scholar]
  152. Tyler B., Loomis W. F., Jr, Magasanik B. Transient repression of the lac operon. J Bacteriol. 1967 Dec;94(6):2001–2011. doi: 10.1128/jb.94.6.2001-2011.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  153. VANHEYNINGEN W. E., ARSECULERATNE S. N. EXOTOXINS. Annu Rev Microbiol. 1964;18:195–216. doi: 10.1146/annurev.mi.18.100164.001211. [DOI] [PubMed] [Google Scholar]
  154. WELSCH M. Activites Bactériolytiques des Microorganismes. Ergeb Mikrobiol Immunitatsforsch Exp Ther. 1957;30:217–279. [PubMed] [Google Scholar]
  155. WILLSON C., PERRIN D., COHN M., JACOB F., MONOD J. NON-INDUCIBLE MUTANTS OF THE REGULATOR GENE IN THE "LACTOSE" SYSTEM OF ESCHERICHIA COLI. J Mol Biol. 1964 Apr;8:582–592. doi: 10.1016/s0022-2836(64)80013-9. [DOI] [PubMed] [Google Scholar]
  156. WINNICK R. E., LIS H., WINNICK T. Biosynthesis of gramicidin S. I. General characteristics of the process in growing cultures of Bacillus brevis. Biochim Biophys Acta. 1961 May 27;49:451–462. doi: 10.1016/0006-3002(61)90242-6. [DOI] [PubMed] [Google Scholar]
  157. Waksman S. A., Schatz A. Strain Specificity and Production of Antibiotic Substances: VI. Strain Variation and Production of Streptothricin by Actinomyces Lavendulae. Proc Natl Acad Sci U S A. 1945 Jul;31(7):208–214. doi: 10.1073/pnas.31.7.208. [DOI] [PMC free article] [PubMed] [Google Scholar]
  158. Weigert M. G., Lanka E., Garen A. Amino acid substitutions resulting from suppression of nonsense mutations. 3. Tyrosine insertion by the Su-4 gene. J Mol Biol. 1967 Feb 14;23(3):401–404. doi: 10.1016/s0022-2836(67)80114-1. [DOI] [PubMed] [Google Scholar]
  159. Weiss K. F., Strong D. H. Some properties of heat-resistant and heat-sensitive strains of Clostridium perfringens. I. Heat resistance and toxigenicity. J Bacteriol. 1967 Jan;93(1):21–26. doi: 10.1128/jb.93.1.21-26.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  160. Willetts N. S. Intracellular protein breakdown in non-growing cells of Escherichia coli. Biochem J. 1967 May;103(2):453–461. doi: 10.1042/bj1030453. [DOI] [PMC free article] [PubMed] [Google Scholar]
  161. Wilson B. J. Toxins other than aflatoxins produced by Aspergillus flavus. Bacteriol Rev. 1966 Jun;30(2):478–484. doi: 10.1128/br.30.2.478-484.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  162. Windish W. W., Mhatre N. S. Microbial amylases. Adv Appl Microbiol. 1965;7:273–304. doi: 10.1016/s0065-2164(08)70389-7. [DOI] [PubMed] [Google Scholar]
  163. Wise J., Swanson A., Halvorson H. O. Dipicolinic acid-less mutants of Bacillus cereus. J Bacteriol. 1967 Dec;94(6):2075–2076. doi: 10.1128/jb.94.6.2075-2076.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  164. Wright B. E. Multiple causes and controls in differentiation. Science. 1966 Aug 19;153(3738):830–837. doi: 10.1126/science.153.3738.830. [DOI] [PubMed] [Google Scholar]
  165. YAMAGISHI T., ISHIDA S., NISHIDA S. ISOLATION OF TOXIGENIC STRAINS OF CLOSTRIDIUM PERFRINGENS FROM SOIL. J Bacteriol. 1964 Sep;88:646–652. doi: 10.1128/jb.88.3.646-652.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
  166. YOSHIKAWA H., SUEOKA N. Sequential replication of Bacillus subtilis chromosome. I. Comparison of marker frequencies in exponential and stationary growth phases. Proc Natl Acad Sci U S A. 1963 Apr;49:559–566. doi: 10.1073/pnas.49.4.559. [DOI] [PMC free article] [PubMed] [Google Scholar]
  167. YOUNG F. E., SPIZIZEN J. Physiological and genetic factors affecting transformation of Bacillus subtilis. J Bacteriol. 1961 May;81:823–829. doi: 10.1128/jb.81.5.823-829.1961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  168. YOUNG I. E. CHARACTERISTICS OF AN ABORTIVELY DISPORIC VARIANT OF BACILLUS CEREUS. J Bacteriol. 1964 Jul;88:242–254. doi: 10.1128/jb.88.1.242-254.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
  169. YOUNG I. E., FITZ-JAMES P. C. Chemical and morphological studies of bacterial spore formation. II. Spore and parasporal protein formation in Bacillus cereus var. alesti. J Biophys Biochem Cytol. 1959 Dec;6:483–498. doi: 10.1083/jcb.6.3.483. [DOI] [PMC free article] [PubMed] [Google Scholar]
  170. Yamagishi H., Takahashi I. Genetic transcription in asporogenous mutants of Bacillus subtilis. Biochim Biophys Acta. 1968 Jan 29;155(1):150–158. doi: 10.1016/0005-2787(68)90345-6. [DOI] [PubMed] [Google Scholar]
  171. Young F. E. Competence in Bacillus subtilis transformation system. Nature. 1967 Feb 25;213(5078):773–775. doi: 10.1038/213773a0. [DOI] [PubMed] [Google Scholar]
  172. Young F. E. Fractionation and partial characterization of the products of autolysis of cell walls of Bacillus subtilis. J Bacteriol. 1966 Oct;92(4):839–846. doi: 10.1128/jb.92.4.839-846.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Bacteriological Reviews are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES