Full text
PDF![419](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/54e1/378333/b7729acfe795/bactrev00068-0048.png)
![420](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/54e1/378333/01f91aa78e63/bactrev00068-0049.png)
![421](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/54e1/378333/9785e3fcc458/bactrev00068-0050.png)
![422](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/54e1/378333/e6f9138e90c6/bactrev00068-0051.png)
![423](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/54e1/378333/77576163b329/bactrev00068-0052.png)
![424](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/54e1/378333/4ec7ac9a3ea0/bactrev00068-0053.png)
![425](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/54e1/378333/aeb25fade7ec/bactrev00068-0054.png)
![426](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/54e1/378333/217f4df54656/bactrev00068-0055.png)
![427](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/54e1/378333/4277178ec608/bactrev00068-0056.png)
![428](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/54e1/378333/d67f364d5eab/bactrev00068-0057.png)
![429](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/54e1/378333/a32e754a142a/bactrev00068-0058.png)
![430](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/54e1/378333/12c72fe9c103/bactrev00068-0059.png)
![431](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/54e1/378333/62435899efe8/bactrev00068-0060.png)
![432](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/54e1/378333/d96a2728ac96/bactrev00068-0061.png)
![433](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/54e1/378333/7e8cc7243309/bactrev00068-0062.png)
![434](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/54e1/378333/b921398b35ad/bactrev00068-0063.png)
![435](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/54e1/378333/2e9bffab23c8/bactrev00068-0064.png)
![436](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/54e1/378333/71051f2ba659/bactrev00068-0065.png)
![437](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/54e1/378333/c0efdeb37651/bactrev00068-0066.png)
![438](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/54e1/378333/4dfa2f7987ab/bactrev00068-0067.png)
![439](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/54e1/378333/cc298c78ed4e/bactrev00068-0068.png)
![440](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/54e1/378333/c625eade9b86/bactrev00068-0069.png)
![441](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/54e1/378333/81ed7bd88ae2/bactrev00068-0070.png)
![442](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/54e1/378333/15d6e99432a2/bactrev00068-0071.png)
![443](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/54e1/378333/11c57422234f/bactrev00068-0072.png)
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- AMATI P. Abortive infection of Pseudomonas aeruginosa and Serratia marcescens with coliphage P1. J Bacteriol. 1962 Feb;83:433–434. doi: 10.1128/jb.83.2.433-434.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BECKWITH J. R., PARDEE A. B., AUSTRIAN R., JACOB F. Coordination of the synthesis of the enzymes in the pyrimidine pathway of E. coli. J Mol Biol. 1962 Dec;5:618–634. doi: 10.1016/s0022-2836(62)80090-4. [DOI] [PubMed] [Google Scholar]
- BERK R. S. EFFECT OF ANTIBACTERIAL AGENTS ON THE AUTOPLAQUE PHENOMENON OF PSEUDOMONAS AERUGINOSA. Can J Microbiol. 1965 Apr;11:213–219. doi: 10.1139/m65-027. [DOI] [PubMed] [Google Scholar]
- BERK R. S. NUTRITIONAL STUDIES ON THE "AUTO-PLAQUE" PHENOMENON IN PSEUDOMONAS AERUGINOSA. J Bacteriol. 1963 Oct;86:728–734. doi: 10.1128/jb.86.4.728-734.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BOYER H. GENETIC CONTROL OF RESTRICTION AND MODIFICATION IN ESCHERICHIA COLI. J Bacteriol. 1964 Dec;88:1652–1660. doi: 10.1128/jb.88.6.1652-1660.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BRADLEY D. E. The structure of some Staphylococcus and Pseudomonas phages. J Ultrastruct Res. 1963 Jun;8:552–565. doi: 10.1016/s0022-5320(63)80055-6. [DOI] [PubMed] [Google Scholar]
- BRAMMAR W. J., CLARKE P. H. INDUCTION AND REPRESSION OF PSEUDOMONAS AERUGINOSA AMIDASE. J Gen Microbiol. 1964 Dec;37:307–319. doi: 10.1099/00221287-37-3-307. [DOI] [PubMed] [Google Scholar]
- Barksdale L. I. : Lysogenic Conversions in Bacteria. Bacteriol Rev. 1959 Dec;23(4):202–212. doi: 10.1128/br.23.4.202-212.1959. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Baumberg S., Bacon D. F., Vogel H. J. Individually repressible enzymes specified by clustered genes of arginine synthesis. Proc Natl Acad Sci U S A. 1965 May;53(5):1029–1032. doi: 10.1073/pnas.53.5.1029. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bradley D. E. Ultrastructure of bacteriophage and bacteriocins. Bacteriol Rev. 1967 Dec;31(4):230–314. doi: 10.1128/br.31.4.230-314.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brammar W. J., Clarke P. H., Skinner A. J. Biochemical and genetic studies with regulator mutants of the Pseudomonas aeruginosa 8602 amidase system. J Gen Microbiol. 1967 Apr;47(1):87–102. doi: 10.1099/00221287-47-1-87. [DOI] [PubMed] [Google Scholar]
- Brooks K., Clark A. J. Behavior of lambda bacteriophage in a recombination deficienct strain of Escherichia coli. J Virol. 1967 Apr;1(2):283–293. doi: 10.1128/jvi.1.2.283-293.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
- CLARK A. J., MARGULIES A. D. ISOLATION AND CHARACTERIZATION OF RECOMBINATION-DEFICIENT MUTANTS OF ESCHERICHIA COLI K12. Proc Natl Acad Sci U S A. 1965 Feb;53:451–459. doi: 10.1073/pnas.53.2.451. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Calhoun D. H., Feary T. W. Transductional analysis of Pseudomonas aeruginosa methionineless auxotrophs. J Bacteriol. 1969 Jan;97(1):210–216. doi: 10.1128/jb.97.1.210-216.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Caro L. G., Schnös M. The attachment of the male-specific bacteriophage F1 to sensitive strains of Escherichia coli. Proc Natl Acad Sci U S A. 1966 Jul;56(1):126–132. doi: 10.1073/pnas.56.1.126. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chakrabarty A. M., Gunsalus C. F., Gunsalus I. C. Transduction and the clustering of genes in fluorescent Pseudomonads. Proc Natl Acad Sci U S A. 1968 May;60(1):168–175. doi: 10.1073/pnas.60.1.168. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chakrabarty A. M., Gunsalus I. C. Autonomous replication of a defective transducing phage in Pseudomonas putida. Virology. 1969 May;38(1):92–104. doi: 10.1016/0042-6822(69)90131-7. [DOI] [PubMed] [Google Scholar]
- Chakrabarty A. M., Niblack J. F., Gunsalus I. C. A phage-initiated polysaccharide depolymerase in Pseudomonas putida. Virology. 1967 Jul;32(3):532–534. doi: 10.1016/0042-6822(67)90305-4. [DOI] [PubMed] [Google Scholar]
- Clark A. J., Chamberlin M., Boyce R. P., Howard-Flanders P. Abnormal metabolic response to ultraviolet light of a recombination deficient mutant of Escherichia coli K12. J Mol Biol. 1966 Aug;19(2):442–454. doi: 10.1016/s0022-2836(66)80015-3. [DOI] [PubMed] [Google Scholar]
- Crawford I. P., Gunsalus I. C. Inducibility of tryptophan synthetase in Pseudomonas putida. Proc Natl Acad Sci U S A. 1966 Aug;56(2):717–724. doi: 10.1073/pnas.56.2.717. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cuzin F., Jacob F. Inhibition par les acridines du transfert génétique par les souches donatrices d'Escherichia coli K 12. Ann Inst Pasteur (Paris) 1966 Oct;111(4):427–436. [PubMed] [Google Scholar]
- DAVISON P. F., FREIFELDER D., HOLLOWAY B. W. INTERRUPTIONS IN THE POLYNUCLEOTIDE STRANDS IN BACTERIOPHAGE DNA. J Mol Biol. 1964 Jan;8:1–10. doi: 10.1016/s0022-2836(64)80142-x. [DOI] [PubMed] [Google Scholar]
- DEMEREC M. CLUSTERING OF FUNCTIONALLY RELATED GENES IN SALMONELLA TYPHIMURIUM. Proc Natl Acad Sci U S A. 1964 Jun;51:1057–1060. doi: 10.1073/pnas.51.6.1057. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DUSSOIX D., ARBER W. Host specificity of DNA produced by Escherichia coli. II. Control over acceptance of DNA from infecting phage lambda. J Mol Biol. 1962 Jul;5:37–49. doi: 10.1016/s0022-2836(62)80059-x. [DOI] [PubMed] [Google Scholar]
- EGAN J. B., HOLLOWAY B. W. Genetic studies on lysogeny in Pseudomonas aeruginosa. Aust J Exp Biol Med Sci. 1961 Feb;39:9–17. doi: 10.1038/icb.1961.2. [DOI] [PubMed] [Google Scholar]
- Eisen H., Pereira da Silva L., Jacob F. Sur la régulation précoce du bactériophage lambda. C R Acad Sci Hebd Seances Acad Sci D. 1968 Mar 11;266(11):1176–1178. [PubMed] [Google Scholar]
- FARGIE B., HOLLOWAY B. W. ABSENCE OF CLUSTERING OF FUNCTIONALLY RELATED GENES IN PSEUDOMONAS AERUGINOSA. Genet Res. 1965 Jul;6:284–299. doi: 10.1017/s0016672300004158. [DOI] [PubMed] [Google Scholar]
- FEARY T. W., FISHER E., Jr, FISHER T. N. A small RNA containing Pseudomonas aeruginosa bacteriophage. Biochem Biophys Res Commun. 1963 Mar 5;10:359–365. doi: 10.1016/0006-291x(63)90538-2. [DOI] [PubMed] [Google Scholar]
- FEARY T. W., FISHER E., Jr, FISHER T. N. ISOLATION AND PRELIMINARY CHARACTERISTICS OF THREE BACTERIOPHAGES ASSOCIATED WITH A LYSOGENIC STRAIN OF PSEUDOMONAS AERUGINOSA. J Bacteriol. 1964 Jan;87:196–208. doi: 10.1128/jb.87.1.196-208.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gemski P., Jr, Wohlhieter J. A., Baron L. S. Chromosome transfer between Escherichia coli HFR strains and Proteus mirabilis. Proc Natl Acad Sci U S A. 1967 Oct;58(4):1461–1467. doi: 10.1073/pnas.58.4.1461. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gillies R. R., Govan J. R. Typing of Pseudomonas pyocyanea by pyocine production. J Pathol Bacteriol. 1966 Apr;91(2):339–345. doi: 10.1002/path.1700910207. [DOI] [PubMed] [Google Scholar]
- Gunsalus C., Gunsalus C. F., Chakrabarty A. M., Sikes S., Crawford I. P. Fine structure mapping of the tryptophan genes in Pseudomonas putida. Genetics. 1968 Nov;60(3):419–435. doi: 10.1093/genetics/60.3.419. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HAMON Y. Contribution à l'étude des pyocines. Ann Inst Pasteur (Paris) 1956 Jul;91(1):82–90. [PubMed] [Google Scholar]
- HAMON Y., VERON M., PERON Y. [Contribution to the study of the lysogenic and bacteriocinogenic properties of the genus Pseudomonas]. Ann Inst Pasteur (Paris) 1961 Nov;101:738–753. [PubMed] [Google Scholar]
- HOLLOWAY B. W., COOPER G. N. Lysogenic conversion in Pseudomonas aeruginosa. J Bacteriol. 1962 Dec;84:1321–1324. doi: 10.1128/jb.84.6.1321-1324.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HOLLOWAY B. W., EGAN J. B., MONK M. Lysogeny in Pseudomonas aeruginosa. Aust J Exp Biol Med Sci. 1960 Aug;38:321–329. doi: 10.1038/icb.1960.34. [DOI] [PubMed] [Google Scholar]
- HOLLOWAY B. W., FARGIE B. Fertility factors and genetic linkage in Pseudomonas aeruginosa. J Bacteriol. 1960 Sep;80:362–368. doi: 10.1128/jb.80.3.362-367.1960. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HOLLOWAY B. W. Genetic recombination in Pseudomonas aeruginosa. J Gen Microbiol. 1955 Dec;13(3):572–581. doi: 10.1099/00221287-13-3-572. [DOI] [PubMed] [Google Scholar]
- HOLLOWAY B. W. Grouping Pseudomonas aeruginosa by lysogenicity and pyocinogenicity. J Pathol Bacteriol. 1960 Oct;80:448–450. doi: 10.1002/path.1700800237. [DOI] [PubMed] [Google Scholar]
- HOLLOWAY B. W., HODGINS L., FARGIE B. UNLINKED LOCI AFFECTING RELATED BIOSYNTHETIC STEPS IN PSEUDOMONAS AERUGINOSA. Nature. 1963 Aug 31;199:926–927. doi: 10.1038/199926a0. [DOI] [PubMed] [Google Scholar]
- HOLLOWAY B. W., JENNINGS P. A. An infectious fertility factor for Pseudomonas aeruginosa. Nature. 1958 Mar 22;181(4612):855–856. doi: 10.1038/181855b0. [DOI] [PubMed] [Google Scholar]
- HOLLOWAY B. W., MONK M., HODGINS L., FARGIE B. Effects of radiation on transduction on Pseudomonas aeruginosa. Virology. 1962 Sep;18:89–94. doi: 10.1016/0042-6822(62)90180-0. [DOI] [PubMed] [Google Scholar]
- HOLLOWAY B. W., MONK M. Transduction in Pseudomonas aeruginosa. Nature. 1959 Oct 31;184(Suppl 18):1426–1427. doi: 10.1038/1841426b0. [DOI] [PubMed] [Google Scholar]
- HOLLOWAY B. W., ROLFE B. HOST GENOME CONTROL IN HOST-INDUCED MODIFICATION OF PSEUDOMONAS AERUGINOSA PHAGES. Virology. 1964 Aug;23:595–602. doi: 10.1016/0042-6822(64)90244-2. [DOI] [PubMed] [Google Scholar]
- HOLLOWAY B. W. Self-fertility in Pseudomonas aeruginosa. J Gen Microbiol. 1956 Aug;15(1):221–224. doi: 10.1099/00221287-15-1-221. [DOI] [PubMed] [Google Scholar]
- HOLLOWAY B. W. VARIATIONS IN RESTRICTION AND MODIFICATION OF BACTERIOPHAGE FOLLOWING INCREASE OF GROWTH TEMPERATURE OF PSEUDOMONAS AERUGINOSA. Virology. 1965 Apr;25:634–642. doi: 10.1016/0042-6822(65)90091-7. [DOI] [PubMed] [Google Scholar]
- HOWARTH S., DEDMAN M. D. PIGMENTATION VARIANTS OF PSEUDOMONAS AERUGINOSA. J Bacteriol. 1964 Aug;88:273–278. doi: 10.1128/jb.88.2.273-278.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hayward W. S., Belser W. L. Regulation of pyrimidine biosynthesis in Serratia marcescens. Proc Natl Acad Sci U S A. 1965 Jun;53(6):1483–1489. doi: 10.1073/pnas.53.6.1483. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hegeman G. D. Synthesis of the enzymes of the mandelate pathway by Pseudomonas putida. 3. Isolation and properties of constitutive mutants. J Bacteriol. 1966 Mar;91(3):1161–1167. doi: 10.1128/jb.91.3.1161-1167.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hegeman G. D. Synthesis of the enzymes of the mandelate pathway by Pseudomonas putida. I. Synthesis of enzymes by the wild type. J Bacteriol. 1966 Mar;91(3):1140–1154. doi: 10.1128/jb.91.3.1140-1154.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hegeman G. D. Synthesis of the enzymes of the mandelate pathway by Pseudomonas putida. II. Isolation and properties of blocked mutants. J Bacteriol. 1966 Mar;91(3):1155–1160. doi: 10.1128/jb.91.3.1155-1160.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Higerd T. B., Baechler C. A., Berk R. S. In vitro and in vivo characterization of pyocin. J Bacteriol. 1967 Jun;93(6):1976–1986. doi: 10.1128/jb.93.6.1976-1986.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hirsch-Kauffmann M., Sauerbier W. Inhibition of modification and restriction for phages lambda and T-1 by co-infecting T3. Mol Gen Genet. 1968;102(2):89–94. doi: 10.1007/BF01789134. [DOI] [PubMed] [Google Scholar]
- Holloway B. W. Mutants of Pseudomonas aeruginosa with reduced recombination ability. Mutat Res. 1966 Oct;3(5):452–455. doi: 10.1016/0027-5107(66)90055-8. [DOI] [PubMed] [Google Scholar]
- Holloway B. W. Radiation-sensitive mutants of Pseudomonas aeruginosa with reduced host-cell reactivation of bacteriophages. Mutat Res. 1966 Apr;3(2):167–171. doi: 10.1016/0027-5107(66)90031-5. [DOI] [PubMed] [Google Scholar]
- Holloway B. W., Van de Putte P. Transducing phage for Pseudomonas putida. Nature. 1968 Feb 3;217(5127):459–460. doi: 10.1038/217459a0. [DOI] [PubMed] [Google Scholar]
- Hopwood D. A. Genetic analysis and genome structure in Streptomyces coelicolor. Bacteriol Rev. 1967 Dec;31(4):373–403. doi: 10.1128/br.31.4.373-403.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Isaac J. H., Holloway B. W. Control of pyrimidine biosynthesis in Pseudomonas aeruginosa. J Bacteriol. 1968 Nov;96(5):1732–1741. doi: 10.1128/jb.96.5.1732-1741.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
- JACOB F., MONOD J. Genetic regulatory mechanisms in the synthesis of proteins. J Mol Biol. 1961 Jun;3:318–356. doi: 10.1016/s0022-2836(61)80072-7. [DOI] [PubMed] [Google Scholar]
- KAGEYAMA M. STUDIES OF A PYOCIN. I. PHYSICAL AND CHEMICAL PROPERTIES. J Biochem. 1964 Jan;55:49–53. doi: 10.1093/oxfordjournals.jbchem.a127839. [DOI] [PubMed] [Google Scholar]
- KAISER A. D. Mutations in a temperate bacteriophage affecting its ability to lysogenize Escherichia coli. Virology. 1957 Feb;3(1):42–61. doi: 10.1016/0042-6822(57)90022-3. [DOI] [PubMed] [Google Scholar]
- KLOSS W. E., PATTEE P. A. TRANSDUCTION ANALYSIS OF THE HISTIDINE REGION IN STAPHYLOCOCCUS AUREUS. J Gen Microbiol. 1965 May;39:195–207. doi: 10.1099/00221287-39-2-195. [DOI] [PubMed] [Google Scholar]
- Kemp M. B., Hegeman G. D. Genetic control of the beta-ketoadipate pathway in Pseudomonas aeruginosa. J Bacteriol. 1968 Nov;96(5):1488–1499. doi: 10.1128/jb.96.5.1488-1499.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Khan N. C., Sen S. P. Genetic transformation in Pseudomonas. J Gen Microbiol. 1967 Nov;49(2):201–209. doi: 10.1099/00221287-49-2-201. [DOI] [PubMed] [Google Scholar]
- LAMBINA V. A., MIKHAILOVA T. N. KOLICHESTVENNYE ZAKONOMERNOSTI TRANSFORMATSII STREPTOMITSINOUSTO ICHIVOSTI U PSEUDOMONAS FLUORESCENS. Mikrobiologiia. 1964 Sep-Oct;33:800–806. [PubMed] [Google Scholar]
- LEDERBERG S. Suppression of the multiplication of heterologous bacteriophages in lysogenic bacteria. Virology. 1957 Jun;3(3):496–513. doi: 10.1016/0042-6822(57)90006-5. [DOI] [PubMed] [Google Scholar]
- LEE B. T., HOLLOWAY B. W. THE GENETIC CONTROL OF RADIOSENSITIVITY IN PSEUDOMONAS AERUGINOSA. Radiat Res. 1965 May;25:68–77. [PubMed] [Google Scholar]
- LEVINE M. Mutations in the temperate phage P22 and lysogeny in Salmonella. Virology. 1957 Feb;3(1):22–41. doi: 10.1016/0042-6822(57)90021-1. [DOI] [PubMed] [Google Scholar]
- LOUTIT J. S. A transduction-like process within a single strain of Pseudomonas aeruginosa. J Gen Microbiol. 1958 Apr;18(2):315–319. doi: 10.1099/00221287-18-2-315. [DOI] [PubMed] [Google Scholar]
- LOUTIT J. S. Effect of ultra-violet irradiation on transduction in Pseudomonas aerginosa. Nature. 1959 Dec 19;184(Suppl 25):1960–1961. doi: 10.1038/1841960a0. [DOI] [PubMed] [Google Scholar]
- LOUTIT J. S., PEARCE L. E. KINETICS OF MATING OF FP+ AND FP- STRAINS OF PSEUDOMONAS AERUGINOSA. J Bacteriol. 1965 Aug;90:425–430. doi: 10.1128/jb.90.2.425-430.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lederberg S. Host-controlled restriction and modification of deoxyribonucleic acid in Escherichia coli. Virology. 1965 Nov;27(3):378–387. doi: 10.1016/0042-6822(65)90117-0. [DOI] [PubMed] [Google Scholar]
- Loutit J. S. Investigation of the mating system of Pseudomonas aeruginosa strain 1. IV. Mapping of distal markers. Genet Res. 1969 Feb;13(1):91–98. doi: 10.1017/s0016672300002767. [DOI] [PubMed] [Google Scholar]
- Loutit J. S., Marinus M. G. Investigation of the mating system of Pseudomonas aeruginosa strain 1. II. Mapping of a number of early markers. Genet Res. 1968 Aug;12(1):37–44. doi: 10.1017/s0016672300011599. [DOI] [PubMed] [Google Scholar]
- Loutit J. S., Marinus M. G., Pearce L. E. Investigation of the mating system of Pseudomonas aeruginosa strain 1. 3. Kinetic studies on the transfer of the sex factor (FP). Genet Res. 1968 Oct;12(2):139–145. doi: 10.1017/s0016672300011757. [DOI] [PubMed] [Google Scholar]
- Loutit J. S., Pearce L. E., Marinus M. G. Investigation of the mating system of Pseudomonas aeruginosa strain 1. I. Kinetic studies. Genet Res. 1968 Aug;12(1):29–36. doi: 10.1017/s0016672300011587. [DOI] [PubMed] [Google Scholar]
- Mandel M. Deoxyribonucleic acid base composition in the genus Pseudomonas. J Gen Microbiol. 1966 May;43(2):273–292. doi: 10.1099/00221287-43-2-273. [DOI] [PubMed] [Google Scholar]
- Mee B. J., Lee B. T. An analysis of histidine requiring mutants in Pseudomonas aeruginosa. Genetics. 1967 Apr;55(4):709–722. doi: 10.1093/genetics/55.4.709. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Meynell E., Meynell G. G., Datta N. Phylogenetic relationships of drug-resistance factors and other transmissible bacterial plasmids. Bacteriol Rev. 1968 Mar;32(1):55–83. doi: 10.1128/br.32.1.55-83.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Olsen R. H. Isolation and growth of psychrophilic bacteriophage. Appl Microbiol. 1967 Jan;15(1):198–198. doi: 10.1128/am.15.1.198-.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Olsen R. H., Metcalf E. S., Brandt C. Conditional temperature-sensitive restriction of Pseudomonas bacteriophge CB3. J Virol. 1968 Dec;2(12):1393–1399. doi: 10.1128/jvi.2.12.1393-1399.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Olsen R. H., Metcalf E. S. Conversion of mesophilic to psychrophilic bacteria. Science. 1968 Dec 13;162(3859):1288–1289. doi: 10.1126/science.162.3859.1288. [DOI] [PubMed] [Google Scholar]
- Olsen R. H., Metcalf E. S., Todd J. K. Characteristics of bacteriophages attacking psychrophilic and mesophilic pseudomonads. J Virol. 1968 Apr;2(4):357–364. doi: 10.1128/jvi.2.4.357-364.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ornston L. N. The conversion of catechol and protocatechuate to beta-ketoadipate by Pseudomonas putida. IV. Regulation. J Biol Chem. 1966 Aug 25;241(16):3800–3810. [PubMed] [Google Scholar]
- PEARCE L. E., LOUTIT J. S. BIOCHEMICAL AND GENETIC GROUPING OF ISOLEUCINE-VALINE MUTANTS OF PSEUDOMONAS AERUGINOSA. J Bacteriol. 1965 Jan;89:58–63. doi: 10.1128/jb.89.1.58-63.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Paterson A. C. Bacteriocinogeny and lysogeny in the genus Pseudomonas. J Gen Microbiol. 1965 Jun;39(3):295–303. doi: 10.1099/00221287-39-3-295. [DOI] [PubMed] [Google Scholar]
- Pittard J. Effect of phage-controlled restriction on genetic linkage in bacterial crosses. J Bacteriol. 1964 May;87(5):1256–1257. doi: 10.1128/jb.87.5.1256-1257.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rolfe B., Holloway B. W. Alterations in host specificity of bacterial deoxyribonucleic acid after an increase in growth temperature of Pseudomonas aeruginosa. J Bacteriol. 1966 Jul;92(1):43–48. doi: 10.1128/jb.92.1.43-48.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rolfe B., Holloway B. W. Genetic control of DNA specificity in Pseudomonas aeruginosa. Genet Res. 1968 Aug;12(1):99–102. doi: 10.1017/s0016672300011678. [DOI] [PubMed] [Google Scholar]
- Rosenberg S. L., Hegeman G. D. Clustering of functionally related genes in Pseudomonas aeruginosa. J Bacteriol. 1969 Jul;99(1):353–355. doi: 10.1128/jb.99.1.353-355.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SLAYTER H. S., HOLLOWAY B. W., HALL C. E. THE STRUCTURE OF PSEUDOMONAS AERUGINOSA PHAGES B3, E79, AND F116. J Ultrastruct Res. 1964 Oct;11:274–281. doi: 10.1016/s0022-5320(64)90032-2. [DOI] [PubMed] [Google Scholar]
- SUGINO Y., HIROTA Y. Conjugal fertility associated with resistance factor R in Escherichia coli. J Bacteriol. 1962 Nov;84:902–910. doi: 10.1128/jb.84.5.902-910.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sanderson K. E. Revised linkage map of Salmonella typhimurium. Bacteriol Rev. 1967 Dec;31(4):354–372. doi: 10.1128/br.31.4.354-372.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Signer E. R. Lysogeny: the integration problem. Annu Rev Microbiol. 1968;22:451–488. doi: 10.1146/annurev.mi.22.100168.002315. [DOI] [PubMed] [Google Scholar]
- Sironi G. Mutants of Escherichia coli unable to be lysogenized by the temperate bacteriophage P2. Virology. 1969 Feb;37(2):163–176. doi: 10.1016/0042-6822(69)90196-2. [DOI] [PubMed] [Google Scholar]
- Smith D. H., Armour S. E. Transferable R factors in enteric bacteria causing infection of the genitourinary tract. Lancet. 1966 Jul 2;2(7453):15–18. doi: 10.1016/s0140-6736(66)91745-4. [DOI] [PubMed] [Google Scholar]
- Stanier R. Y., Palleroni N. J., Doudoroff M. The aerobic pseudomonads: a taxonomic study. J Gen Microbiol. 1966 May;43(2):159–271. doi: 10.1099/00221287-43-2-159. [DOI] [PubMed] [Google Scholar]
- Stanisich V., Holloway B. W. Conjugation in Pseudomonas aeruginosa. Genetics. 1969 Feb;61(2):327–339. doi: 10.1093/genetics/61.2.327. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stanisich V., Holloway B. W. Genetic effects of acridines on Pseudomonas aeruginosa. Genet Res. 1969 Feb;13(1):57–70. doi: 10.1017/s0016672300002731. [DOI] [PubMed] [Google Scholar]
- Strobel M., Nomura M. Restriction of the growth of bacteriophage BF23 by a colicine I (Col I-P9) factor. Virology. 1966 Apr;28(4):763–765. doi: 10.1016/0042-6822(66)90263-7. [DOI] [PubMed] [Google Scholar]
- Takeya K., Amako K. A rod-shaped Pseudomonas phage. Virology. 1966 Jan;28(1):163–165. doi: 10.1016/0042-6822(66)90317-5. [DOI] [PubMed] [Google Scholar]
- Taylor A. L., Trotter C. D. Revised linkage map of Escherichia coli. Bacteriol Rev. 1967 Dec;31(4):332–353. doi: 10.1128/br.31.4.332-353.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
- UETAKE H., TOYAMA S., HAGIWARA S. ON THE MECHANISM OF HOST-INDUCED MODIFICATION. MULTIPLICITY ACTIVATION AND THERMOLABILE FACTOR RESPONSIBLE FOR PHAGE GROWTH RESTRICTION. Virology. 1964 Feb;22:202–213. doi: 10.1016/0042-6822(64)90005-4. [DOI] [PubMed] [Google Scholar]
- VOGEL H. J., BONNER D. M. Acetylornithinase of Escherichia coli: partial purification and some properties. J Biol Chem. 1956 Jan;218(1):97–106. [PubMed] [Google Scholar]
- WOLLMAN E. L., JACOB F. Sur le mécanisme du transfert de matériel géaé tique au cours de la recombinaison chez Escherichia coli K12. C R Hebd Seances Acad Sci. 1955 Jun 20;240(25):2449–2451. [PubMed] [Google Scholar]
- WOLLMAN E. L., JACOB F. Sur les processus de conjugaison et de recombinaison chez Escherichia coli. V. Le mécanisme du transfert de matériel génétique. Ann Inst Pasteur (Paris) 1958 Dec;95(6):641–666. [PubMed] [Google Scholar]
- Waltho J. A., Holloway B. W. Suppression of fluorophenylalanine resistance by mutation to streptomycin resistance in Pseudomonas aeruginosa. J Bacteriol. 1966 Jul;92(1):35–42. doi: 10.1128/jb.92.1.35-42.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wing J. P. Integration and induction of phage P22 in a recombination-deficient mutant of Salmonella typhimurium. J Virol. 1968 Jul;2(7):702–709. doi: 10.1128/jvi.2.7.702-709.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yamamoto T., Chow C. T. Mitomycin C induction of a temperate phage in Pseudomonas aeruginosa. Can J Microbiol. 1968 Jun;14(6):667–673. doi: 10.1139/m68-111. [DOI] [PubMed] [Google Scholar]
- Zierdt C. H., Schmidt P. J. Dissociation in Pseudomonas aeruginosa. J Bacteriol. 1964 May;87(5):1003–1010. doi: 10.1128/jb.87.5.1003-1010.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
- van de Putte P., Holloway B. W. A thermosensitive recombination deficient mutant of Pseudomonas aeruginosa. Mutat Res. 1968 Sep-Oct;6(2):195–203. doi: 10.1016/0027-5107(68)90034-1. [DOI] [PubMed] [Google Scholar]