Skip to main content
Bacteriological Reviews logoLink to Bacteriological Reviews
. 1972 Mar;36(1):65–108. doi: 10.1128/br.36.1.65-108.1972

Intermediary metabolism of mycobacteria.

T Ramakrishnan, P S Murthy, K P Gopinathan
PMCID: PMC378425  PMID: 4553808

Full text

PDF
65

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ALBERTSON J. N., Jr, MOAT A. G. BIOSYNTHESIS OF NICOTINIC ACID BY MYCOBACTERIUM TUBERCULOSIS. J Bacteriol. 1965 Feb;89:540–541. doi: 10.1128/jb.89.2.540-541.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. ARTMAN M., BEKIERKUNST A. Mycobacterium tuberculosis H37Rv grown in vivo: nature of the inhibitor of lactic dehydrogenase of Mycobacterium phlei. Proc Soc Exp Biol Med. 1961 Mar;106:610–614. doi: 10.3181/00379727-106-26419. [DOI] [PubMed] [Google Scholar]
  3. ASANO A., BRODIE A. F. OXIDATIVE PHOSPHORYLATION IN FRACTIONATED BACTERIAL SYSTEMS. XIV. RESPIRATORY CHAINS OF MYCOBACTERIUM PHLEI. J Biol Chem. 1964 Dec;239:4280–4291. [PubMed] [Google Scholar]
  4. ASANO A., BRODIE A. F., WAGNER A. F., WITTREICH P. E., FOLKERS K. The new synthetic 6-chromanyl phosphate of vitamin K1(20) and its behavior in an enzymatic system from Mycobacterium phlei. J Biol Chem. 1962 Jul;237:2411–2412. [PubMed] [Google Scholar]
  5. ASANO A., KANESHIRO T., BRODIE A. F. MALATE-VITAMIN K REDUCTASE, A PHOSPHOLIPID-REQUIRING ENZYME. J Biol Chem. 1965 Feb;240:895–905. [PubMed] [Google Scholar]
  6. AZERAD R., BLEILER-HILL R., LEDERER E. BIOSYNTHESIS OF A VITAMIN K2 BY CELL-FREE EXTRACTS OF MYCOBACTERIUM PHLEI. Biochem Biophys Res Commun. 1965 Apr 9;19:194–197. doi: 10.1016/0006-291x(65)90503-6. [DOI] [PubMed] [Google Scholar]
  7. Adámek L., Mison P., Mohelská H., Trnka L. Ultrastructural organization of spheroplasts induced in Mycobacterium sp. smegmatis by lysozyme or glycine. Arch Mikrobiol. 1969;69(3):227–236. doi: 10.1007/BF00408975. [DOI] [PubMed] [Google Scholar]
  8. Aithal H. N., Sirsi M. Vitamin B 12 synthesis by Mycobacteria. II. Isoniazid resistance & vitamin B 12 activity of Mycobacterium tuberculosis H37Rv. Indian J Biochem. 1964 Sep;1(3):166–167. [PubMed] [Google Scholar]
  9. Akamatsu Y., Law J. H. Enzymatic alkylenation of phospholipid fatty acid chains by extracts of Mycobacterium phlei. J Biol Chem. 1970 Feb 25;245(4):701–708. [PubMed] [Google Scholar]
  10. Akamatsu Y., Law J. H. Enzymatic synthesis of 10-methylene stearic acid and tuberculostearic acid. Biochem Biophys Res Commun. 1968 Oct 10;33(1):172–176. doi: 10.1016/0006-291x(68)90274-x. [DOI] [PubMed] [Google Scholar]
  11. Akamatsu Y., Law J. H. The enzymatic synthesis of fatty acid methyl esters by carboxyl group alkylation. J Biol Chem. 1970 Feb 25;245(4):709–713. [PubMed] [Google Scholar]
  12. Akamatsu Y., Ono Y., Nojima S. Studies on the metabolism of phospholipids in Mycobacterium phlei. I. Difference in turnover rates of individual phospholipids. J Biochem. 1967 Jan;61(1):96–102. doi: 10.1093/oxfordjournals.jbchem.a128525. [DOI] [PubMed] [Google Scholar]
  13. Allaudeen H. S., Ramakrishnan T. Biosynthesis of isoleucine & valine in Mycobacterium tuberculosis H 37 Rv. 3. Purification & properties of acetohydroxy acid isomeroreductase. Indian J Biochem. 1971 Mar;8(1):23–27. [PubMed] [Google Scholar]
  14. Allaudeen H. S., Ramakrishnan T. Biosynthesis of isoleucine and valine in Mycobacterium tuberculosis H37 Rv. Arch Biochem Biophys. 1968 Apr;125(1):199–209. doi: 10.1016/0003-9861(68)90655-3. [DOI] [PubMed] [Google Scholar]
  15. Allaudeen H. S., Ramakrishnan T. Biosynthesis of isoleucine and valine in Mycobacterium tuberculosis H37Rv. II. Purification and properties of acetohydroxy acid isomerase. Arch Biochem Biophys. 1970 Sep;140(1):245–256. doi: 10.1016/0003-9861(70)90029-9. [DOI] [PubMed] [Google Scholar]
  16. Allaudeen H. S., Ramakrishnan T. Occurrence of ascorbic acid in mycobacterium tuberculosis H 37 R v . Indian J Exp Biol. 1971 Apr;9(2):278–279. [PubMed] [Google Scholar]
  17. Andrejew A., Renard A. Différenciation des phosphatases acides des Mycobactéries. Ann Inst Pasteur (Paris) 1968 Sep;115(3):343–349. [PubMed] [Google Scholar]
  18. Andrejew A., Renard A. Essai de séparation des activités catalasique et peroxydasique chez les Mycobactéries. Ann Inst Pasteur (Paris) 1968 Jul;115(1):3–10. [PubMed] [Google Scholar]
  19. Ariji F., Yamaguchi J., Fukushi K., Oka S. Electron microscopic localization of enzymes in Mycobacterium tuberculosis. Sci Rep Res Inst Tohoku Univ Med. 1968 Dec;15(3):88–97. [PubMed] [Google Scholar]
  20. Asano A., Brodie A. F. Oxidative phosphorylation in fractionated bacterial systems. 18. Phosphorylation coupled to different segments of the respiratory chains of Mycobacterium phlei. J Biol Chem. 1965 Oct;240(10):4002–4010. [PubMed] [Google Scholar]
  21. Asselineau C., Montrozier H., Promé J. C. Présence d'acides polyinsaturés dans une bactérie: isolement, à partir des lipides de Mycobacterium phlei, d'acide hexatriacontapentaène-4,8,12, 16, 20-oïque et d'acides analogues. Eur J Biochem. 1969 Oct;10(3):580–584. doi: 10.1111/j.1432-1033.1969.tb00728.x. [DOI] [PubMed] [Google Scholar]
  22. BASTARRACHEA F., ANDERSON D. G., GOLDMAN D. S. Enzyme systems in the Mycobacteria. XI. Evidence for a functional glycolytic system. J Bacteriol. 1961 Jul;82:94–100. doi: 10.1128/jb.82.1.94-100.1961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. BASTARRACHEA F., GOLDMAN D. S. Diphosphopyridine nucleotide-linked nitrate reductase from Mycobacterium tuberculosis. Biochim Biophys Acta. 1961 Jun 10;50:174–176. doi: 10.1016/0006-3002(61)91077-0. [DOI] [PubMed] [Google Scholar]
  24. BEKIERKUNST A., ARTMAN M. Effect of cell-free extracts from Mycobacterium tuberculosis H37Rv on lung succinoxidase. Nature. 1959 Aug 8;184(Suppl 7):458–458. doi: 10.1038/184458a0. [DOI] [PubMed] [Google Scholar]
  25. BLOCH H., SEGAL W. Biochemical differentiation of Mycobacterium tuberculosis grown in vivo and in vitro. J Bacteriol. 1956 Aug;72(2):132–141. doi: 10.1128/jb.72.2.132-141.1956. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. BRODIE A. F., BALLANTINE J. Oxidative phosphorylation in fractionated bacterial systems. II. The role of vitamin K. J Biol Chem. 1960 Jan;235:226–231. [PubMed] [Google Scholar]
  27. BRODIE A. F., GRAY C. T. Bacterial particles in oxidative phosphorylation. Science. 1957 Mar 22;125(3247):534–537. doi: 10.1126/science.125.3247.534. [DOI] [PubMed] [Google Scholar]
  28. BRODIE A. F., GRAY C. T. Phosphorylation coupled to oxidation in bacterial extracts. J Biol Chem. 1956 Apr;219(2):853–862. [PubMed] [Google Scholar]
  29. BRODIE A. F. Oxidative phosphorylation in fractionated bacterial systems. I. Role of soluble factors. J Biol Chem. 1959 Feb;234(2):398–404. [PubMed] [Google Scholar]
  30. BRUMMOND D. O., STAEHELIN M., OCHOA S. Enzymatic synthesis of polynucleotides. II. Distribution of polynucleotide phosphorylase. J Biol Chem. 1957 Apr;225(2):835–849. [PubMed] [Google Scholar]
  31. Beaman L., Barksdale L. Phenoloxidase activity in organisms isolated from lepromatous and tuberculoid leprosy. J Bacteriol. 1970 Dec;104(3):1406–1408. doi: 10.1128/jb.104.3.1406-1408.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Bekierkunst A., Bricker A. Studies on the mode of action of isoniazid on mycobacteria. Arch Biochem Biophys. 1967 Nov;122(2):385–392. doi: 10.1016/0003-9861(67)90209-3. [DOI] [PubMed] [Google Scholar]
  33. Bogin E., Higash T., Brodie A. F. Exogenous NADH oxidation and particulate fumarate reductase in Mycobacterium phlei. Arch Biochem Biophys. 1969 Jan;129(1):211–220. doi: 10.1016/0003-9861(69)90168-4. [DOI] [PubMed] [Google Scholar]
  34. Bogin E., Higashi T., Brodie A. F. Effects of heat treatment of electron-transport particles on bacterial oxidative phosphorylation. Proc Natl Acad Sci U S A. 1970 Sep;67(1):1–6. doi: 10.1073/pnas.67.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Bogin E., Higashi T., Brodie A. F. Interchangeability of coupling factors from bacterial and mammalian origin. Biochem Biophys Res Commun. 1970 Feb 6;38(3):478–483. doi: 10.1016/0006-291x(70)90738-2. [DOI] [PubMed] [Google Scholar]
  36. Bogin E., Higashi T., Brodie A. F. Oxidative phosphorylation in fractionated bacterial systems. 43. Coupling factors associated with the NAD+ linked electron transport pathway. Arch Biochem Biophys. 1970 Feb;136(2):337–351. doi: 10.1016/0003-9861(70)90204-3. [DOI] [PubMed] [Google Scholar]
  37. Bogin E., Higashi T., Brodie A. F. The effect of trypsin and heat treatment on oxidative phosphorylation in Mycobacterium phlei. Biochem Biophys Res Commun. 1970 Nov 25;41(4):995–1001. doi: 10.1016/0006-291x(70)90183-x. [DOI] [PubMed] [Google Scholar]
  38. Bogin E., Higashi T., Brodie A. Extraparticulate chain interaction between different electron transport particles. Science. 1969 Sep 26;165(3900):1364–1367. doi: 10.1126/science.165.3900.1364. [DOI] [PubMed] [Google Scholar]
  39. Bowles J. A., Segal W. Kinetics of Utilization of Organic Compounds in the Growth of Mycobacterium tuberculosis. J Bacteriol. 1965 Jul;90(1):157–163. doi: 10.1128/jb.90.1.157-163.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Brennan P. J., Rooney S. A., Winder F. G. The lipids of Mycobacterium tuberculosis BCG: fractionation, composition, turnover and the effects of isoniazid. Ir J Med Sci. 1970 Aug;3(8):371–390. doi: 10.1007/BF02956904. [DOI] [PubMed] [Google Scholar]
  41. Brennan P., Ballou C. E. Biosynthesis of mannophosphoinositides by Mycobacterium phlei. Enzymatic acylation of the dimannophosphoinositides. J Biol Chem. 1968 Jun 10;243(11):2975–2984. [PubMed] [Google Scholar]
  42. Brennan P., Ballou C. E. Biosynthesis of mannophosphoinositides by Mycobacterium phlei. The family of dimannophosphoinositides. J Biol Chem. 1967 Jul 10;242(13):3046–3056. [PubMed] [Google Scholar]
  43. Brodie A. F., Adelson J. Respiratory Chains and Sites of Coupled Phosphorylation. Science. 1965 Jul 16;149(3681):265–269. doi: 10.1126/science.149.3681.265. [DOI] [PubMed] [Google Scholar]
  44. Brodie A. F., Watanabe T. Mode of action of vitamin K in microorganisms. Vitam Horm. 1966;24:447–463. doi: 10.1016/s0083-6729(08)60216-2. [DOI] [PubMed] [Google Scholar]
  45. CATTANEO C., IPATA P. L., GABBRIELLI M. C. [Polynucleotide phosphorylases of mycobacteria. I. Exchange reactions between dinucleotides and P32 in Mycobacterium lacticola, Milch strain]. Ann Ist Carlo Forlanini. 1960;20:325–337. [PubMed] [Google Scholar]
  46. CHANDRASEKHAR S., DEMONTE A. J., SUBRAMANIAN T. A. Fatty acids from the lipids of streptomycin resistant tubercle bacilli. Indian J Med Res. 1958 Sep;46(5):643–647. [PubMed] [Google Scholar]
  47. COHN D. V. The enzymatic formation of oxalacetic acid by nonpyridine nucleotide malic dehydrogenase of Micrococcus lysodeikticus. J Biol Chem. 1958 Aug;233(2):299–304. [PubMed] [Google Scholar]
  48. COUSINS F. B. The lactic acid oxidase of the mycobacteria. Biochem J. 1956 Oct;64(2):297–304. doi: 10.1042/bj0640297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Campbell I. M., Bentley R. Inhomogeneity of vitamin K2 in Mycobacterium phlei. Biochemistry. 1968 Oct;7(10):3323–3327. doi: 10.1021/bi00850a002. [DOI] [PubMed] [Google Scholar]
  50. Campbell I. M., Naworal J. Composition of the saturated and monounsaturated fatty acids of Mycobacterium phlei. J Lipid Res. 1969 Sep;10(5):593–598. [PubMed] [Google Scholar]
  51. Cesari I. M., Rieber M., Imaeda T. Localization and properties of enzymes involved with electron transport activity in mycobacteria. J Bacteriol. 1969 May;98(2):767–773. doi: 10.1128/jb.98.2.767-773.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Chandramouli V., Sarma G. R., Venkitasubramanian T. A. Phospholipids of mycobacteria: possible presence of glycerly ethers. Indian J Biochem. 1971 Mar;8(1):55–56. [PubMed] [Google Scholar]
  53. DEL RIO-ESTRADA C., PATINO H. Nicotinic acid biosynthesis by Mycobacterium tuberculosis. J Bacteriol. 1962 Oct;84:871–872. doi: 10.1128/jb.84.4.871-872.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. DETURK W. E., BERNHEIM F. Effects of ammonia, methylamine, and hydroxylamine on the adaptive assimilation of nitrite and nitrate by a Mycobacterium. J Bacteriol. 1958 Jun;75(6):691–696. doi: 10.1128/jb.75.6.691-696.1958. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. DUDLEY M. A., WILLETT H. P. NICOTINAMIDE ADENINE DINUCLEOTIDE SYNTHESIS BY MYCOBACTERIUM TUBERCULOSIS VAR. BOVIS. Proc Soc Exp Biol Med. 1965 Jul;119:807–812. doi: 10.3181/00379727-119-30307. [DOI] [PubMed] [Google Scholar]
  56. DUNN D. B., SMITH J. D. The occurrence of 6-methylaminopurine in deoxyribonucleic acids. Biochem J. 1958 Apr;68(4):627–636. doi: 10.1042/bj0680627. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. David H. L. Effect of O-carbamyl-D-serine on the growth of mycobacterium tuberculosis. Am Rev Respir Dis. 1970 Jul;102(1):68–74. doi: 10.1164/arrd.1970.102.1.68. [DOI] [PubMed] [Google Scholar]
  58. David H. L., Goldman D. S., Takayama K. Inhibition of the Synthesis of Wax D Peptidoglycolipid of Mycobacterium tuberculosis by d-Cycloserine. Infect Immun. 1970 Jan;1(1):74–77. doi: 10.1128/iai.1.1.74-77.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. David H. L., Takayama K., Goldman D. S. Susceptibility of mycobacterial D-alanyl-D-alanine synthetase to D-cycloserine. Am Rev Respir Dis. 1969 Oct;100(4):579–581. doi: 10.1164/arrd.1969.100.4.579. [DOI] [PubMed] [Google Scholar]
  60. Di Mari S. J., Snyder C. D., Rapoport H. The role of the quinone in oxidative phosphorylation. Evidence against carbon-hydrogen bond cleavage. Biochemistry. 1968 Jun;7(6):2301–2317. doi: 10.1021/bi00846a037. [DOI] [PubMed] [Google Scholar]
  61. Dudley M. A., Willett H. P. Comparison of nicotinamide adenine dinucleotide synthesis by Mycobacterium tuberculosis and Mycobacterium bovis. Can J Microbiol. 1966 Dec;12(6):1225–1233. doi: 10.1139/m66-164. [DOI] [PubMed] [Google Scholar]
  62. Dunphy P. J., Gutnick D. L., Phillips P. G., Brodie A. F. A new natural naphthoquinone in Mycobacterium phlei. Cis-dihydromenaquinone-9, structure and function. J Biol Chem. 1968 Jan 25;243(2):398–407. [PubMed] [Google Scholar]
  63. EBINA T., MOTOMIYA M., MUNAKATA K., KOBUYA G. [Effect of isoniazid on fatty acids in Mycobacterium]. C R Seances Soc Biol Fil. 1961;155:1176–1178. [PubMed] [Google Scholar]
  64. EDA T. [STUDIES ON PROTEIN BIOSYNTHESIS IN MYCOBACTERIA. 2. ISOLATION AND CHARACTERIZATION OF THE RIBOSOME OF BCG]. Nihon Saikingaku Zasshi. 1964 Oct;19:411–417. doi: 10.3412/jsb.19.411. [DOI] [PubMed] [Google Scholar]
  65. EDA T. [STUDIES ON PROTEIN BIOSYNTHESIS IN MYCOBACTERIA. I. PREPARATION AND CHARACTERIZATION OF THE RIBOSOME OF MYCOBACTERIUM 607]. Nihon Saikingaku Zasshi. 1964 Aug;19:201–206. [PubMed] [Google Scholar]
  66. EDA T. [STUDIES ON THE PROTEIN BIOSYNTHESIS IN MYCOBACTERIA. 3. INFLUENCE OF VARIOUS ANTIBIOTICS ON THE PROTEIN BIOSYNTHESIS IN MYCOBACTERIA]. Nihon Saikingaku Zasshi. 1964 Nov;19:437–442. doi: 10.3412/jsb.19.437. [DOI] [PubMed] [Google Scholar]
  67. EDSON N. L., HUNTER G. J., KULKA R. G., WRIGHT D. E. The metabolism of glycerol in Mycobacterium butyricum. Biochem J. 1959 Jun;72(2):249–261. doi: 10.1042/bj0720249. [DOI] [PMC free article] [PubMed] [Google Scholar]
  68. EDSON N. L. The intermediary metabolism of the mycobacteria. Bacteriol Rev. 1951 Sep;15(3):147–182. doi: 10.1128/br.15.3.147-182.1951. [DOI] [PMC free article] [PubMed] [Google Scholar]
  69. ELLARD G. A., CLARKE P. H. Acetate and fumarate permeases of Mycobacterium smegmatis. J Gen Microbiol. 1959 Oct;21:338–343. doi: 10.1099/00221287-21-2-338. [DOI] [PubMed] [Google Scholar]
  70. ELLFOLK N., KATUNUMA N. The occurrence of ammonia-activiating enzyme in various organisms. Arch Biochem Biophys. 1959 Apr;81(2):521–522. doi: 10.1016/0003-9861(59)90233-4. [DOI] [PubMed] [Google Scholar]
  71. ERDOS T., ULLMANN A. Effect of streptomycin on the incorporation of amino-acids labelled with carbon-14 into ribonucleic acid and protein in a cell-free system of a Mycobacterium. Nature. 1959 Feb 28;183(4661):618–619. doi: 10.1038/183618a0. [DOI] [PubMed] [Google Scholar]
  72. ERDOS T., ULLMANN A. Effect of streptomycin on the incorporation of tyrosine labelled with carbon-14 into protein of Mycobacterium cell fractions in vivo. Nature. 1960 Jan 9;185:100–101. doi: 10.1038/185100a0. [DOI] [PubMed] [Google Scholar]
  73. ETEMADI A. H., LEDERER E. BIOSYNTHESE DE L'ACIDE ALPHA-SMEGMA-MYCOLIQUE. Biochim Biophys Acta. 1965 Feb 1;98:159–167. [PubMed] [Google Scholar]
  74. FORBES M., KUCK N. A., PEETS E. A. EFFECT OF ETHAMBUTOL ON NUCLEIC ACID METABOLISM IN MYCOBACTERIUM SMEGMATIS AND ITS REVERSAL BY POLYAMINES AND DIVALENT CATIONS. J Bacteriol. 1965 May;89:1299–1305. doi: 10.1128/jb.89.5.1299-1305.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  75. FORBES M., KUCK N. A., PEETS E. A. Mode of action of ethambutol. J Bacteriol. 1962 Nov;84:1099–1103. doi: 10.1128/jb.84.5.1099-1103.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  76. FOWLER A. V., CAMIEN M. N., DUNN M. S. Acetyl L-isoleucine and acetyl L-leucine as extracellular products of Mycobacterium ranae. J Bacteriol. 1961 Jan;81:163–164. doi: 10.1128/jb.81.1.163-164.1961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  77. FRANCIS M. J., HUGHES D. E., KORNBERG H. L., PHIZACKERLEY P. J. THE OXIDATION OF L-MALATE BY PSEUDOMONAS SP. Biochem J. 1963 Dec;89:430–438. doi: 10.1042/bj0890430. [DOI] [PMC free article] [PubMed] [Google Scholar]
  78. FULCO A. J., BLOCH K. COFACTOR REQUIREMENTS FOR THE FORMATION OF DELTA-9-UNSATURATED FATTY ACIDS IN MYCOBACTERIUM PHLEI. J Biol Chem. 1964 Apr;239:993–997. [PubMed] [Google Scholar]
  79. Ferguson J. A., Ballou C. E. Biosynthesis of a mycobacterial lipopolysaccharide. Properties of the polysaccharide methyltransferase. J Biol Chem. 1970 Aug 25;245(16):4213–4223. [PubMed] [Google Scholar]
  80. Fukuyama K., Tani J. Protein synthetic activities of mycobacterial ribosomes in vivo. Biochim Biophys Acta. 1968 Feb 26;155(2):611–613. doi: 10.1016/0005-2787(68)90206-2. [DOI] [PubMed] [Google Scholar]
  81. GALE P. H., ARISON B. H., TRENNER N. R., PAGE AC Jr FOLKERS K. Coenzyme Q. 36. Isolation and characterization of coenzyme Q10 (H-10). Biochemistry. 1963 Jan-Feb;2:196–200. doi: 10.1021/bi00901a037. [DOI] [PubMed] [Google Scholar]
  82. GALE P. H., ARISON B. H., TRENNER N. R., PAGE A. C., Jr, FOLKERS K. Characterization of vitamin K9(H) from Mycobacterium phlei. Biochemistry. 1963 Jan-Feb;2:200–203. doi: 10.1021/bi00901a038. [DOI] [PubMed] [Google Scholar]
  83. GASTAMBIDE ODIER M., DELAUMENY J. M., LEDERER E. BIOSYNTH'ESE DE L'ACIDE C32-MYCOC'EROSIQUE; INCORPORATION D'ACIDE PROPIONIQUE. Biochim Biophys Acta. 1963 Dec 27;70:670–678. doi: 10.1016/0006-3002(63)90811-4. [DOI] [PubMed] [Google Scholar]
  84. GASTAMBIDE-ODIER M. Determination of dehydrogenases in atypical strains and in other Mycobacteria. J Bacteriol. 1959 Jun;77(6):748–752. doi: 10.1128/jb.77.6.748-752.1959. [DOI] [PMC free article] [PubMed] [Google Scholar]
  85. GELBARD A., GOLDMAN D. S. Enzyme systems in the mycobacteria. X. The butyryl dehydrogenase system. Arch Biochem Biophys. 1961 Aug;94:228–235. doi: 10.1016/0003-9861(61)90034-0. [DOI] [PubMed] [Google Scholar]
  86. GOLDMAN D. S. Enzyme system in the mycobacteria. III. The condensing enzyme. J Bacteriol. 1957 May;73(5):602–607. doi: 10.1128/jb.73.5.602-607.1957. [DOI] [PMC free article] [PubMed] [Google Scholar]
  87. GOLDMAN D. S. Enzyme systems in the Mycobacteria. IV. The pyruvic oxidase. Biochim Biophys Acta. 1958 Mar;27(3):506–512. doi: 10.1016/0006-3002(58)90379-2. [DOI] [PubMed] [Google Scholar]
  88. GOLDMAN D. S. Enzyme systems in the Mycobacteria. V. The pyruvic dehydrogenase system. Biochim Biophys Acta. 1958 Mar;27(3):513–518. doi: 10.1016/0006-3002(58)90380-9. [DOI] [PubMed] [Google Scholar]
  89. GOLDMAN D. S. Enzyme systems in the mycobacteria. A review. Bibl Tuberc. 1961;16:1–44. [PubMed] [Google Scholar]
  90. GOLDMAN D. S. Enzyme systems in the mycobacteria. I. The isocitric dehydrogenase. J Bacteriol. 1956 Jun;71(6):732–736. doi: 10.1128/jb.71.6.732-736.1956. [DOI] [PMC free article] [PubMed] [Google Scholar]
  91. GOLDMAN D. S. Enzyme systems in the mycobacteria. II. The malic dehydrogenase. J Bacteriol. 1956 Sep;72(3):401–405. doi: 10.1128/jb.72.3.401-405.1956. [DOI] [PMC free article] [PubMed] [Google Scholar]
  92. GOLDMAN D. S. Enzyme systems in the mycobacteria. VI. Further studies on the pyruvic dehydrogenase system. Biochim Biophys Acta. 1959 Mar;32(1):80–95. doi: 10.1016/0006-3002(59)90555-4. [DOI] [PubMed] [Google Scholar]
  93. GOLDMAN D. S. Enzyme systems in the mycobacteria. VII. Purification, properties and mechanism of action of the alanine dehydrogenase. Biochim Biophys Acta. 1959 Aug;34:527–539. doi: 10.1016/0006-3002(59)90305-1. [DOI] [PubMed] [Google Scholar]
  94. GOLDMAN D. S., GELBAD A. Enzyme systems in the mycobacteria. VII. The fatty acid oxidizing system. Arch Biochem Biophys. 1959 Aug;83:360–370. doi: 10.1016/0003-9861(59)90044-x. [DOI] [PubMed] [Google Scholar]
  95. GOLDMAN D. S., LORNITZO F. A. Enzyme systems in the mycobacteria. XII. The inhibition of the transglycosidase-catalyzed formation of trehalose 6-phosphate. J Biol Chem. 1962 Nov;237:3332–3338. [PubMed] [Google Scholar]
  96. GOLDMAN D. S., WAGNER M. J. Enzyme systems in the mycobacteria. XIII. Glycine dehydrogenase and the glyoxylic acid cycle. Biochim Biophys Acta. 1962 Dec 4;65:297–306. doi: 10.1016/0006-3002(62)91048-x. [DOI] [PubMed] [Google Scholar]
  97. GOLDMAN D. S., WAGNER M. J., ODA T., SHUG A. L. OXIDATION OF REDUCED NICOTINAMIDE-ADENINE DINUCLEOTIDE BY SUBCELLULAR PARTICLES FROM MYCOBACTERIUM TUBERCULOSIS. Biochim Biophys Acta. 1963 Jul 9;73:367–379. doi: 10.1016/0006-3002(63)90438-4. [DOI] [PubMed] [Google Scholar]
  98. GOPINATHAN K. P., SIRSI M., RAMAKRISHNAN T. Nicotin-amide-adenine nucleotides of Mycobacterium tuberculosis H37Rv. Biochem J. 1963 May;87:444–448. doi: 10.1042/bj0870444. [DOI] [PMC free article] [PubMed] [Google Scholar]
  99. GOPINATHAN K. P., SIRSI M., VAIDYANATHAN C. S. NICOTINAMIDE-ADENINE DINUCLEOTIDE-GLYCOHYDROLASE ACTIVITY IN EXPERIMENTAL TUBERCULOSIS. Biochem J. 1965 Feb;94:446–451. doi: 10.1042/bj0940446. [DOI] [PMC free article] [PubMed] [Google Scholar]
  100. GROSSOWICZ N., HALPERN Y. S. Enzymatic transfer and hydrolysis involving glutamine and asparagine. J Biol Chem. 1957 Oct;228(2):643–653. [PubMed] [Google Scholar]
  101. GROSSOWICZ N., HALPERN Y. S. Inhibition of nicotinamidase activity in cell-free extracts of Mycobacterium phlei by 3-acetylpyridine. Biochim Biophys Acta. 1956 Jun;20(3):576–577. doi: 10.1016/0006-3002(56)90365-1. [DOI] [PubMed] [Google Scholar]
  102. Gale G. R. THE OXIDATION OF BENZOIC ACID BY MYCOBACTERIA I. : Metabolic Pathways in Mycobacterium tuberculosis, Mycobacterium butyricum, and Mycobacterium phlei. J Bacteriol. 1952 Feb;63(2):273–278. doi: 10.1128/jb.63.2.273-278.1952. [DOI] [PMC free article] [PubMed] [Google Scholar]
  103. Gasior E. Enzymic activation of D-glutamic acid and D-alanine in Mycobacterium phlei. Acta Microbiol Pol. 1966;15(1):3–11. [PubMed] [Google Scholar]
  104. Gastambide-Odier M., Sarda P., Lederer E. Biosynthèse des aglycones des mycosides A et B. Bull Soc Chim Biol (Paris) 1967 Jul 27;49(7):849–864. [PubMed] [Google Scholar]
  105. Gelbart S. M., Juhasz S. E. Genetic transfer in Mycobacterium phlei. J Gen Microbiol. 1970 Dec;64(2):253–254. doi: 10.1099/00221287-64-2-253. [DOI] [PubMed] [Google Scholar]
  106. Gelbart S. M., Juhasz S. E. Mycobacterium sp. strain 80: Mycobacterium phlei or Mycobacterium smegmatis? J Gen Microbiol. 1969 Nov;59(1):141–143. doi: 10.1099/00221287-59-1-141. [DOI] [PubMed] [Google Scholar]
  107. Goldman D. S. Subcellular localization of individual mannose-containing phospholipids in Mycobacterium tuberculosis. Am Rev Respir Dis. 1970 Oct;102(4):543–555. doi: 10.1164/arrd.1970.102.4.543. [DOI] [PubMed] [Google Scholar]
  108. Gopinathan K. P., Ramakrishnan T., Vaidyanathan C. S. Purification and properties of an inhibitor for nicotinamide-adenine dinucleotidase from Mycobacterium tuberculosis H-37-Rv. Arch Biochem Biophys. 1966 Feb;113(2):376–382. doi: 10.1016/0003-9861(66)90201-3. [DOI] [PubMed] [Google Scholar]
  109. Gopinathan K. P., Sirsi M., Vaidyanathan C. S. Nicotinamide-adenine dinucleotide glycohydrolase of Mycobacterium tuberculosis H37Rv. Biochem J. 1964 May;91(2):277–282. doi: 10.1042/bj0910277. [DOI] [PMC free article] [PubMed] [Google Scholar]
  110. Goren M. B., Brokl O., Das B. C., Lederer E. Sulfolipid I of Mycobacterium tuberculosis, strain H37RV. Nature of the acyl substituents. Biochemistry. 1971 Jan 5;10(1):72–81. doi: 10.1021/bi00777a012. [DOI] [PubMed] [Google Scholar]
  111. Gross D., Banditt P., Zureck A., Schütte H. R. Chinolinsäure als Zwischenstufe in der Nicotinsäure-Biosynthese bei Mycobacterium bovis Stamm BCG. Z Naturforsch B. 1968 Mar;23(3):390–390. [PubMed] [Google Scholar]
  112. Gross D., Feige A., Stecher R., Zureck A., Schütte H. R. Untersuchungen zur Biosynthese der Nicotinsäure bei Mycobacterium tuberculosis. Z Naturforsch B. 1965 Nov;20(11):1116–1118. [PubMed] [Google Scholar]
  113. Gross W. M., Wayne L. G. Nucleic acid homology in the genus Mycobacterium. J Bacteriol. 1970 Nov;104(2):630–634. doi: 10.1128/jb.104.2.630-634.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  114. Gutnick D. L., Brodie A. F. Phosphate-dependent incorporation of tritium into a naphthoquinone during oxidative phosphorylation. J Biol Chem. 1965 Sep;240(9):3698–3699. [PubMed] [Google Scholar]
  115. Guérin M., Azerad R., Lederer E. Métabolisme des acides benzoique, phénylacétique et phénylbutyrique par des cellules entières et des extraits acellulaires de Mycobacterium phlei. Bull Soc Chim Biol (Paris) 1968 Mar 2;50(1):187–193. [PubMed] [Google Scholar]
  116. Guérin M., Azerad R., Lederer E. Sur l'origine biogénétique du méthyle en position 2 de la vitamine K2 de Mycobacterium phlei. Bull Soc Chim Biol (Paris) 1965;47(11):2105–2114. [PubMed] [Google Scholar]
  117. Guérin M., Leduc M. M., Azerad R. G. Biosynthèse du noyau naphtoquinonique des ménaquinones bactériennes. Eur J Biochem. 1970 Sep;15(3):421–427. doi: 10.1111/j.1432-1033.1970.tb01024.x. [DOI] [PubMed] [Google Scholar]
  118. HALPERN Y. S., GROSSOWICZ N. Hydrolysis of amides by extracts from Mycobacteria. Biochem J. 1957 Apr;65(4):716–720. doi: 10.1042/bj0650716. [DOI] [PMC free article] [PubMed] [Google Scholar]
  119. HEDGECOCK L. W. Antagonism of methionine in aminosalicylate-inhibition of Mycobacterium tuberculosis. J Bacteriol. 1958 Apr;75(4):417–421. doi: 10.1128/jb.75.4.417-421.1958. [DOI] [PMC free article] [PubMed] [Google Scholar]
  120. HEDGECOCK L. W. Antagonism of the inhibitory action of aminosalicylic acid on Mycobacterium tuberculosis by methionine, biotin and certain fatty acids, amino acids, and purines. J Bacteriol. 1956 Dec;72(6):839–846. doi: 10.1128/jb.72.6.839-846.1956. [DOI] [PMC free article] [PubMed] [Google Scholar]
  121. HEDGECOCK L. W. COMPARATIVE STUDY OF THE MODE OF ACTION OF PARAMINOSALICYLIC ACID ON MYCOBACTERIUM KANSASII AND MYCOBACTERIUM TUBERCULOSIS. Am Rev Respir Dis. 1965 May;91:719–727. doi: 10.1164/arrd.1965.91.5.719. [DOI] [PubMed] [Google Scholar]
  122. HEDGECOCK L. W., COSTELLO R. L. Utilization of nitrate by pathogenic and saprophytic mycobacteria. J Bacteriol. 1962 Aug;84:195–205. doi: 10.1128/jb.84.2.195-205.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  123. HEDGECOCK L. W. Mechanisms involved in the resistance of Mycobacterium tuberculosis to para-aminosalicylic acid. J Bacteriol. 1958 Mar;75(3):345–350. doi: 10.1128/jb.75.3.345-350.1958. [DOI] [PMC free article] [PubMed] [Google Scholar]
  124. HEINEN W., KUSUNOSE M., KUSUNOSE E., GOLDMAN D. S., WAGNER M. J. PROPERTIES AND ORIGIN OF DPNH DIAPHORASES FROM MYCOBACTERIUM TUBERCULOSIS. Arch Biochem Biophys. 1964 Mar;104:448–457. doi: 10.1016/0003-9861(64)90488-6. [DOI] [PubMed] [Google Scholar]
  125. HIEROWSKI M., WESTFAL I. AMINO ACIDS ACTIVATION IN TUBERCULOSIS BACILLI OF VARIOUS ANTIBACILLAR DRUGS SENSIVITY. Bull Soc Amis Sci (Med) (Poznan) 1963;12:17–23. [PubMed] [Google Scholar]
  126. HIEROWSKI M., WESTFAL I. Activation of amino acids and the influence of streptomycin on this process in Mycobacterium tuberculosis H37 Rv. Acta Microbiol Pol. 1963;12:125–130. [PubMed] [Google Scholar]
  127. HUNTER G. J. The oxidation of glycerol by Mycobacteria. Biochem J. 1953 Sep;55(2):320–328. doi: 10.1042/bj0550320. [DOI] [PMC free article] [PubMed] [Google Scholar]
  128. Harris A. B. Effect of iron deficiency on nucleotide levels in Mycobacterium smegmatis. Biochim Biophys Acta. 1969 Oct 22;190(2):554–556. doi: 10.1016/0005-2787(69)90107-5. [DOI] [PubMed] [Google Scholar]
  129. Harris A. B. Inhibition of growth and nucleic acid synthesis in iron-deficient Mycobacterium smegmatis. J Gen Microbiol. 1967 Apr;47(1):111–119. doi: 10.1099/00221287-47-1-111. [DOI] [PubMed] [Google Scholar]
  130. Harris A. B. Inhibition of growth and nucleic acid synthesis in zinc-deficient Mycobacterium smegmatis. J Gen Microbiol. 1969 Apr;56(1):27–33. doi: 10.1099/00221287-56-1-27. [DOI] [PubMed] [Google Scholar]
  131. Hey-Ferguson A., Elbein A. D. Purification of a D-mannose isomerase from Mycobacterium smegmatis. J Bacteriol. 1970 Mar;101(3):777–780. doi: 10.1128/jb.101.3.777-780.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  132. Higashi T., Bogin E., Brodie A. F. Oxidative phosphorylation in fractionated bacterial systems. XLII. The effect of coupling factors on urea-treated particles from M. phlei. Arch Biochem Biophys. 1970 Feb;136(2):331–336. doi: 10.1016/0003-9861(70)90203-1. [DOI] [PubMed] [Google Scholar]
  133. Higashi T., Bogin E., Brodie A. F. Separation of a factor indispensable for coupled phosphorylation from the particulate fraction of Mycobacterium phlei. J Biol Chem. 1969 Jan 25;244(2):500–502. [PubMed] [Google Scholar]
  134. Hill D. L., Ballou C. E. Biosynthesis of mannophospholipids by Mycobacterium phlei. J Biol Chem. 1966 Feb 25;241(4):895–902. [PubMed] [Google Scholar]
  135. Hobby G. L. A look at the atypicals. Am Rev Respir Dis. 1967 Sep;96(3):357–360. doi: 10.1164/arrd.1967.96.3.357. [DOI] [PubMed] [Google Scholar]
  136. Horvath I., Szentirmai A., Zsadanyi J. Induced phenotypic resistance to valine in Mycobacterium pellegrino. J Bacteriol. 1967 Oct;94(4):850–854. doi: 10.1128/jb.94.4.850-854.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  137. Hudson A. T., Bentley R. Impurity in a common growth medium component: presence of an isoflavonoid in samples of L-asparagine. J Bacteriol. 1970 Oct;104(1):599–600. doi: 10.1128/jb.104.1.599-600.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  138. IPATA P. L., CATTANEO C. [Polynucleotide phosphorylases of mycobacteria. II. Partial purification of the enzyme]. Ann Ist Carlo Forlanini. 1960;20:338–346. [PubMed] [Google Scholar]
  139. Imshenetskii A. A., Efimochkina E. F., Zanin V. A., Nikitin L. E. Razlozhenie kholesterina mikobakteriiami. Mikrobiologiia. 1968 Jan-Feb;37(1):31–37. [PubMed] [Google Scholar]
  140. Imshenetskii A. A., Mavrina L. A. Razlozhenie kholesterina mikrobakteriiami. Mikrobiologiia. 1968 Jul-Aug;37(4):620–627. [PubMed] [Google Scholar]
  141. JACOBS N. J., VANDEMARK P. J. Comparison of the mechanism of glycerol oxidation in aerobically and anaerobically grown Streptococcus faecalis. J Bacteriol. 1960 Apr;79:532–538. doi: 10.1128/jb.79.4.532-538.1960. [DOI] [PMC free article] [PubMed] [Google Scholar]
  142. Jaenicke L., Molzberger C., Schlie I., Tschesche R., Brandau K., Otto A. Neopterin und Neopterin-3'-phosphat als Vorläufer der Folsäure bei Mycobacterium smegmatis. Z Naturforsch B. 1969 May;24(5):569–574. [PubMed] [Google Scholar]
  143. Jayaram H. N., Ramakrishnan R., Vaidyanathan C. S. L-asparaginases from Mycobacterium tuberculosis strains H37Rv and H37Ra. Arch Biochem Biophys. 1968 Jul;126(1):165–174. doi: 10.1016/0003-9861(68)90570-5. [DOI] [PubMed] [Google Scholar]
  144. Juhasz S. E., Bönicke R. Reciprocal genetic changes in mycobacterial host-virus systems: effect of lysogeny on the phage. Nature. 1966 Jun 11;210(5041):1185–1186. doi: 10.1038/2101185a0. [DOI] [PubMed] [Google Scholar]
  145. Juhasz S. E., Gelbart S., Harize M. Phage-induced alteration of enzymic activity in lysogenic Mycobacterium smegmatis strains. J Gen Microbiol. 1969 May;56(2):251–255. doi: 10.1099/00221287-56-2-251. [DOI] [PubMed] [Google Scholar]
  146. Juhasz S. E. Reciprocal in toto conversion of Mycobacterium phlei--Mycobacterium smegmatis by mediation of an intermediate hybrid genome: B2h. Nature. 1967 Apr 29;214(5087):518–520. doi: 10.1038/214518a0. [DOI] [PubMed] [Google Scholar]
  147. KASHKET E. R., BRODIE A. F. OXIDATIVE PHOSPHORYLATION IN FRACTIONATED BACTERIAL SYSTEMS. VIII. ROLE OF PARTICULATE AND SOLUBLE FRACTIONS FROM ESCHERICHIA COLI. Biochim Biophys Acta. 1963 Oct 8;78:52–65. doi: 10.1016/0006-3002(63)91608-1. [DOI] [PubMed] [Google Scholar]
  148. KATZ J., WOOD H. G. The use of C14O2 yields from glucose-1- and -6-C14 for the evaluation of the pathways of glucose metabolism. J Biol Chem. 1963 Feb;238:517–523. [PubMed] [Google Scholar]
  149. KERN M., NATALE R. A diphosphopyridine nucleotidase and its protein inhibitor from Mycobacterium butyricum. J Biol Chem. 1958 Mar;231(1):41–51. [PubMed] [Google Scholar]
  150. KIMURA T., TOBARI J. PARTICIPATION OF FLAVIN-ADENINE DINUCLEOTIDE IN THE ACTIVITY OF MALATE DEHYDROGENASE FROM MYCOBACTERIUM AVIUM. Biochim Biophys Acta. 1963 Jul 9;73:399–405. doi: 10.1016/0006-3002(63)90441-4. [DOI] [PubMed] [Google Scholar]
  151. KIRCHHEIMER F., WHITTAKER C. K. Asparaginase of Mycobacteria. Am Rev Tuberc. 1954 Nov;70(5):920–921. doi: 10.1164/art.1954.70.5.920. [DOI] [PubMed] [Google Scholar]
  152. KONNO K., KURZMANN R., BIRD K. T., SBARRA A. Differentiation of human tubercle bacilli from atypical acid-fast bacilli. I. Niacin production of human tubercle bacilli and atypical acid-fast bacilli. Am Rev Tuberc. 1958 Apr;77(4):669–674. doi: 10.1164/artpd.1958.77.4.669. [DOI] [PubMed] [Google Scholar]
  153. KONNO K., KURZMANN R., BIRD K. T. The metabolism of nicotinic acid in Mycobacteria: a method for differentiating tubercle bacilli of human origin from other Mycobacteria. Am Rev Tuberc. 1957 Apr;75(4):529–537. doi: 10.1164/artpd.1957.75.4.529. [DOI] [PubMed] [Google Scholar]
  154. KONNO K., NAGAYAMA H., OKA S. Nicotinamidase in Mycobacteria: a method for distinguishing bovine type tubercle bacilli from other Mycobacteria. Nature. 1959 Nov 28;184(Suppl 22):1743–1744. doi: 10.1038/1841743b0. [DOI] [PubMed] [Google Scholar]
  155. KONNO K. New chemical method to differentiate human-type tubercle bacilli from other mycobacteria. Science. 1956 Nov 16;124(3229):985–985. doi: 10.1126/science.124.3229.985. [DOI] [PubMed] [Google Scholar]
  156. KONNO K., OIZUMI K., SHIMIZU Y., OKA S. NIACIN METABOLISM IN MYCOBACTERIA. QUINOLINIC ACID AS A PRECURSOR OF NIACIN RIBONUCLEOTIDE AND THE DIFFERENCES IN NIACIN BIOSYNTHESIS AMONG VARIOUS SPECIES OF MYCOBACTERIA. Am Rev Respir Dis. 1965 Mar;91:383–390. doi: 10.1164/arrd.1965.91.3.383. [DOI] [PubMed] [Google Scholar]
  157. KUCK N. A., PEETS E. A., FORBES M. Mode of action of ethambutol on Mycobacterium tuberculosis, strain H37R V. Am Rev Respir Dis. 1963 Jun;87:905–906. doi: 10.1164/arrd.1963.87.6.905. [DOI] [PubMed] [Google Scholar]
  158. KUSAKA T., SATO R., SHOJI K. COMPARISON OF CYTOCHROMES IN MYCOBACTERIA GROWN IN VITRO AND IN VIVO. J Bacteriol. 1964 Jun;87:1383–1388. doi: 10.1128/jb.87.6.1383-1388.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
  159. Kanemasa Y., Goldman D. S. Direct incorporation of octanoate into long-chain fatty acids by soluble enzymes of Mycobacterium tuberculosis. Biochim Biophys Acta. 1965 Jun 1;98(3):476–485. doi: 10.1016/0005-2760(65)90144-x. [DOI] [PubMed] [Google Scholar]
  160. Kates M. Biosynthesis of lipids in microorganisms. Annu Rev Microbiol. 1966;20:13–44. doi: 10.1146/annurev.mi.20.100166.000305. [DOI] [PubMed] [Google Scholar]
  161. Kearney E. B., Goldman D. S. Further studies on the NADH oxidase of the cytoplasmic membrane of Mycobacterium tuberculosis. Biochim Biophys Acta. 1970 Mar 3;197(2):197–205. doi: 10.1016/0005-2728(70)90031-9. [DOI] [PubMed] [Google Scholar]
  162. Klemperer F., Scott C., Bagchi S. Uric acid oxidation by mycobacteria. Am Rev Respir Dis. 1967 May;95(5):833–837. doi: 10.1164/arrd.1967.95.5.833. [DOI] [PubMed] [Google Scholar]
  163. Konícková-Radochová M., Konícek J., Málek I. The study of mutagnesis in Mycobacterium phlei. Folia Microbiol (Praha) 1970;15(2):88–102. doi: 10.1007/BF02880090. [DOI] [PubMed] [Google Scholar]
  164. Konícková-Radochová M., Málek I. The induction of auxotrophic mutants of Mycobacterium phlei PA by ultraviolet radiation. Folia Microbiol (Praha) 1969;14(3):251–253. doi: 10.1007/BF02872786. [DOI] [PubMed] [Google Scholar]
  165. Konícková-Radochová M., Málek I. The mutagenic effect of nitrosoguanidine on Mycobacterium phlei PA. Folia Microbiol (Praha) 1969;14(3):201–207. doi: 10.1007/BF02872779. [DOI] [PubMed] [Google Scholar]
  166. Konícková-Radochová M., Málek I. The use of ethyl methanesulfonate for the induction of mutants in Mycobacterium phlei PA. Folia Microbiol (Praha) 1969;14(5):470–474. doi: 10.1007/BF02872793. [DOI] [PubMed] [Google Scholar]
  167. Kurup C. K., Brodie A. F. Oxidative phosphorylation in fractionated bacterial systems. XXIX. The involvement of nonheme iron in the respiratory pathways of Mycobacterium phlei. J Biol Chem. 1967 Dec 25;242(24):5830–5837. [PubMed] [Google Scholar]
  168. Kurup C. K., Brodie A. F. Oxidative phosphorylation in fractionated bacterial systems. XXV. Studies on the involvement of metal in Mycobacterium phlei. J Biol Chem. 1967 Jan 25;242(2):197–203. [PubMed] [Google Scholar]
  169. LENNARZ W. J., SCHEUERBRANDT G., BLOCH K. The biosynthesis of oleic and 10-methylstearic acids in Mycobacterium phlei. J Biol Chem. 1962 Mar;237:664–671. [PubMed] [Google Scholar]
  170. LINNANE A. W., STILL J. L. The intracellular distribution of enzymes in Serratia marcescens. Biochim Biophys Acta. 1955 Feb;16(2):305–306. doi: 10.1016/0006-3002(55)90230-4. [DOI] [PubMed] [Google Scholar]
  171. LORNITZO F. A., GOLDMAN D. S. PURIFICATION AND PROPERTIES OF THE TRANSGLUCOSYLASE INHIBITOR OF MYCOBACTERIUM TUBERCULOSIS. J Biol Chem. 1964 Sep;239:2730–2734. [PubMed] [Google Scholar]
  172. LORNITZO F. A., GOLDMAN D. S. REVERSIBLE EFFECT OF BICARBONATE ON THE INHIBITION OF MYCOBACTERIAL AND YEAST TRANSGLUCOSYLASES BY MYCORIBNIN. J Bacteriol. 1965 Apr;89:1086–1091. doi: 10.1128/jb.89.4.1086-1091.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  173. LUKINS H. B., FOSTER J. W. METHYL KETONE METABOLISM IN HYDROCARBON-UTILIZING MYCOBACTERIA. J Bacteriol. 1963 May;85:1074–1087. doi: 10.1128/jb.85.5.1074-1087.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  174. Le Cam M., Madec Y., Bernard S. Le métabolisme intermédiaire des mycobactéries. I. Comparaison de deux "instantanés métaboliques" réalisés respectivement sur Mycobacterium phlei et Mycobacterium tuberculosis, shouche H37RA. Ann Inst Pasteur (Paris) 1970 Feb;118(2):158–167. [PubMed] [Google Scholar]
  175. Lederer E. The origin and function of some methyl groups in branched-chain fatty acids, plant sterols and quinones. Biochem J. 1964 Dec;93(3):449–468. doi: 10.1042/bj0930449. [DOI] [PMC free article] [PubMed] [Google Scholar]
  176. Leduc M. M., Dansette P. M., Azerad R. G. Incorporation de l'acide shikimique dans le noyau des naphtoquinones d'origine bactérienne et végétale. Eur J Biochem. 1970 Sep;15(3):428–435. doi: 10.1111/j.1432-1033.1970.tb01025.x. [DOI] [PubMed] [Google Scholar]
  177. Lenfant M., Hunt P. F., Thérier L. M., Pinte F., Lederer E. N-méthylations de l'aniline par Mycobacterium tuberculosis. Biochim Biophys Acta. 1970 Jan 27;201(1):82–90. doi: 10.1016/0304-4165(70)90013-9. [DOI] [PubMed] [Google Scholar]
  178. Lennarz W. J. Lipid metabolism in the bacteria. Adv Lipid Res. 1966;4:175–225. doi: 10.1016/b978-1-4831-9940-5.50012-0. [DOI] [PubMed] [Google Scholar]
  179. Lieb M. Studies of heat-inducible lambda phage. IV. Conversion of host phenotype by a defective prophage. Virology. 1967 Apr;31(4):643–656. doi: 10.1016/0042-6822(67)90193-6. [DOI] [PubMed] [Google Scholar]
  180. Lornitzo F. A., Goldman D. S. Intracellular localization of a 6-O-methyl-D-glucose containing soluble polysaccharide from Mycobacterium tuberculosis. Biochim Biophys Acta. 1968 Jun 24;158(3):329–335. doi: 10.1016/0304-4165(68)90286-9. [DOI] [PubMed] [Google Scholar]
  181. Lynch J. L., Neuhaus F. C. On the mechanism of action of the antibiotic O-carbamyld-serine in Streptococcus faecalis. J Bacteriol. 1966 Jan;91(1):449–460. doi: 10.1128/jb.91.1.449-460.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  182. Lyon R. H., Hall W. H., Costas-Martinez C. Upte and distribution of labeled carbon from 14C-asparagine by Mycobacterium tuberculosis. J Bacteriol. 1969 Apr;98(1):317–318. doi: 10.1128/jb.98.1.317-318.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  183. Lyon R. H., Hall W. H., Costas-Martinez C. Utilization of Amino Acids During Growth of Mycobacterium tuberculosis in Rotary Cultures. Infect Immun. 1970 Jun;1(6):513–520. doi: 10.1128/iai.1.6.513-520.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  184. Lyon R. H., Rogers P., Hall W. H., Lichtein H. C. Inducible glutamate transport in Mycobacteria and its relation to glutamate oxidation. J Bacteriol. 1967 Jul;94(1):92–100. doi: 10.1128/jb.94.1.92-100.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  185. MASTALERZ P., WIECZOREK Z., KOCHMAN M. UTILIZATION OF CARBON-BOUND PHOSPHORUS BY MICROORGANISMS. Acta Biochim Pol. 1965;12:151–156. [PubMed] [Google Scholar]
  186. MIDDLEBROOK G. Isoniazid-resistance and catalase activity of tubercle bacilli; a preliminary report. Am Rev Tuberc. 1954 Mar;69(3):471–472. doi: 10.1164/art.1954.69.3.471. [DOI] [PubMed] [Google Scholar]
  187. MORA J., BOJALIL L. F. ANTAGONISM OF THE D-ALANINE REVERSAL OF D-CYCLOSERINE ACTION BY L-ALANINE IN MYCOBACTERIUM ACAPULCENSIS. Proc Soc Exp Biol Med. 1965 May;119:49–52. doi: 10.3181/00379727-119-30096. [DOI] [PubMed] [Google Scholar]
  188. MOTHES E. ZINKMANGEL UND NIKOTINSAEURE-BIOSYNTHESE BEI MYCOBACTERIUM TUBERCULOSIS (STAMM BCG) Z Allg Mikrobiol. 1964;4:42–58. doi: 10.1002/jobm.3630040105. [DOI] [PubMed] [Google Scholar]
  189. MURTHY P. S., BRODIE A. F. OXIDATIVE PHOSPHORYLATION IN FRACTIONATED BACTERIAL SYSTEMS. XV. REDUCED NICOTINAMIDE ADENINE DINUCLEOTIDE PHOSPHATE-LINKED PHOSPHORYLATION. J Biol Chem. 1964 Dec;239:4292–4297. [PubMed] [Google Scholar]
  190. MURTHY P. S., SIRSI M., RAMAKRISHNAN T. Tricarboxylic acid cycle and related enzymes in cell-free extracts of Mycobacterium tuberculosis H37Rv. Biochem J. 1962 Aug;84:263–269. doi: 10.1042/bj0840263. [DOI] [PMC free article] [PubMed] [Google Scholar]
  191. Majerus P. W., Vagelos P. R. Fatty acid biosynthesis and the role of the acyl carrier protein. Adv Lipid Res. 1967;5:1–33. [PubMed] [Google Scholar]
  192. Malathi V. G., Ramakrishnan T. Biosynthesis of nucleic acid purines in Mycobacterium tuberculosis H37Rv. Biochem J. 1966 Feb;98(2):594–597. doi: 10.1042/bj0980594. [DOI] [PMC free article] [PubMed] [Google Scholar]
  193. Malathi V. G., Sirsi M., Ramakrishnan T., Maller R. K. Polynucleotide phosphorylase of Mycobacterium tuberculosis H37Rv. Indian J Biochem. 1964 Jun;1(2):71–76. [PubMed] [Google Scholar]
  194. Matsumura S., Brindley D. N., Bloch K. Acyl carrier protein from Mycobacterium phlei. Biochem Biophys Res Commun. 1970 Feb 6;38(3):369–377. doi: 10.1016/0006-291x(70)90723-0. [DOI] [PubMed] [Google Scholar]
  195. Matsumura S. Conformation of acyl carrier protein from Mycobacterium phlei. Biochem Biophys Res Commun. 1970 Jan 23;38(2):238–243. doi: 10.1016/0006-291x(70)90702-3. [DOI] [PubMed] [Google Scholar]
  196. Michalska K., Lorenc R. The distribution on MAK columns of nucleic acids isolated from different strains of mycobacteria. Acta Microbiol Pol A. 1970;2(1):31–38. [PubMed] [Google Scholar]
  197. Mil'ko E. S., Ivanova N. P. Vliianie sostava sredy i uslovii kul'tivirovaniia na sintez flavinov Mycobacterium lacticolum shtamm 104. Mikrobiologiia. 1970 Jan-Feb;39(1):71–76. [PubMed] [Google Scholar]
  198. Mison P., Trnka L., Mohelská H., Adámek L. Isolation problems and structural organization of membrane units in Mycobacterium sp. smegmatis. Arch Mikrobiol. 1969;69(3):216–226. doi: 10.1007/BF00408974. [DOI] [PubMed] [Google Scholar]
  199. Mizuguchi Y., Tokunaga T. Method for isolation of deoxyribonucleic acid from mycobacteria. J Bacteriol. 1970 Nov;104(2):1020–1021. doi: 10.1128/jb.104.2.1020-1021.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  200. Mizuguchi Y., Tokunaga T. Recombination between Mycobacterium smegmatis strains Jucho and Lacticola. Jpn J Microbiol. 1971 Jul;15(4):359–366. doi: 10.1111/j.1348-0421.1971.tb00592.x. [DOI] [PubMed] [Google Scholar]
  201. Murthy P. S., Bogin E., Higashi T., Brodie A. F. Properties of the soluble malate-vitamin K reductase and associated phosphorylation. J Biol Chem. 1969 Jun 25;244(12):3117–3124. [PubMed] [Google Scholar]
  202. NAGAYAMA H., KONNO K., OKA S. Formamidase in Mycobacteria and its use in differentiating saprophytic Myco-bacteria from other Mycobacteria. Nature. 1961 Jun 24;190:1219–1220. doi: 10.1038/1901219a0. [DOI] [PubMed] [Google Scholar]
  203. Nielsen M. H., Bennedsen J. Localization of acid phosphatase activity in mycobacterial cells with the electron microscope. Acta Pathol Microbiol Scand. 1968;74(1):51–60. doi: 10.1111/j.1699-0463.1968.tb03454.x. [DOI] [PubMed] [Google Scholar]
  204. Nurti C. R., Brodie A. F. New light-sensitive cofactor required for oxidation of succinate by Mycobacterium phlei. Science. 1969 Apr 18;164(3877):302–304. doi: 10.1126/science.164.3877.302. [DOI] [PubMed] [Google Scholar]
  205. O'Barr T. P., Rothlauf M. V. Metabolism of D-glucose by Mycobacterium tuberculosis. Am Rev Respir Dis. 1970 Jun;101(6):964–966. doi: 10.1164/arrd.1970.101.6.964. [DOI] [PubMed] [Google Scholar]
  206. O'Barr T. P., Smith M. A. Comparative NADH-diaphorase content of isoniazid-resistant and isoniazid-susceptible Mycobacterium tuberculosis. Am Rev Respir Dis. 1969 Jan;99(1):116–118. doi: 10.1164/arrd.1969.99.1.116. [DOI] [PubMed] [Google Scholar]
  207. ODAKA T., WATANABE T. Transformation reaction of pneumococci in the absence of serum factor. Nature. 1959 Aug 8;184(Suppl 7):471–472. doi: 10.1038/184471b0. [DOI] [PubMed] [Google Scholar]
  208. ODA T., GOLDMAN D. S. Terminal electron-transport mechanisms in the tubercle bacillus. A reduced diphosphopyridine nucleotide-nitro-blue tetrazolium diaphorase. Biochim Biophys Acta. 1962 Jun 4;59:604–613. doi: 10.1016/0006-3002(62)90640-6. [DOI] [PubMed] [Google Scholar]
  209. OTT J. L. Asparaginase from mycobacteria. J Bacteriol. 1960 Sep;80:355–361. doi: 10.1128/jb.80.3.355-361.1960. [DOI] [PMC free article] [PubMed] [Google Scholar]
  210. Odrzywolska A. Synthesis of nucleic acids in normal cells of Mycobacterium sp. 607 and in cells infected with Mycophage D 29. Bull Acad Pol Sci Biol. 1966;14(11):741–745. [PubMed] [Google Scholar]
  211. Ogasawara N., Suzuki N., Yoshino M., Kotake Y. Complex formation between NADase and protein inhibitor from Mycobacterium butyricum. FEBS Lett. 1970 Feb 25;6(4):337–338. doi: 10.1016/0014-5793(70)80092-8. [DOI] [PubMed] [Google Scholar]
  212. Ono Y., Nojima S. Phospholipase A of Mycobacterium phlei: a regulatory membrane enzyme with ferric iron as effector. J Biochem. 1969 Jun;65(6):979–981. doi: 10.1093/oxfordjournals.jbchem.a129106. [DOI] [PubMed] [Google Scholar]
  213. Ono Y., Nojima S. Phospholipases of the membrane fraction of Mycobacterium phlei. Biochim Biophys Acta. 1969 Jan 21;176(1):111–119. [PubMed] [Google Scholar]
  214. Orme T. W., Revsin B., Brodie A. F. Phosphorylation linked to ascorbate oxidation in Mycobacterium phlei. Arch Biochem Biophys. 1969 Oct;134(1):172–179. doi: 10.1016/0003-9861(69)90263-x. [DOI] [PubMed] [Google Scholar]
  215. PARVIN R., PANDE S. V., VENKITASUBRAMANIAN T. A. PURIFICATION AND PROPERTIES OF MALATE DEHYDROGENASE (DECARBOXYLATING) FROM MYCOBACTERIUM 607. Biochim Biophys Acta. 1964 Nov 22;92:260–277. doi: 10.1016/0926-6569(64)90184-1. [DOI] [PubMed] [Google Scholar]
  216. PATTYN S. R., HERMANS-BOVEROULLE M. T. A RAPID METHOD FOR THE DEMONSTRATION OF ARYLSULFATASE IN MYCOBACTERIA; ITS PRESENCE AMONG MEMBERS OF THE GENUS MYCOBACTERIUM. Am Rev Respir Dis. 1965 Aug;92:297–298. doi: 10.1164/arrd.1965.92.2.297. [DOI] [PubMed] [Google Scholar]
  217. PAWLICKI S. A., HERTZ C. S., GREEN R. A. Urease activity of mycobacteria. Am Rev Respir Dis. 1963 Feb;87:284–285. doi: 10.1164/arrd.1963.87.2.284. [DOI] [PubMed] [Google Scholar]
  218. PIERARD A., GOLDMAN D. S. Enzyme systems in the mycobacteria. 14. Fatty acid synthesis in cell-free extracts of Mycobacterium tuberculosis. Arch Biochem Biophys. 1963 Jan;100:56–65. doi: 10.1016/0003-9861(63)90034-1. [DOI] [PubMed] [Google Scholar]
  219. PINCHOT G. B. Phosphorylation coupled to electron transport in cell-free extracts of Alcaligenes faecalis. J Biol Chem. 1953 Nov;205(1):65–74. [PubMed] [Google Scholar]
  220. PRABHAKARAN K., BRAGANCA B. M. Glutamic acid decarboxylase activity of Mycobacterium leprae and occurrence of gamma-amino butyric acid in skin lesions of leprosy. Nature. 1962 Nov 10;196:589–590. doi: 10.1038/196589a0. [DOI] [PubMed] [Google Scholar]
  221. Pangborn M. C. Biology of the mycobacterioses. Structure of mycobacterial phosphatides. Ann N Y Acad Sci. 1968 Sep 5;154(1):133–139. doi: 10.1111/j.1749-6632.1968.tb16703.x. [DOI] [PubMed] [Google Scholar]
  222. Prabhakaran K., Harris E. B., Kirchheimer W. F. Effect of inhibitors on phenoloxidase of Mycobacterium leprae. J Bacteriol. 1969 Nov;100(2):935–938. doi: 10.1128/jb.100.2.935-938.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  223. Prabhakaran K., Kirchheimer W. F., Harris E. B. Oxidation of phenolic compounds by Mycobacterium leprae and inhibition of phenolase by substrate analogues and copper chelators. J Bacteriol. 1968 Jun;95(6):2051–2053. doi: 10.1128/jb.95.6.2051-2053.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  224. Prabhakaran K., Kirchheimer W. F. Use of 3,4-Dihydroxyphenylalanine Oxidation in the Identification of Mycobacterium leprae. J Bacteriol. 1966 Oct;92(4):1267–1268. doi: 10.1128/jb.92.4.1267-1268.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  225. Prabhakaran K. Phenoloxidase of Mycobacterium leprae. Nature. 1967 Jul 22;215(5099):436–437. doi: 10.1038/215436a0. [DOI] [PubMed] [Google Scholar]
  226. Prabhakaran K. Properties of phenoloxidase in Mycobacterium leprae. Nature. 1968 Jun 8;218(5145):973–974. doi: 10.1038/218973a0. [DOI] [PubMed] [Google Scholar]
  227. RAMAKRISHNAN T., INDIRA M., MALLER R. K. Evaluation of the routes of glucose utilization in virulent and avirulent strains of Mycobacterium tuberculosis. Biochim Biophys Acta. 1962 May 21;59:529–532. doi: 10.1016/0006-3002(62)90223-8. [DOI] [PubMed] [Google Scholar]
  228. RAMAKRISHNAN T., INDIRA M., SIRSI M. A new growth-promoting factor for Mycobacterium tuberculosis. Nature. 1957 Jun 29;179(4574):1356–1357. doi: 10.1038/1791356b0. [DOI] [PubMed] [Google Scholar]
  229. RAMASARMA T., RAMAKRISHNAN T. Incorporation of [2-14C]mevalonic acid and [2-14C]acetic acid into lipids of mycobacteria. Biochem J. 1961 Nov;81:303–308. doi: 10.1042/bj0810303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  230. ROBSON J. M., SULLIVAN F. M. Antituberculosis drugs. Pharmacol Rev. 1963 Jun;15:169–223. [PubMed] [Google Scholar]
  231. ROSSI-FANELLI A., IPATA P. L., FASELLA P. On the distribution and transformation of thiamine and its phosphoric esters in biological material. Biochem Biophys Res Commun. 1961 Jan 25;4:23–27. doi: 10.1016/0006-291x(61)90248-0. [DOI] [PubMed] [Google Scholar]
  232. RUSSELL R. L., JANN G. J., FROMAN S. Lysogeny in the mycobacteria. 1. The establishment of lysogeny. Am Rev Respir Dis. 1960 Sep;82:384–393. doi: 10.1164/arrd.1960.82.3.384. [DOI] [PubMed] [Google Scholar]
  233. Raj C. V., Ramakrishnan T. Transduction in Mycobacterium smegmatis. Nature. 1970 Oct 17;228(5268):280–281. doi: 10.1038/228280b0. [DOI] [PubMed] [Google Scholar]
  234. Ratledge C., Winder F. G. Biosynthesis and utilization of aromatic compounds by Mycobacterium smegmatis with particular reference to the origin of salicylic acid. Biochem J. 1966 Nov;101(2):274–283. doi: 10.1042/bj1010274. [DOI] [PMC free article] [PubMed] [Google Scholar]
  235. Reddy V. V., Jayaram H. N., Sirsi M., Ramakrishnan T. Inhibitory activity of L-asparaginase from Mycobacterium tuberculosis on Yoshida ascites sarcoma in rats. Arch Biochem Biophys. 1969 Jun;132(1):262–267. doi: 10.1016/0003-9861(69)90361-0. [DOI] [PubMed] [Google Scholar]
  236. Reeves H. C., Rabin R., Wegener W. S., Ajl S. J. Fatty acid synthesis and metabolism in microorganisms. Annu Rev Microbiol. 1967;21:225–256. doi: 10.1146/annurev.mi.21.100167.001301. [DOI] [PubMed] [Google Scholar]
  237. Reutgen H., Iwainsky H. Untersuchungen zum endogenen Stoffwechsel von Mykobakterien. I. Zur Trennung phosphorylierter Metabolite der säurelöslichen Fraktion. Z Naturforsch B. 1967 Oct;22(10):1043–1050. [PubMed] [Google Scholar]
  238. Revsin B., Brodie A. F. An effect of inorganic phosphate and AMP at the third phosphorylative site of the respiratory chain of Mycobacterium phlei. Biochem Biophys Res Commun. 1967 Aug 23;28(4):635–640. doi: 10.1016/0006-291x(67)90361-0. [DOI] [PubMed] [Google Scholar]
  239. Revsin B., Brodie A. F. Carbon monoxide-binding pigments of Mycobacterium phlei and Escherichia coli. J Biol Chem. 1969 Jun 10;244(11):3101–3104. [PubMed] [Google Scholar]
  240. Rieber M., Imaeda T., Cesari I. M. Bacitracin action on membranes of mycobacteria. J Gen Microbiol. 1969 Jan;55(1):155–159. doi: 10.1099/00221287-55-1-155. [DOI] [PubMed] [Google Scholar]
  241. Rieber M., Imaeda T. Effect of isoniazid on mycobacterial polyphenylalanine synthesis. Biochim Biophys Acta. 1969 Jul 22;186(1):173–177. doi: 10.1016/0005-2787(69)90500-0. [DOI] [PubMed] [Google Scholar]
  242. SCHEURBRANDT G., BLOCH K. Unsaturated fatty acids in microorganisms. J Biol Chem. 1962 Jul;237:2064–2068. [PubMed] [Google Scholar]
  243. SEGAL W., BLOCH H. Pathogenic and immunogenic differentiation of Mycobacterium tuberculosis grown in vitro and in vivo. Am Rev Tuberc. 1957 Mar;75(3):495–500. doi: 10.1164/artpd.1957.75.3.495. [DOI] [PubMed] [Google Scholar]
  244. SEGEL W. P., GOLDMAN D. S. THE REQUIREMENT FOR A NAPHTHOQUINONE IN THE REDUCED NICOTINAMIDE-ADENINE DINUCLEOTIDE OXIDASE SYSTEM OF MYCOBACTERIUM TUBERCULOSIS. Biochim Biophys Acta. 1963 Jul 9;73:380–390. doi: 10.1016/0006-3002(63)90439-6. [DOI] [PubMed] [Google Scholar]
  245. SLOANE N. H., CRANE C., MAYER R. L. Studies on the metabolism of p-aminobenzoic acid by Mycobacterium smegmatis. J Biol Chem. 1951 Dec;193(2):453–458. [PubMed] [Google Scholar]
  246. SLOANE N. H., SAMUELS M., MAYER R. L. Factors affecting the hydroxylation of aniline by Mycobacterium smegmatis. J Biol Chem. 1954 Feb;206(2):751–755. [PubMed] [Google Scholar]
  247. SLOANE N. H., UNTCH K. G., JOHNSON A. W. METABOLITES OF P-AMINOBENZOIC ACID. III. A METABOLIC PATHWAY OF P-AMINOBENZOIC ACID RESULTING IN THE SEQUENTIAL FORMATION OF P-AMINOBENZYL ALCOHOL AND P-HYDROXYANILINE. Biochim Biophys Acta. 1963 Dec 13;78:588–593. doi: 10.1016/0006-3002(63)91024-2. [DOI] [PubMed] [Google Scholar]
  248. SLOANE N. H., UNTCH K. G. METABOLITES OF RHO-AMINOBENZOIC ACID. IV. STRUCTURE OF METABOLITE I AND ARYL HYDROXYLATION PRIOR HYDROXYMETHYLATION OF THE BENZENE RING. Biochemistry. 1964 Aug;3:1160–1164. doi: 10.1021/bi00896a026. [DOI] [PubMed] [Google Scholar]
  249. SLOANE N. H., UNTCH K. G. Metabolites of p-aminobenzoic acid. II. p-Aminobenzyl alcohol: a metabolite of p-aminobenzoic acid. Biochim Biophys Acta. 1962 May 21;59:511–512. doi: 10.1016/0006-3002(62)90215-9. [DOI] [PubMed] [Google Scholar]
  250. STJERNHOLM R. L., NOBLE R. E., KOCH-WESER D. Formation of methylmalonyl-CoA and succinyl-CoA by extracts of mycobacterium smegmatis. Biochim Biophys Acta. 1962 Oct 8;64:174–177. doi: 10.1016/0006-3002(62)90771-0. [DOI] [PubMed] [Google Scholar]
  251. SUBRAHMANYAM D. STUDIES ON THE METABOLISM OF PHOSPHATIDES OF MYCOBACTERIUM 607. Indian J Biochem. 1965 Mar;2:27–30. [PubMed] [Google Scholar]
  252. SUTTON W. B. Isolation of a new electron transport component with nicotinamide adenine dinucleotide phosphate like activity. Biochem Biophys Res Commun. 1963 Jan 18;10:40–44. doi: 10.1016/0006-291x(63)90264-x. [DOI] [PubMed] [Google Scholar]
  253. SUTTON W. B. Relationship of the hexose monophosphate shunt to the endogenous metabolism of cell-free extracts of Mycobacterium phlei. J Bacteriol. 1963 Feb;85:476–484. doi: 10.1128/jb.85.2.476-484.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  254. SZYMONA M., OSTROWSKI W. INORGANIC POLYPHOSPHATE GLUCOKINASE OF MYCOBACTERIUM PHLEI. Biochim Biophys Acta. 1964 May 4;85:283–295. doi: 10.1016/0926-6569(64)90249-4. [DOI] [PubMed] [Google Scholar]
  255. Saito H., Hosokawa H., Tasaka H. [Heat-stable acid phosphatase of mycobacteria]. Nihon Saikingaku Zasshi. 1967 Sep;22(9):519–521. doi: 10.3412/jsb.22.519. [DOI] [PubMed] [Google Scholar]
  256. Sarma G. R., Chandramouli V., Venkitasubramanian T. A. Occurrence of phosphonolipids in mycobacteria. Biochim Biophys Acta. 1970 Dec 15;218(3):561–563. [PubMed] [Google Scholar]
  257. Schubert K., Kaufmann G., Budzikiewicz H. Cholest-4-en-26-ol-3-on und Cholesta-1,4-dien-26-ol-3-on als Komponenten eines neuen mikrobiell gebildeten Estertyps. Biochim Biophys Acta. 1969 Jan 21;176(1):170–177. [PubMed] [Google Scholar]
  258. Schubert K., Kaufmann G., Hörhold C. Veresterung von Sterinen mit Fettsäuren und mit Bernsteinsäure in Mykobakterien. Biochim Biophys Acta. 1969 Jan 21;176(1):163–169. [PubMed] [Google Scholar]
  259. Snow G. A. Mycobactins: iron-chelating growth factors from mycobacteria. Bacteriol Rev. 1970 Jun;34(2):99–125. doi: 10.1128/br.34.2.99-125.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  260. Snyder C. D., Rapoport H. The role of the quinone in oxidative phosphorylation. Evidence against carbon-ooxygen bond cleavage. Biochemistry. 1968 Jun;7(6):2318–2326. doi: 10.1021/bi00846a038. [DOI] [PubMed] [Google Scholar]
  261. Sriprakash K. S., Ramakrishnan T. Isoniazid & nicotinamide adenine dinucleotide synthesis in Mycobacterium tuberculosis. Indian J Biochem. 1969 Mar;6(1):49–50. [PubMed] [Google Scholar]
  262. Sriprakash K. S., Ramakrishnan T. Isoniazid-resistant mutants of Mycobacterium tuberculosis H37RV: uptake of isoniazid and the properties of NADase inhibitor. J Gen Microbiol. 1970 Jan;60(1):125–132. doi: 10.1099/00221287-60-1-125. [DOI] [PubMed] [Google Scholar]
  263. Sullivan P. A. Crystallization and properties of L-lactate oxidase from Mycobacterium smegmatis. Biochem J. 1968 Nov;110(2):363–371. doi: 10.1042/bj1100363. [DOI] [PMC free article] [PubMed] [Google Scholar]
  264. TARNOK I., CZANIK P. Malachite greenreaducing enzyme in Mycobacteria. Nature. 1959 Feb 21;183(4660):549–550. doi: 10.1038/183549a0. [DOI] [PubMed] [Google Scholar]
  265. TARSHIS M. S. FURTHER INVESTIGATION ON THE ARYLSULFATASE ACTIVITY OF MYCOBACTERIA. I. GROUP DIFFERENTIATION OF STRAINS. Am Rev Respir Dis. 1963 Dec;88:847–851. doi: 10.1164/arrd.1963.88.6.847. [DOI] [PubMed] [Google Scholar]
  266. TARSHIS M. S. FURTHER INVESTIGATION ON THE ARYLSULFATASE ACTIVITY OF MYCOBACTERIA. II. DIFFERENTIATION OF MYCOBACTERIUM AVIUM FROM THE UNCLASSIFIED GROUP III BATTEY BACILLI. Am Rev Respir Dis. 1963 Dec;88:852–853. doi: 10.1164/arrd.1963.88.6.852. [DOI] [PubMed] [Google Scholar]
  267. TARSHIS M. S. FURTHER INVESTIGATION ON THE ARYLSULFATASE ACTIVITY OF MYCOBACTERIA. III. DIFFERENTIATION OF THE RAPIDLY GROWING M. BALNEI, M. FORTUITUM, AND SAPROPHYTIC ACID-FAST BACILLI. Am Rev Respir Dis. 1963 Dec;88:854–856. doi: 10.1164/arrd.1963.88.6.854. [DOI] [PubMed] [Google Scholar]
  268. TERAI T., KAMAHORA T., YAMAMURA Y. Tellurite reductase from Mycobacterium avium. J Bacteriol. 1958 May;75(5):535–539. doi: 10.1128/jb.75.5.535-539.1958. [DOI] [PMC free article] [PubMed] [Google Scholar]
  269. THACORE H., WILLETT H. P. FORMATION OF SPHEROPLASTS OF MYCOBACTERIUM TUBERCULOSIS BY LYSOZYME. Proc Soc Exp Biol Med. 1963 Oct;114:43–47. doi: 10.3181/00379727-114-28580. [DOI] [PubMed] [Google Scholar]
  270. TIRUNARAYANAN M. O., VISCHER W. A., BRUHIN H. Some properties of catechol peroxidase of mycobacteria bearing on isoniazid susceptibility. J Bacteriol. 1960 Oct;80:423–429. doi: 10.1128/jb.80.4.423-429.1960. [DOI] [PMC free article] [PubMed] [Google Scholar]
  271. TIRUNARAYANAN M. O., VISCHER W. A. Relationship of isoniazid to the metabolism of mycobacteria; catalase and peroxidase. Am Rev Tuberc. 1957 Jan;75(1):62–70. doi: 10.1164/artpd.1957.75.1.62. [DOI] [PubMed] [Google Scholar]
  272. TOKUNAGA T., SELLERS M. I. STREPTOMYCIN INDUCTION OF PREMATURE LYSIS OF BACTERIOPHAGE-INFECTED MYCOBACTERIA. J Bacteriol. 1965 Feb;89:537–538. doi: 10.1128/jb.89.2.537-538.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  273. TSUKAMURA M. EFFECT OF RIFAMYCIN SV ON THE INCORPORATION OF 32 P-PHOSPHATE, 35 S-SULFATE AND 14 C-ACETATE IN M. TUBERCULOSIS. Jpn J Tuberc Chest Dis. 1964 Jul;12:10–14. [PubMed] [Google Scholar]
  274. TSUKAMURA M. Effect of ultraviolet radiation on the permeability and protein synthesis of mycobacterium. Jpn J Tuberc. 1961 Dec;9:106–114. [PubMed] [Google Scholar]
  275. TSUKAMURA M. Enzymatic reduction of picric acid by Mycobacteria. Am Rev Respir Dis. 1961 Jul;84:87–89. doi: 10.1164/arrd.1961.84.1.87. [DOI] [PubMed] [Google Scholar]
  276. TSUKAMURA M., TSUKAMURA S. EFFECT OF ISONIAZID ON PROTEIN SYNTHESIS OF MYCOBACTERIA. Am Rev Respir Dis. 1964 Apr;89:572–574. doi: 10.1164/arrd.1964.89.4.572. [DOI] [PubMed] [Google Scholar]
  277. TSUMITA T., CHARGAFF E. Studies on nucleoproteins. VI. The deoxyribonucleoprotien and the deoxyribonucleic acid of bovine tubercle bacilli. (BCG). Biochim Biophys Acta. 1958 Sep;29(3):568–578. doi: 10.1016/0006-3002(58)90014-3. [DOI] [PubMed] [Google Scholar]
  278. Tacquet A., Tison F., Polspoel B., Roos P., Devulder B. Etude de la beta-D-galactosidase des mycobactéries. (Note préliminaire) Ann Inst Pasteur (Paris) 1966 Jul;111(1):86–89. [PubMed] [Google Scholar]
  279. Takayama K., Goldman D. S. Enzymatic synthesis of mannosyl-1-phosphoryl-decaprenol by a cell-free system of Mycobacterium tuberculosis. J Biol Chem. 1970 Dec 10;245(23):6251–6257. [PubMed] [Google Scholar]
  280. Takayama K., Goldman D. S. Pathway for the synthesis of mannophospholipids in Mycobacterium tuberculosis. Biochim Biophys Acta. 1969 Jan 21;176(1):196–198. doi: 10.1016/0005-2760(69)90089-7. [DOI] [PubMed] [Google Scholar]
  281. Takemori S., Nakazawa K., Nakai Y., Suzuki K., Katagiri M. A lactate oxygenase from Mycobacterium phlei. Improved purification and some properties of the enzyme. J Biol Chem. 1968 Jan 25;243(2):313–319. [PubMed] [Google Scholar]
  282. Tasaka H. The heat stable acid phosphatase activity of Mycobacteria. Am Rev Respir Dis. 1968 Mar;97(3):474–476. doi: 10.1164/arrd.1968.97.3.474. [DOI] [PubMed] [Google Scholar]
  283. Tepper B. S. Differences in the utilization of glycerol and glucose by Mycobacterium phlei. J Bacteriol. 1968 May;95(5):1713–1717. doi: 10.1128/jb.95.5.1713-1717.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  284. Tobari J. Requirement of flavin adenine dinucleotide and phospholipid for the activity of malate dehydrogenase from Mycobacterium avium. Biochem Biophys Res Commun. 1964 Feb 18;15(1):50–54. doi: 10.1016/0006-291x(64)90101-9. [DOI] [PubMed] [Google Scholar]
  285. Tokunaga T., Nakamura R. M. Infection of Mycobacterium tuberculosis with deoxyribonucleic acid extracted from mycobacteriophage B1. J Virol. 1967 Apr;1(2):448–449. doi: 10.1128/jvi.1.2.448-449.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  286. Tokunaga T., Nakamura R. M. Infection of competent Mycobacterium smegmatis with deoxyribonucleic acid extracted from bacteriophage B1. J Virol. 1968 Feb;2(2):110–117. doi: 10.1128/jvi.2.2.110-117.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  287. Trnka L., Smith D. W. Influence of cell disruption methods on polyuridylic acid dependent polyphenylalanine synthesis by isolated ribosomes of mycobacteria. Experientia. 1968 Nov 15;24(11):1109–1110. doi: 10.1007/BF02147786. [DOI] [PubMed] [Google Scholar]
  288. Trnka L., Smith D. W. Proteosynthetic activity of isolated ribosomes of Mycobacteria and its alteration by rifampicin and related tuberculostatic drugs. Antibiot Chemother. 1970;16:369–379. doi: 10.1159/000386840. [DOI] [PubMed] [Google Scholar]
  289. Trnka L., Wiegeshaus E., Smith D. W. Resolution and identification of ribosomes from mycobacteria. J Bacteriol. 1968 Feb;95(2):310–313. doi: 10.1128/jb.95.2.310-313.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  290. Tustanowski S., Dworak W. Studies on the synthesis of amino acids by Mycobacteria. I. Incorporation of 14C carbon in the form of acetate into amino acids of tubercle bacilli. Arch Immunol Ther Exp (Warsz) 1967;15(2):222–227. [PubMed] [Google Scholar]
  291. URABE K., SAITO H., TASAKA H., MATSUBAYASHI A. ACID PHOSPHATASE ACTIVITY OF MYCOBACTERIA: AN AID IN THE DIFFERENTIATION OF MYCOBACTERIUM AVIUM FROM NONPHOTOCHROMOGENIC ACID-FAST BACILLI. Am Rev Respir Dis. 1965 Feb;91:279–282. doi: 10.1164/arrd.1965.91.2.279. [DOI] [PubMed] [Google Scholar]
  292. VIRTANEN S. A study of nitrate reduction by mycobacteria. The use of the nitrate reduction test in the identification of mycobacteria. Acta Tuberc Scand Suppl. 1960;48:1–119. [PubMed] [Google Scholar]
  293. WAYNE L. G. Differentiation of mycobacteria by their effect on tween 80. Am Rev Respir Dis. 1962 Oct;86:579–581. doi: 10.1164/arrd.1962.86.4.579. [DOI] [PubMed] [Google Scholar]
  294. WEBER M. M., HOLLOCHER T. C., ROSSO G. THE APPEARANCE AND GENERAL PROPERTIES OF FREE RADICALS IN ELECTRON TRANSPORT PARTICLES FROM MYCOBACTERIUM PHLEI. J Biol Chem. 1965 Apr;240:1776–1782. [PubMed] [Google Scholar]
  295. WEBER M. M., ROSSO G. ROLE OF AN UNIDENTIFIED FACTOR INVOLVED IN ELECTRON TRANSPORT IN MYCOBACTERIUM PHLEI. Proc Natl Acad Sci U S A. 1963 Oct;50:710–717. doi: 10.1073/pnas.50.4.710. [DOI] [PMC free article] [PubMed] [Google Scholar]
  296. WEBER M. M., SWARTZ M. N. Pyridine nucleotide coenzymes of Mycobacterium phlei. Arch Biochem Biophys. 1960 Feb;86:233–237. doi: 10.1016/0003-9861(60)90411-2. [DOI] [PubMed] [Google Scholar]
  297. WHITE A., FOSTER F., LYON L. Alteration of colony morphology of mycobacteria associated with lysogeny. J Bacteriol. 1962 Oct;84:815–818. doi: 10.1128/jb.84.4.815-818.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  298. WILLETT H. P. The production of lysine from diaminopimelic acid by cell-free extracts of Mycobacterium tuberculosis. Am Rev Respir Dis. 1960 May;81:653–659. doi: 10.1164/arrd.1960.81.5.653. [DOI] [PubMed] [Google Scholar]
  299. WINDER F. G., O'HARA C. Effects of iron deficiency and of zinc deficiency on the composition of Mycobacterium smegmatis. Biochem J. 1962 Jan;82:98–108. doi: 10.1042/bj0820098. [DOI] [PMC free article] [PubMed] [Google Scholar]
  300. WINDER F. Catalase and peroxidase in mycobacteria. Possible relationship to the mode of action of isoniazid. Am Rev Respir Dis. 1960 Jan;81:68–78. doi: 10.1164/arrd.1960.81.1P1.68. [DOI] [PubMed] [Google Scholar]
  301. WORCEL A., GOLDMAN D. S., CLELAND W. W. AN ALLOSTERIC REDUCED NICOTINAMIDE ADENINE DINUCLEOTIDE OXIDASE FROM MYCOBACTERIUM TUBERCULOSIS. J Biol Chem. 1965 Aug;240:3399–3407. [PubMed] [Google Scholar]
  302. Wang L., Kusaka T., Goldman D. S. Elongation of fatty acids in Mycobacterium tuberculosis. J Bacteriol. 1970 Mar;101(3):781–785. doi: 10.1128/jb.101.3.781-785.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  303. Watanabe T., Brodie A. F. Enzymatic formation of a phosphorylated derivative of vitamin K. Proc Natl Acad Sci U S A. 1966 Sep;56(3):940–945. doi: 10.1073/pnas.56.3.940. [DOI] [PMC free article] [PubMed] [Google Scholar]
  304. Wayne L. G., Gross W. M. Isolation of deoxyribonucleic acid from mycobacteria. J Bacteriol. 1968 Apr;95(4):1481–1482. doi: 10.1128/jb.95.4.1481-1482.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  305. White R. J., Lancini G. C., Silvestri L. G. Mechanism of action of rifampin on Mycobacterium smegmatis. J Bacteriol. 1971 Nov;108(2):737–741. doi: 10.1128/jb.108.2.737-741.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  306. Willett H. P., Thacore H. Formation of spheroplasts of Mycobacterium tuberculosis by lysozyme in combination with certain enzymes of rabbit peritoneal monocytes. Can J Microbiol. 1967 May;13(5):481–488. doi: 10.1139/m67-063. [DOI] [PubMed] [Google Scholar]
  307. Winder F. G., Brennan P. J. Initial steps in the metabolism of glycerol by Mycobacterium tuberculosis. J Bacteriol. 1966 Dec;92(6):1846–1847. doi: 10.1128/jb.92.6.1846-1847.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  308. Winder F. G., Brennan P., Ratledge C. Synthesis of fatty acids by extracts of mycobacteria and the absence of inhibition by isoniazid. Biochem J. 1964 Dec;93(3):635–640. doi: 10.1042/bj0930635. [DOI] [PMC free article] [PubMed] [Google Scholar]
  309. Winder F. G., Collins P. B. Inhibition by isoniazid of synthesis of mycolic acids in Mycobacterium tuberculosis. J Gen Microbiol. 1970 Sep;63(1):41–48. doi: 10.1099/00221287-63-1-41. [DOI] [PubMed] [Google Scholar]
  310. Winder F. G., Coughlan M. P. A nucleoside triphosphate-dependent deoxyribonucleic acid-breakdown system in Mycobacterium smegmatis, and the effect of iron limitation on the activity of this system. Biochem J. 1969 Mar;111(5):679–687. doi: 10.1042/bj1110679. [DOI] [PMC free article] [PubMed] [Google Scholar]
  311. Winder F. G., McNulty M. S. Increased DNA polymerase activity accompanying decreased DNA content in iron-deficient Mycobacterium smegmatis. Biochim Biophys Acta. 1970;209(2):578–580. doi: 10.1016/0005-2787(70)90757-4. [DOI] [PubMed] [Google Scholar]
  312. Winder F. G., O'Hara C. Effects of iron deficiency and of zinc deficiency on the activities of some enzymes in Mycobacterium smegmatis. Biochem J. 1964 Jan;90(1):122–126. doi: 10.1042/bj0900122. [DOI] [PMC free article] [PubMed] [Google Scholar]
  313. Worcel A., Goldman D. S., Sachs I. B. Properties and fine structure of the ribosomes from Mycobacterium tuberculosis. Proc Natl Acad Sci U S A. 1968 Sep;61(1):122–129. doi: 10.1073/pnas.61.1.122. [DOI] [PMC free article] [PubMed] [Google Scholar]
  314. Worcel A., Goldman D. S. Stereospecificity of the allosteric NADH dehydrogenase from Mycobacterium tuberculosis. Arch Biochem Biophys. 1967 Feb;118(2):420–423. doi: 10.1016/0003-9861(67)90369-4. [DOI] [PubMed] [Google Scholar]
  315. YAMANE I. Growth-enhancing factor for human tubercle bacilli using minute inocula. J Bacteriol. 1957 Mar;73(3):334–337. doi: 10.1128/jb.73.3.334-337.1957. [DOI] [PMC free article] [PubMed] [Google Scholar]
  316. YOUMANS A. S., MILLMAN I., YOUMANS G. P. The oxidation of compounds related to the tricarboxylic acid cycle by whole cells and enzyme preparations of Mycobacterium tuberculosis var. hominis. J Bacteriol. 1956 May;71(5):565–570. doi: 10.1128/jb.71.5.565-570.1956. [DOI] [PMC free article] [PubMed] [Google Scholar]
  317. YOUMANS A. S., YOUMANS G. P. IMMUNOGENIC ACTIVITY OF A RIBOSOMAL FRACTION OBTAINED FROM MYCOBACTERIUM TUBERCULOSIS. J Bacteriol. 1965 May;89:1291–1298. doi: 10.1128/jb.89.5.1291-1298.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  318. Yabu K. Amino acid transport in Mycobacterium smegmatis. J Bacteriol. 1970 Apr;102(1):6–13. doi: 10.1128/jb.102.1.6-13.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  319. Yabu K. The uptake of D-glutamic acid by Mycobacterium avium. Biochim Biophys Acta. 1967 Feb 1;135(1):181–183. doi: 10.1016/0005-2736(67)90026-0. [DOI] [PubMed] [Google Scholar]
  320. Yamaki H. Inhibition of protein synthesis by fusidic and helvolinic acids, steroidal antibiotics. J Antibiot (Tokyo) 1965 Sep;18(5):228–232. [PubMed] [Google Scholar]
  321. Yamasaki H., Moriyama T. Inhibitory effect of alpha-ketoglutarate: glyoxylate carboligase activity on porphyrin synthesis in mycobacterium phlei. Biochem Biophys Res Commun. 1970 Feb 20;38(4):638–643. doi: 10.1016/0006-291x(70)90628-5. [DOI] [PubMed] [Google Scholar]
  322. Yano I., Kusunose M. Propionate incorporation into mycocerosic acid by resting cells of Mycobacterium tuberculosis bovis. Biochim Biophys Acta. 1966 Jun 1;116(3):593–596. [PubMed] [Google Scholar]
  323. Youatt J. A review of the action of isoniazid. Am Rev Respir Dis. 1969 May;99(5):729–749. doi: 10.1164/arrd.1969.99.5.729. [DOI] [PubMed] [Google Scholar]
  324. Youatt J., Tham S. H. An enzyme system of Mycobacterium tuberculosis that reacts specifically with isoniazid. II. Correlation of this reaction with the binding and metabolism of isoniazid. Am Rev Respir Dis. 1969 Jul;100(1):31–37. doi: 10.1164/arrd.1969.100.1.31. [DOI] [PubMed] [Google Scholar]
  325. Youmans A. S., Youmans G. P. Ribonucleic acid, deoxyribonucleic acid, and protein content of cells of different ages of Mycobacterium tuberculosis and the ralationship to immunogenicity. J Bacteriol. 1968 Feb;95(2):272–279. doi: 10.1128/jb.95.2.272-279.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  326. ZATMAN L. J., KAPLAN N. O., COLOWICK S. P., CIOTTI M. M. Effect of isonicotinic acid hydrazide on diphosphopyridine nucleotidases. J Biol Chem. 1954 Aug;209(2):453–466. [PubMed] [Google Scholar]
  327. ZELLER E. A., VAN ORDEN L. S., KIRCHHEIMER W. F. Enzymology of mycobacteria. VI. Enzymic degradation of guanidine derivatives. J Bacteriol. 1954 Feb;67(2):153–158. doi: 10.1128/jb.67.2.153-158.1954. [DOI] [PMC free article] [PubMed] [Google Scholar]
  328. ZYGMUNT W. A. ANTAGONISM OF D-CYCLOSERINE INHIBITION OF MYCOBACTERIAL GROWTH BY D-ALANINE. J Bacteriol. 1963 Jun;85:1217–1220. doi: 10.1128/jb.85.6.1217-1220.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Bacteriological Reviews are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES