Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Sep 28;69(Pt 10):i72. doi: 10.1107/S1600536813026433

The monoclinic form of trilithium dichromium(III) tris­(orthophosphate)

Joobin Sun a, Pilsoo Kim a, Hoseop Yun a,*
PMCID: PMC3790339  PMID: 24098161

Abstract

The monoclinic form of trilithium dichromium(III) tris­(ortho­phosphate), Li3Cr2(PO4)3, was prepared by the reactive halide flux method. The structure of the title compound is composed of a three-dimensional anionic framework with composition 3[Cr2(PO4)3]3− and Li+ ions situated in the empty channels. The rigid framework built up from CrO6 octa­hedra and PO4 tetra­hedra is the same as that found in other monoclinic Li3 M 2(PO4)3 (M = Fe, Sc, V) phases. The three Li+ cations of Li3Cr2(PO4)3 are unequally disordered over six crystallographically different sites. The classical charge balance of the title compound can be represented as [Li+]3[Cr3+]2[P5+]3[O2−]12. Solid-state UV/Vis spectra indicate that the crystal filed splitting (Δ0) of the Cr3+ ion is around 2.22 eV.

Related literature  

For the structures of Li3 M 2(PO4)3 (M = Fe, Sc, Cr, V), see: d’Yvoire et al. (1983); Verin et al. (1985); Maksimov et al. (1986). The structures of the ortho­rhom­bic form of Li3Cr2(PO4)3 have been investigated by Genkina et al. (1991). Structural studies of Li3V2(PO4)3 based on single-crystal data have been reported previously by Kee & Yun (2013). The general structural features of the monoclinic phases have been discussed by Patoux et al. (2003); Fu et al. (2010); Yang et al. (2010). For ionic radii, see: Shannon (1976).

Experimental  

Crystal data  

  • Li3Cr2(PO4)3

  • M r = 409.73

  • Monoclinic, Inline graphic

  • a = 8.4625 (4) Å

  • b = 8.5560 (3) Å

  • c = 14.5344 (5) Å

  • β = 125.186 (2)°

  • V = 860.08 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.16 mm−1

  • T = 290 K

  • 0.36 × 0.12 × 0.10 mm

Data collection  

  • Rigaku R-AXIS RAPID S diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995) T min = 0.688, T max = 1.000

  • 8163 measured reflections

  • 1962 independent reflections

  • 1887 reflections with I > 2σ(I)

  • R int = 0.021

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.026

  • wR(F 2) = 0.068

  • S = 1.14

  • 1962 reflections

  • 184 parameters

  • 1 restraint

  • Δρmax = 0.71 e Å−3

  • Δρmin = −0.71 e Å−3

Data collection: RAPID-AUTO (Rigaku, 2006); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: WinGX (Farrugia, 2012) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S1600536813026433/wm2772sup1.cif

e-69-00i72-sup1.cif (14KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813026433/wm2772Isup2.hkl

e-69-00i72-Isup2.hkl (108KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology (grant No. 2011–0011309).

supplementary crystallographic information

1. Comment

The structures of trilithium dimetal tris(orthophosphates), Li3M2(PO4)3 (M = Fe, Sc, Cr, V) have been widely investigated due to their ion transport properties and temperature-dependent phase transitions (d'Yvoire et al., 1983; Verin et al., 1985; Maksimov et al., 1986). For Li3Cr2(PO4)3, the structure of the orthorhombic phase has been studied based on single-crystal diffraction data (Genkina et al., 1991). The monoclinic and rhombohedral phases have been identified by powder diffraction techniques but no detailed structure determinations have been reported yet (d'Yvoire et al., 1983). In attempts to prepare new mixed alkali metal phosphates by using various alkali metal halides, the monoclinic form of Li3Cr2(PO4)3 has been isolated as single crystals and the detailed structural characterization of this phase is reported here.

The anionic framework of Li3Cr2(PO4)3 is the same as that of the previously reported monoclinic Li3V2(PO4)3 structure (Kee & Yun, 2013). The general structural features of this phase have been discussed previously (Patoux et al., 2003; Fu et al., 2010). Figure 1 shows the coordination environment of the Cr and P atoms. CrO6 octahedra are joined to PO4 tetrahedra forming a [Cr2(PO4)3] unit. These units share a terminal oxygen atom to construct the anionic three-dimensional framework, 3[Cr2(PO4)3]3- (Fig. 2). The Cr—O distances (1.9007 (18)–2.0392 (18) Å) are in good agreement with those calculated from their ionic radii (2.00 Å; Shannon, 1976), assuming a valence of +III for Cr.

The Li+ ions in the empty channels are surrounded by four O atoms in distorted tetrahedral coordinations. There are six crystallographically independent Li sites for this phase and three Li+ ions are unequally disordered over them. It has been reported that the positions of Li+ ions in Li3V2(PO4)3 can vary depending on the synthetic conditions while those of the V, P, and O atoms comprising the rigid framework remain intact (Yang et al., 2010). The positions of the Li1, Li3, and Li4 sites in this work are very close to those of the ordered Li sites found in Li3V2(PO4)3 (Kee & Yun, 2013).

The classical charge balance of the title compound can be represented as [Li+]3[Cr3+]2[P5+]3[O2-]12. Solid-state UV/Vis spectra indicate that the crystal filed splitting(Δ0) of the Cr3+ ion is around 2.22 eV, which is in agreement with the green color of the crystals.

2. Experimental

The title compound, Li3Cr2(PO4)3, was prepared by the reaction of the elements with the use of the reactive halide-flux technique. A combination of the pure elements, Cr powder (Cerac, 99.95%) and P powder (Aldrich, 99%), were mixed in a fused silica tube in a molar ratio of Cr:P = 1:1 and then LiCl (Cerac, 99.8%) and CsCl (Alfa, 99.9%) mixed in molar ratio of LiCl:CsCl = 4:1 were added. The mass ratio of the reactants and the halides was 1:3. The tube was evacuated to 0.133 Pa, sealed, and heated gradually (30 K/h) to 1123 K, where it was kept for 48 h. The tube was cooled to room temperature at a rate of 4 K/h. The excess halide was removed with water and greenish block-shaped crystals were obtained. The crystals are stable in air and water. A qualitative X-ray fluorescence analysis of selected crystals indicated the presence of Cr and P. The final composition of the compound was determined by single-crystal X-ray diffraction.

3. Refinement

After the positions of heavy elements (Cr, P, and O) had been established, six significant residual peaks suitable for Li+ sites were revealed by difference Fourier maps. A model including disorder for these sites was applied. The sum of the Li+ occupancies was fixed to 3 to meet the charge balance of the compound; the temperature factors of all Li sites were refined isotropically. The highest peak (0.71 e Å-3) and the deepest hole (-0.49 e Å-3) are 0.57 Å and 0.81 Å from atom Li4 and Cr1, respectively.

Figures

Fig. 1.

Fig. 1.

A view showing the local coordination environments of Cr and P atoms with the atom labeling scheme. Displacement ellipsoids for Cr, P, and O atoms are drawn at the 70% probability level. [Symmetry codes: (ii) -x, y+1/2, -z+1/2; (iii) -x+1, y+1/2, -z+1/2; (iv) -x+1, y-1/2, -z+1/2; (v) -x+1, -y+1, -z; (vi) -x+1, -y+1, -z+1; (vii) -x, -y+1, -z; (viii) x, -y+1/2, z-1/2. ].

Fig. 2.

Fig. 2.

The polyhedral representation of the anionic framework structure built up from [Cr2(PO4)3] units. The disordered Li+ cations are located in the channels of this framework.

Crystal data

Li3Cr2(PO4)3 F(000) = 792
Mr = 409.73 Dx = 3.164 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 8071 reflections
a = 8.4625 (4) Å θ = 3.4–27.7°
b = 8.5560 (3) Å µ = 3.16 mm1
c = 14.5344 (5) Å T = 290 K
β = 125.186 (2)° Block, green
V = 860.08 (6) Å3 0.36 × 0.12 × 0.10 mm
Z = 4

Data collection

Rigaku R-AXIS RAPID S diffractometer 1962 independent reflections
Radiation source: Sealed X-ray tube 1887 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.021
ω scans θmax = 27.5°, θmin = 3.4°
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) h = −10→10
Tmin = 0.688, Tmax = 1.000 k = −11→10
8163 measured reflections l = −18→18

Refinement

Refinement on F2 1 restraint
Least-squares matrix: full Primary atom site location: structure-invariant direct methods
R[F2 > 2σ(F2)] = 0.026 Secondary atom site location: difference Fourier map
wR(F2) = 0.068 w = 1/[σ2(Fo2) + (0.0319P)2 + 1.8772P] where P = (Fo2 + 2Fc2)/3
S = 1.14 (Δ/σ)max < 0.001
1962 reflections Δρmax = 0.71 e Å3
184 parameters Δρmin = −0.71 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Li1 0.4750 (10) 0.2119 (8) 0.1752 (6) 0.022 (2)* 0.71 (2)
Li2 0.104 (2) 0.208 (2) 0.3364 (14) 0.022 (6)* 0.30 (2)
Li3 0.1164 (11) 0.5885 (9) 0.1920 (7) 0.017 (3)* 0.59 (2)
Li4 0.1935 (14) 0.1892 (12) 0.2627 (8) 0.036 (3)* 0.64 (3)
Li5 0.672 (3) 0.227 (2) 0.2586 (15) 0.019 (6)* 0.27 (2)
Li6 0.273 (3) 0.059 (3) 0.1835 (19) 0.072 (8)* 0.48 (3)
Cr1 0.36305 (5) 0.53352 (4) 0.11142 (3) 0.00608 (11)
Cr2 0.13604 (5) 0.53218 (5) 0.38801 (3) 0.00787 (11)
P1 0.46068 (8) 0.39077 (7) 0.35382 (5) 0.00707 (13)
P2 0.75261 (8) 0.38724 (7) 0.14717 (5) 0.00693 (13)
P3 0.04107 (8) 0.25059 (7) 0.00513 (5) 0.00717 (13)
O1 0.6057 (2) 0.4162 (2) 0.17588 (15) 0.0129 (4)
O2 0.2909 (3) 0.3809 (2) 0.36484 (16) 0.0138 (4)
O3 0.5955 (3) 0.0119 (2) 0.23933 (16) 0.0181 (4)
O4 0.0766 (3) 0.0017 (2) 0.27885 (15) 0.0124 (3)
O5 0.6674 (3) 0.4170 (2) 0.02547 (15) 0.0135 (4)
O6 0.3515 (3) 0.5558 (2) 0.54233 (16) 0.0197 (4)
O7 0.1224 (3) 0.6330 (2) 0.06579 (16) 0.0135 (4)
O8 0.0340 (2) 0.1757 (2) 0.09856 (15) 0.0135 (4)
O9 0.2391 (2) 0.3295 (2) 0.06304 (17) 0.0166 (4)
O10 0.0217 (3) 0.3652 (2) 0.41922 (16) 0.0156 (4)
O11 0.4784 (2) 0.2282 (2) 0.31441 (14) 0.0106 (3)
O12 0.1852 (3) 0.7155 (2) 0.32091 (15) 0.0140 (4)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cr1 0.00427 (18) 0.00702 (19) 0.00645 (19) 0.00016 (12) 0.00280 (15) 0.00019 (13)
Cr2 0.00503 (18) 0.0106 (2) 0.00828 (19) −0.00115 (13) 0.00402 (15) −0.00151 (14)
P1 0.0064 (3) 0.0078 (3) 0.0061 (3) 0.0019 (2) 0.0030 (2) 0.0007 (2)
P2 0.0054 (3) 0.0085 (3) 0.0063 (3) 0.0014 (2) 0.0031 (2) 0.0000 (2)
P3 0.0053 (3) 0.0063 (3) 0.0100 (3) −0.0001 (2) 0.0045 (2) −0.0001 (2)
O1 0.0089 (8) 0.0216 (9) 0.0095 (8) 0.0060 (7) 0.0060 (7) 0.0022 (7)
O2 0.0112 (8) 0.0133 (8) 0.0197 (9) −0.0001 (7) 0.0106 (7) −0.0023 (7)
O3 0.0348 (11) 0.0105 (8) 0.0154 (9) −0.0066 (8) 0.0182 (9) −0.0043 (7)
O4 0.0105 (8) 0.0128 (8) 0.0095 (8) 0.0013 (7) 0.0033 (7) 0.0010 (7)
O5 0.0140 (8) 0.0171 (9) 0.0089 (8) 0.0027 (7) 0.0062 (7) 0.0018 (7)
O6 0.0117 (9) 0.0235 (10) 0.0146 (9) −0.0025 (8) 0.0023 (8) −0.0065 (8)
O7 0.0117 (8) 0.0122 (8) 0.0186 (9) 0.0053 (7) 0.0099 (7) 0.0053 (7)
O8 0.0100 (8) 0.0180 (9) 0.0108 (8) −0.0009 (7) 0.0050 (7) 0.0038 (7)
O9 0.0076 (8) 0.0083 (8) 0.0302 (11) −0.0018 (7) 0.0087 (8) −0.0017 (8)
O10 0.0115 (8) 0.0191 (9) 0.0157 (9) −0.0037 (7) 0.0075 (7) 0.0043 (7)
O11 0.0125 (8) 0.0081 (8) 0.0086 (8) 0.0038 (6) 0.0045 (7) 0.0002 (6)
O12 0.0216 (9) 0.0100 (8) 0.0151 (8) −0.0057 (7) 0.0133 (8) −0.0041 (7)

Geometric parameters (Å, º)

Li1—O3 1.934 (7) Cr1—O5v 1.9007 (18)
Li1—O9 1.977 (7) Cr1—O7 1.9380 (17)
Li1—O11 2.011 (7) Cr1—O9 1.9471 (18)
Li1—O1 2.066 (7) Cr1—O1 1.9709 (17)
Li2—O4 1.908 (17) Cr1—O3iii 1.9965 (18)
Li2—O2 2.028 (17) Cr1—O11iii 2.0172 (17)
Li2—O10 2.170 (17) Cr2—O6 1.9192 (19)
Li2—O12i 2.184 (17) Cr2—O10 1.9208 (18)
Li3—O7 1.902 (8) Cr2—O8ii 1.9847 (18)
Li3—O12 1.943 (8) Cr2—O2 2.0041 (18)
Li3—O4ii 2.049 (8) Cr2—O12 2.0129 (18)
Li3—O3iii 2.137 (8) Cr2—O4ii 2.0392 (18)
Li4—O8 1.953 (10) P1—O6vi 1.4994 (19)
Li4—O4 1.969 (10) P1—O2 1.5368 (18)
Li4—O2 2.040 (10) P1—O11 1.5443 (17)
Li4—O11 2.098 (10) P1—O3iii 1.5463 (19)
Li5—O1 1.900 (18) P2—O5 1.4979 (18)
Li5—O3 1.916 (18) P2—O12iv 1.5394 (18)
Li5—O12iv 2.103 (18) P2—O1 1.5424 (17)
Li5—O11 2.206 (18) P2—O4iii 1.5532 (18)
Li5—O7iv 2.252 (18) P3—O7vii 1.5248 (18)
Li6—O8 1.93 (2) P3—O10viii 1.5268 (19)
Li6—O1iv 2.08 (2) P3—O9 1.5319 (18)
Li6—O11 2.22 (2) P3—O8 1.5337 (18)
Li6—O3 2.39 (2)
O5v—Cr1—O7 93.57 (8) O2—Cr2—O12 94.84 (8)
O5v—Cr1—O9 95.83 (9) O6—Cr2—O4ii 175.15 (8)
O7—Cr1—O9 91.63 (8) O10—Cr2—O4ii 88.07 (8)
O5v—Cr1—O1 94.97 (8) O8ii—Cr2—O4ii 90.18 (7)
O7—Cr1—O1 171.08 (8) O2—Cr2—O4ii 86.09 (8)
O9—Cr1—O1 84.97 (8) O12—Cr2—O4ii 79.09 (8)
O5v—Cr1—O3iii 172.27 (8) O6vi—P1—O2 115.09 (11)
O7—Cr1—O3iii 84.53 (8) O6vi—P1—O11 112.02 (11)
O9—Cr1—O3iii 91.72 (9) O2—P1—O11 106.60 (10)
O1—Cr1—O3iii 87.34 (8) O6vi—P1—O3iii 106.84 (12)
O5v—Cr1—O11iii 91.32 (8) O2—P1—O3iii 107.11 (11)
O7—Cr1—O11iii 93.70 (8) O11—P1—O3iii 108.98 (10)
O9—Cr1—O11iii 170.80 (8) O5—P2—O12iv 111.51 (10)
O1—Cr1—O11iii 88.66 (8) O5—P2—O1 112.18 (10)
O3iii—Cr1—O11iii 81.34 (8) O12iv—P2—O1 105.13 (10)
O6—Cr2—O10 94.07 (9) O5—P2—O4iii 109.45 (11)
O6—Cr2—O8ii 94.27 (8) O12iv—P2—O4iii 111.89 (10)
O10—Cr2—O8ii 86.83 (8) O1—P2—O4iii 106.55 (10)
O6—Cr2—O2 89.50 (8) O7vii—P3—O10viii 104.06 (10)
O10—Cr2—O2 91.50 (8) O7vii—P3—O9 111.22 (10)
O8ii—Cr2—O2 175.97 (8) O10viii—P3—O9 107.65 (11)
O6—Cr2—O12 99.31 (8) O7vii—P3—O8 112.88 (10)
O10—Cr2—O12 165.23 (8) O10viii—P3—O8 114.36 (11)
O8ii—Cr2—O12 85.96 (8) O9—P3—O8 106.63 (11)

Symmetry codes: (i) −x, y−1/2, −z+1/2; (ii) −x, y+1/2, −z+1/2; (iii) −x+1, y+1/2, −z+1/2; (iv) −x+1, y−1/2, −z+1/2; (v) −x+1, −y+1, −z; (vi) −x+1, −y+1, −z+1; (vii) −x, −y+1, −z; (viii) x, −y+1/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2772).

References

  1. Brandenburg, K. (1999). DIAMOND Crystal Impact GbR, Bonn, Germany.
  2. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  3. Fu, P., Zhao, Y., Dong, Y. & Hou, X. (2010). J. Phys. Chem. Solids, 71, 394–399.
  4. Genkina, E. A., Maksimov, B. A., Sigarev, S. E. & Verin, I. A. (1991). Kristallografiya, 31, 637–641.
  5. Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  6. Kee, Y. & Yun, H. (2013). Acta Cryst. E69, i11–i12. [DOI] [PMC free article] [PubMed]
  7. Maksimov, B. A., Muradyan, L. A., Genkina, E. A. & Simonov, V. I. (1986). Dokl. Akad. Nauk SSSR, 288, 634–638.
  8. Patoux, S., Wurm, C., Morcrette, M., Rousse, G. & Masquelier, C. (2003). J. Power Sources, 119, 278–284.
  9. Rigaku (2006). RAPID-AUTO Rigaku Corporation, Tokyo, Japan.
  10. Shannon, R. D. (1976). Acta Cryst. A32, 751–767.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Verin, I. A., Genkina, E. A., Maksimov, B. A., Muradyan, L. A. & Sirota, M. I. (1985). Kristallografiya, 30, 677–681.
  13. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  14. Yang, G., Ji, H. M., Liu, H., Qian, B. & Jiang, X. (2010). Electrochim. Acta, 55, 3669–3680.
  15. d’Yvoire, F., Pintard-Scrépel, M., Bretey, E. & de la Rochère, M. (1983). Solid State Ionics, 9–10, 851–858.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S1600536813026433/wm2772sup1.cif

e-69-00i72-sup1.cif (14KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813026433/wm2772Isup2.hkl

e-69-00i72-Isup2.hkl (108KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES