Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Sep 4;69(Pt 10):m532–m533. doi: 10.1107/S1600536813024252

Bis[1-meth­oxy-2,2,2-tris­(pyrazol-1-yl-κN 2)ethane]­nickel(II) bis­(tri­fluoro­methane­sulfonate) dihydrate

Ganna Lyubartseva a,*, Sean Parkin b, Uma Prasad Mallik a
PMCID: PMC3790345  PMID: 24098167

Abstract

In the title salt, [Ni(C12H14N6O)2](CF3SO3)2·2H2O, the NiII cation is located on an inversion centre and is coordinated by six N atoms from two tridentate 1-meth­oxy-2,2,2-tris­(pyrazol-1-yl)ethane ligands in a distorted octa­hedral geometry. The Ni—N distances range from 2.0594 (12) to 2.0664 (12) Å, intra-ligand N—Ni—N angles range from 84.59 (5) to 86.06 (5)°, and adjacent inter-ligand N—Ni—N angles range between 93.94 (5) and 95.41 (5)°. In the crystal, inversion-related pyrazole rings are π–π stacked, with an inter­planar spacing of 3.4494 (18) Å, forming chains that propagate parallel to the a-axis direction. Inter­molecular O—H⋯O hydrogen bonds are present between water mol­ecules and tri­fluoro­methane­sulfonate anions.

Related literature  

Pyrazole-based tridentate ligands are drawing more attention because of their topology and nature of donor atoms, see: Paulo et al. (2004); Bigmore et al. (2005). For the ligand synthesis, see: Maria et al. (2007). The compound reported here was prepared as part of our ongoing research effort to study nitro­gen-donor tridentate scorpionate ligands coordinated to nickel, see: Lyubartseva et al. (2011, 2012); Lyubartseva & Parkin (2009).graphic file with name e-69-0m532-scheme1.jpg

Experimental  

Crystal data  

  • [Ni(C12H14N6O)2](CF3O3S)2·2H2O

  • M r = 909.46

  • Triclinic, Inline graphic

  • a = 8.5582 (2) Å

  • b = 9.6515 (2) Å

  • c = 12.2347 (2) Å

  • α = 110.399 (1)°

  • β = 103.665 (1)°

  • γ = 97.317 (1)°

  • V = 895.66 (3) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.76 mm−1

  • T = 90 K

  • 0.26 × 0.22 × 0.15 mm

Data collection  

  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2008a ) T min = 0.760, T max = 0.862

  • 25573 measured reflections

  • 4095 independent reflections

  • 3708 reflections with I > 2σ(I)

  • R int = 0.023

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.029

  • wR(F 2) = 0.072

  • S = 1.07

  • 4095 reflections

  • 266 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.49 e Å−3

Data collection: COLLECT (Nonius, 1998); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO-SMN (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008b ); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008b ); molecular graphics: XP in SHELXTL (Sheldrick, 2008b ); software used to prepare material for publication: SHELXL2013.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536813024252/tk5252sup1.cif

e-69-0m532-sup1.cif (751.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813024252/tk5252Isup2.hkl

e-69-0m532-Isup2.hkl (224.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H2W⋯O3A 0.94 (3) 2.06 (3) 2.994 (2) 174 (2)
O1W—H1W⋯O3A i 0.97 (3) 2.12 (3) 3.0613 (19) 163 (2)

Symmetry code: (i) Inline graphic.

Acknowledgments

GL gratefully acknowledges the Southern Arkansas University Faculty Research Grant for financial support.

supplementary crystallographic information

1. Comment

The described structure was studied in continuation of on-going studies (Lyubartseva & Parkin, 2009; Lyubartseva et al., 2011, 2012) owing to interest in pyrazole-based tridentate ligands (Paulo et al., 2004; Bigmore et al., 2005). In an attempt to prepare mononuclear [LNiII(CN)3]-, where L is 1-methoxy-2,2,2-tris(pyrazol-1-yl)ethane, a tridentate neutral nitrogen donor ligand, we isolated the major product [Ni(C12H14N602)2][CF3SO3]2·2H2O as light-pink triclinic crystals. In the crystal, the Ni(II) cation is situated on an inversion centre and is coordinated by six N atoms from the two tridentate tpmOMe ligands, Fig. 1, (average Ni—N distance = 2.062 Å) in a distorted octahedral geometry. The average N—Ni—N angle between adjacent pyrazole-ring coordinated N atoms is 85.13° for the six acute angles and 94.87° for the six obtuse angles. In the crystal, inversion-related (-x, 1 - y, 1 - z) pyrazole rings are π—π stacked, with an interplanar spacing of 3.4494 (18) Å, forming chains that propagate parallel to the a axis. Intramolecular O—H···O hydrogen bonds are present between water and trifluoromethanesulfonate anion, Table 1.

2. Experimental

1-Methoxy-2,2,2-tris(pyrazol-1-yl)ethane ligand was synthesized according to the previously published procedure of Maria et al. (2007). Nickel trifluoromethanesulfonate was used as received. Ni(OTf)2 (358 mg, 1 mmol), 1-methoxy-2,2,2-tris(pyrazol-1-yl)ethane (258 mg, 1 mmol) and NEt4CN (312 mg, 2 mmol) were suspended in a mixture of methanol (20 ml) and water (10 ml), and stirred for 30 minutes. The resulting solution was filtered and solvent was slowly evaporated in air. Light-pink crystals were obtained after 3 weeks (294 mg, 64.6% yield). Elemental analysis, calculated for C26H32F6N12NiO10S2: C 34.34, H 3.55, N 18.48; found C 34.64, H 3.40, N 18.35. IR (cm-1): 3624, 3487, 3145, 2920, 1615, 1523, 1410, 1388, 1340, 1323, 1257, 1225, 1199, 1164, 1105, 1069, 1059, 1028, 1010, 973, 919, 854, 755, 674, 653, 635, 602, 572, 516.

3. Refinement

H atoms were found in difference Fourier maps. Water hydrogen atom coordinates were refined freely, but with Uiso(H) values set to 1.5Ueq Owater. All other H atoms were placed at idealized positions with constrained distances of 0.98 Å (RCH3), 0.99 Å (R2CH2), 0.95 Å (Csp2H), and with Uiso(H) values set to either 1.2Ueq or 1.5Ueq (RCH3) of the attached atom.

Figures

Fig. 1.

Fig. 1.

View of the title compound with displacement ellipsoids drawn at the 50% probability level. Unlabelled atoms are related to their labelled counterparts by inversion (1/2 - x, 1.5 - y, 1 - z).

Crystal data

[Ni(C12H14N6O)2](CF3O3S)2·2H2O Z = 1
Mr = 909.46 F(000) = 466
Triclinic, P1 Dx = 1.686 Mg m3
a = 8.5582 (2) Å Mo Kα radiation, λ = 0.71073 Å
b = 9.6515 (2) Å Cell parameters from 25674 reflections
c = 12.2347 (2) Å θ = 1.0–27.5°
α = 110.399 (1)° µ = 0.76 mm1
β = 103.665 (1)° T = 90 K
γ = 97.317 (1)° Block, pink
V = 895.66 (3) Å3 0.26 × 0.22 × 0.15 mm

Data collection

Nonius KappaCCD diffractometer 4095 independent reflections
Radiation source: fine-focus sealed-tube 3708 reflections with I > 2σ(I)
Detector resolution: 9.1 pixels mm-1 Rint = 0.023
φ and ω scans at fixed χ = 55° θmax = 27.5°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Sheldrick, 2008a) h = −11→11
Tmin = 0.760, Tmax = 0.862 k = −12→12
25573 measured reflections l = −15→15

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029 Hydrogen site location: difference Fourier map
wR(F2) = 0.072 H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0311P)2 + 0.6676P] where P = (Fo2 + 2Fc2)/3
4095 reflections (Δ/σ)max < 0.001
266 parameters Δρmax = 0.47 e Å3
0 restraints Δρmin = −0.49 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Ni1 0.5000 0.5000 0.5000 0.01222 (8)
N1 0.44622 (15) 0.29426 (14) 0.35443 (11) 0.0145 (3)
N2 0.30215 (15) 0.25366 (14) 0.26196 (11) 0.0130 (2)
C1 0.52676 (19) 0.18620 (17) 0.31824 (14) 0.0173 (3)
H1 0.6315 0.1839 0.3649 0.021*
C2 0.43694 (19) 0.07609 (18) 0.20223 (15) 0.0191 (3)
H2 0.4683 −0.0117 0.1563 0.023*
C3 0.29420 (19) 0.12165 (17) 0.16891 (14) 0.0167 (3)
H3 0.2062 0.0707 0.0948 0.020*
N3 0.39074 (15) 0.58147 (14) 0.37338 (11) 0.0149 (3)
N4 0.24408 (15) 0.49654 (14) 0.28723 (11) 0.0130 (2)
C4 0.4154 (2) 0.71338 (18) 0.36109 (14) 0.0173 (3)
H4 0.5085 0.7955 0.4093 0.021*
C5 0.2853 (2) 0.71481 (18) 0.26739 (15) 0.0192 (3)
H5 0.2738 0.7953 0.2407 0.023*
C6 0.17837 (19) 0.57573 (18) 0.22245 (14) 0.0169 (3)
H6 0.0772 0.5411 0.1581 0.020*
N5 0.26178 (15) 0.43228 (14) 0.50146 (11) 0.0139 (2)
N6 0.14141 (15) 0.35547 (14) 0.39195 (11) 0.0125 (2)
C7 0.19545 (19) 0.41516 (17) 0.58503 (14) 0.0160 (3)
H7 0.2508 0.4571 0.6704 0.019*
C8 0.03292 (19) 0.32692 (18) 0.53068 (14) 0.0170 (3)
H8 −0.0406 0.2992 0.5708 0.020*
C9 0.00275 (18) 0.28935 (17) 0.40787 (14) 0.0154 (3)
H9 −0.0963 0.2285 0.3453 0.018*
C10 0.17782 (18) 0.34450 (16) 0.27853 (13) 0.0127 (3)
C11 0.02317 (18) 0.26347 (17) 0.16833 (13) 0.0147 (3)
H11A 0.0485 0.2605 0.0928 0.018*
H11B −0.0137 0.1577 0.1596 0.018*
O1 −0.10362 (13) 0.34191 (12) 0.18516 (10) 0.0167 (2)
C12 −0.25257 (19) 0.26218 (19) 0.08624 (15) 0.0204 (3)
H12A −0.2344 0.2595 0.0095 0.031*
H12B −0.3413 0.3143 0.1009 0.031*
H12C −0.2839 0.1581 0.0807 0.031*
S1A 0.86275 (5) 0.86391 (4) 0.17962 (3) 0.01557 (9)
O1A 0.76221 (16) 0.97224 (14) 0.17899 (12) 0.0287 (3)
O2A 0.98159 (15) 0.86458 (15) 0.11398 (11) 0.0272 (3)
O3A 0.92445 (16) 0.85421 (15) 0.29641 (11) 0.0269 (3)
F1A 0.64625 (13) 0.67273 (12) −0.02656 (9) 0.0292 (2)
F2A 0.79191 (16) 0.56755 (13) 0.07329 (13) 0.0497 (4)
F3A 0.59605 (16) 0.65956 (16) 0.13326 (12) 0.0500 (4)
C1A 0.7161 (2) 0.68201 (19) 0.08608 (16) 0.0220 (3)
O1W 0.76122 (18) 0.99331 (17) 0.48585 (14) 0.0368 (3)
H1W 0.848 (3) 1.032 (3) 0.563 (3) 0.055*
H2W 0.812 (3) 0.944 (3) 0.429 (3) 0.055*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ni1 0.01029 (13) 0.01323 (13) 0.01154 (13) 0.00243 (10) 0.00191 (10) 0.00400 (10)
N1 0.0101 (6) 0.0164 (6) 0.0136 (6) 0.0031 (5) 0.0010 (5) 0.0037 (5)
N2 0.0102 (6) 0.0146 (6) 0.0119 (6) 0.0027 (5) 0.0019 (5) 0.0037 (5)
C1 0.0134 (7) 0.0180 (7) 0.0198 (8) 0.0051 (6) 0.0045 (6) 0.0062 (6)
C2 0.0162 (8) 0.0165 (7) 0.0214 (8) 0.0050 (6) 0.0065 (6) 0.0029 (6)
C3 0.0150 (7) 0.0159 (7) 0.0152 (7) 0.0021 (6) 0.0040 (6) 0.0022 (6)
N3 0.0117 (6) 0.0157 (6) 0.0142 (6) 0.0005 (5) 0.0012 (5) 0.0050 (5)
N4 0.0105 (6) 0.0148 (6) 0.0117 (6) 0.0019 (5) 0.0011 (5) 0.0048 (5)
C4 0.0173 (7) 0.0164 (7) 0.0186 (7) 0.0025 (6) 0.0063 (6) 0.0070 (6)
C5 0.0202 (8) 0.0193 (7) 0.0218 (8) 0.0052 (6) 0.0068 (6) 0.0119 (6)
C6 0.0160 (7) 0.0210 (7) 0.0159 (7) 0.0065 (6) 0.0043 (6) 0.0095 (6)
N5 0.0119 (6) 0.0166 (6) 0.0105 (6) 0.0030 (5) 0.0014 (5) 0.0036 (5)
N6 0.0104 (6) 0.0146 (6) 0.0106 (6) 0.0017 (5) 0.0021 (5) 0.0038 (5)
C7 0.0177 (7) 0.0181 (7) 0.0132 (7) 0.0058 (6) 0.0054 (6) 0.0061 (6)
C8 0.0164 (7) 0.0191 (7) 0.0189 (8) 0.0047 (6) 0.0081 (6) 0.0093 (6)
C9 0.0120 (7) 0.0151 (7) 0.0189 (7) 0.0023 (5) 0.0049 (6) 0.0066 (6)
C10 0.0113 (7) 0.0141 (7) 0.0127 (7) 0.0036 (5) 0.0039 (5) 0.0047 (5)
C11 0.0113 (7) 0.0170 (7) 0.0124 (7) 0.0032 (6) 0.0013 (6) 0.0032 (6)
O1 0.0108 (5) 0.0193 (5) 0.0157 (5) 0.0048 (4) 0.0002 (4) 0.0039 (4)
C12 0.0122 (7) 0.0224 (8) 0.0213 (8) 0.0019 (6) −0.0030 (6) 0.0082 (7)
S1A 0.01472 (18) 0.01723 (18) 0.01564 (18) 0.00405 (14) 0.00441 (14) 0.00749 (14)
O1A 0.0262 (7) 0.0202 (6) 0.0351 (7) 0.0104 (5) 0.0029 (5) 0.0081 (5)
O2A 0.0200 (6) 0.0363 (7) 0.0205 (6) −0.0021 (5) 0.0088 (5) 0.0067 (5)
O3A 0.0297 (7) 0.0335 (7) 0.0178 (6) 0.0073 (5) 0.0035 (5) 0.0128 (5)
F1A 0.0236 (5) 0.0295 (5) 0.0251 (5) −0.0015 (4) −0.0035 (4) 0.0091 (4)
F2A 0.0461 (8) 0.0180 (5) 0.0645 (9) 0.0101 (5) −0.0122 (6) 0.0102 (6)
F3A 0.0399 (7) 0.0563 (8) 0.0458 (7) −0.0180 (6) 0.0195 (6) 0.0166 (6)
C1A 0.0208 (8) 0.0204 (8) 0.0266 (9) 0.0036 (6) 0.0052 (7) 0.0129 (7)
O1W 0.0266 (7) 0.0383 (8) 0.0339 (8) 0.0027 (6) 0.0103 (6) 0.0014 (6)

Geometric parameters (Å, º)

Ni1—N1 2.0594 (12) N5—N6 1.3664 (17)
Ni1—N1i 2.0594 (12) N6—C9 1.3625 (19)
Ni1—N3i 2.0602 (13) N6—C10 1.4643 (18)
Ni1—N3 2.0602 (13) C7—C8 1.403 (2)
Ni1—N5 2.0664 (12) C7—H7 0.9500
Ni1—N5i 2.0664 (12) C8—C9 1.367 (2)
N1—C1 1.3283 (19) C8—H8 0.9500
N1—N2 1.3648 (17) C9—H9 0.9500
N2—C3 1.3617 (19) C10—C11 1.529 (2)
N2—C10 1.4689 (18) C11—O1 1.4140 (18)
C1—C2 1.400 (2) C11—H11A 0.9900
C1—H1 0.9500 C11—H11B 0.9900
C2—C3 1.370 (2) O1—C12 1.4331 (18)
C2—H2 0.9500 C12—H12A 0.9800
C3—H3 0.9500 C12—H12B 0.9800
N3—C4 1.330 (2) C12—H12C 0.9800
N3—N4 1.3671 (17) S1A—O1A 1.4371 (12)
N4—C6 1.3600 (19) S1A—O2A 1.4378 (12)
N4—C10 1.4618 (18) S1A—O3A 1.4418 (12)
C4—C5 1.402 (2) S1A—C1A 1.8237 (17)
C4—H4 0.9500 F1A—C1A 1.333 (2)
C5—C6 1.370 (2) F2A—C1A 1.332 (2)
C5—H5 0.9500 F3A—C1A 1.322 (2)
C6—H6 0.9500 O1W—H1W 0.97 (3)
N5—C7 1.3278 (19) O1W—H2W 0.94 (3)
N1—Ni1—N1i 180.0 C7—N5—Ni1 134.47 (10)
N1—Ni1—N3i 93.94 (5) N6—N5—Ni1 118.35 (9)
N1i—Ni1—N3i 86.06 (5) C9—N6—N5 110.86 (12)
N1—Ni1—N3 86.06 (5) C9—N6—C10 129.46 (12)
N1i—Ni1—N3 93.94 (5) N5—N6—C10 119.50 (12)
N3i—Ni1—N3 180.0 N5—C7—C8 111.13 (14)
N1—Ni1—N5 84.59 (5) N5—C7—H7 124.4
N1i—Ni1—N5 95.41 (5) C8—C7—H7 124.4
N3i—Ni1—N5 95.27 (5) C9—C8—C7 105.44 (13)
N3—Ni1—N5 84.73 (5) C9—C8—H8 127.3
N1—Ni1—N5i 95.41 (5) C7—C8—H8 127.3
N1i—Ni1—N5i 84.59 (5) N6—C9—C8 107.16 (13)
N3i—Ni1—N5i 84.73 (5) N6—C9—H9 126.4
N3—Ni1—N5i 95.27 (5) C8—C9—H9 126.4
N5—Ni1—N5i 180.00 (7) N4—C10—N6 109.51 (11)
C1—N1—N2 105.55 (12) N4—C10—N2 109.13 (11)
C1—N1—Ni1 135.27 (11) N6—C10—N2 108.63 (11)
N2—N1—Ni1 118.89 (9) N4—C10—C11 111.11 (12)
C3—N2—N1 110.80 (12) N6—C10—C11 110.71 (12)
C3—N2—C10 129.99 (12) N2—C10—C11 107.69 (11)
N1—N2—C10 118.99 (11) O1—C11—C10 109.35 (12)
N1—C1—C2 111.08 (14) O1—C11—H11A 109.8
N1—C1—H1 124.5 C10—C11—H11A 109.8
C2—C1—H1 124.5 O1—C11—H11B 109.8
C3—C2—C1 105.45 (14) C10—C11—H11B 109.8
C3—C2—H2 127.3 H11A—C11—H11B 108.3
C1—C2—H2 127.3 C11—O1—C12 110.04 (11)
N2—C3—C2 107.11 (13) O1—C12—H12A 109.5
N2—C3—H3 126.4 O1—C12—H12B 109.5
C2—C3—H3 126.4 H12A—C12—H12B 109.5
C4—N3—N4 105.69 (12) O1—C12—H12C 109.5
C4—N3—Ni1 135.09 (11) H12A—C12—H12C 109.5
N4—N3—Ni1 118.51 (9) H12B—C12—H12C 109.5
C6—N4—N3 110.71 (12) O1A—S1A—O2A 114.77 (8)
C6—N4—C10 129.53 (13) O1A—S1A—O3A 114.93 (8)
N3—N4—C10 119.72 (12) O2A—S1A—O3A 114.87 (8)
N3—C4—C5 110.81 (14) O1A—S1A—C1A 103.12 (8)
N3—C4—H4 124.6 O2A—S1A—C1A 103.04 (8)
C5—C4—H4 124.6 O3A—S1A—C1A 103.80 (8)
C6—C5—C4 105.58 (14) F3A—C1A—F2A 108.54 (15)
C6—C5—H5 127.2 F3A—C1A—F1A 107.47 (14)
C4—C5—H5 127.2 F2A—C1A—F1A 106.24 (14)
N4—C6—C5 107.21 (14) F3A—C1A—S1A 112.04 (12)
N4—C6—H6 126.4 F2A—C1A—S1A 110.88 (12)
C5—C6—H6 126.4 F1A—C1A—S1A 111.42 (11)
C7—N5—N6 105.40 (12) H1W—O1W—H2W 104 (2)
C1—N1—N2—C3 −0.31 (16) N3—N4—C10—N6 63.30 (16)
Ni1—N1—N2—C3 174.45 (10) C6—N4—C10—N2 126.87 (15)
C1—N1—N2—C10 174.92 (12) N3—N4—C10—N2 −55.48 (16)
Ni1—N1—N2—C10 −10.32 (16) C6—N4—C10—C11 8.3 (2)
N2—N1—C1—C2 0.58 (17) N3—N4—C10—C11 −174.09 (12)
Ni1—N1—C1—C2 −172.90 (11) C9—N6—C10—N4 132.03 (15)
N1—C1—C2—C3 −0.63 (19) N5—N6—C10—N4 −53.32 (16)
N1—N2—C3—C2 −0.07 (17) C9—N6—C10—N2 −108.88 (16)
C10—N2—C3—C2 −174.63 (14) N5—N6—C10—N2 65.78 (16)
C1—C2—C3—N2 0.41 (18) C9—N6—C10—C11 9.2 (2)
C4—N3—N4—C6 −0.20 (16) N5—N6—C10—C11 −176.17 (12)
Ni1—N3—N4—C6 171.53 (10) C3—N2—C10—N4 −120.06 (16)
C4—N3—N4—C10 −178.26 (12) N1—N2—C10—N4 65.75 (16)
Ni1—N3—N4—C10 −6.53 (16) C3—N2—C10—N6 120.60 (16)
N4—N3—C4—C5 0.07 (17) N1—N2—C10—N6 −53.58 (16)
Ni1—N3—C4—C5 −169.62 (11) C3—N2—C10—C11 0.7 (2)
N3—C4—C5—C6 0.09 (18) N1—N2—C10—C11 −173.53 (12)
N3—N4—C6—C5 0.26 (17) N4—C10—C11—O1 −64.66 (15)
C10—N4—C6—C5 178.07 (14) N6—C10—C11—O1 57.25 (15)
C4—C5—C6—N4 −0.20 (17) N2—C10—C11—O1 175.87 (11)
C7—N5—N6—C9 −1.01 (16) C10—C11—O1—C12 −176.45 (12)
Ni1—N5—N6—C9 166.00 (10) O1A—S1A—C1A—F3A −60.94 (14)
C7—N5—N6—C10 −176.59 (12) O2A—S1A—C1A—F3A 179.35 (13)
Ni1—N5—N6—C10 −9.58 (16) O3A—S1A—C1A—F3A 59.25 (14)
N6—N5—C7—C8 0.35 (17) O1A—S1A—C1A—F2A 177.62 (13)
Ni1—N5—C7—C8 −163.56 (11) O2A—S1A—C1A—F2A 57.91 (14)
N5—C7—C8—C9 0.41 (18) O3A—S1A—C1A—F2A −62.19 (14)
N5—N6—C9—C8 1.28 (17) O1A—S1A—C1A—F1A 59.51 (14)
C10—N6—C9—C8 176.30 (14) O2A—S1A—C1A—F1A −60.20 (13)
C7—C8—C9—N6 −1.00 (17) O3A—S1A—C1A—F1A 179.70 (12)
C6—N4—C10—N6 −114.34 (16)

Symmetry code: (i) −x+1, −y+1, −z+1.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O1W—H2W···O3A 0.94 (3) 2.06 (3) 2.994 (2) 174 (2)
O1W—H1W···O3Aii 0.97 (3) 2.12 (3) 3.0613 (19) 163 (2)

Symmetry code: (ii) −x+2, −y+2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK5252).

References

  1. Bigmore, H. R., Lawrence, S. C., Mountford, P. & Tredget, C. S. (2005). Dalton Trans. pp. 635–651. [DOI] [PubMed]
  2. Lyubartseva, G. & Parkin, S. (2009). Acta Cryst. E65, m1530. [DOI] [PMC free article] [PubMed]
  3. Lyubartseva, G., Parkin, S. & Mallik, U. P. (2011). Acta Cryst. E67, m1656–m1657. [DOI] [PMC free article] [PubMed]
  4. Lyubartseva, G., Parkin, S., Mallik, U. P. & Jeon, H. K. (2012). Acta Cryst. E68, m888. [DOI] [PMC free article] [PubMed]
  5. Maria, L., Cunha, S., Videira, M., Gano, L., Paulo, A., Santos, I. C. & Santos, I. (2007). Dalton Trans. pp. 3010–3019. [DOI] [PubMed]
  6. Nonius (1998). COLLECT Nonius BV, Delft, The Netherlands.
  7. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  8. Paulo, A., Correia, J. D. G., Campello, M. P. C. & Santos, I. (2004). Polyhedron, 23, 331–360.
  9. Sheldrick, G. M. (2008a). SADABS University of Göttingen, Germany.
  10. Sheldrick, G. M. (2008b). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536813024252/tk5252sup1.cif

e-69-0m532-sup1.cif (751.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813024252/tk5252Isup2.hkl

e-69-0m532-Isup2.hkl (224.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES