Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Sep 12;69(Pt 10):m537. doi: 10.1107/S1600536813024653

Bis[1-meth­oxy-2,2,2-tris­(pyrazol-1-yl-κN 2)ethane]­nickel(II) bis­(tri­fluoro­methane­sulfonate) methanol disolvate

Ganna Lyubartseva a,*, Sean Parkin b, Uma Prasad Mallik a
PMCID: PMC3790348  PMID: 24098170

Abstract

In the title salt, [Ni(C12H14N6O)2](CF3SO3)2·2CH3OH, the NiII ion is coordinated by six N atoms from two tridentate 1-meth­oxy-2,2,2-tris­(pyrazol-1-yl)ethane ligands in a distorted octa­hedral geometry. The NiII ion is situated on an inversion centre. The Ni—N distances range from 2.0589 (19) to 2.0757 (19) Å, intra-ligand N—Ni—N angles range from 84.50 (8) to 85.15 (8)°, and adjacent inter-ligand N—Ni—N angles range between 94.85 (8) and 95.50 (8)°. In the crystal, O—H⋯O hydrogen bonds between methanol solvent mol­ecules and tri­fluoro­methane­sulfonate anions are observed.

Related literature  

Pyrazole-based tridentate ligands are drawing attention because of their topology and the nature of the donor atoms, see: Paulo et al. (2004); Bigmore et al. (2005). For the synthesis of the ligand, see: Maria et al. (2007). The compound reported here was prepared as part of our ongoing research effort to study nitro­gen donor tridentate scorpionate ligands coordinating to nickel, see: Lyubartseva et al. (2011, 2012); Lyubartseva & Parkin (2009).graphic file with name e-69-0m537-scheme1.jpg

Experimental  

Crystal data  

  • [Ni(C12H14N6O)2](CF3O3S)2·2CH4O

  • M r = 937.52

  • Triclinic, Inline graphic

  • a = 9.0025 (2) Å

  • b = 9.5921 (2) Å

  • c = 11.9914 (2) Å

  • α = 105.2683 (8)°

  • β = 103.4796 (8)°

  • γ = 102.2596 (8)°

  • V = 929.15 (3) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.74 mm−1

  • T = 90 K

  • 0.19 × 0.18 × 0.15 mm

Data collection  

  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2008a ) T min = 0.753, T max = 0.898

  • 22611 measured reflections

  • 4271 independent reflections

  • 3292 reflections with I > 2σ(I)

  • R int = 0.040

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.043

  • wR(F 2) = 0.105

  • S = 1.10

  • 4271 reflections

  • 271 parameters

  • H-atom parameters constrained

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.48 e Å−3

Data collection: COLLECT (Nonius, 1998); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO-SMN (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008b ); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008b ); molecular graphics: XP in SHELXTL (Sheldrick, 2008b ); software used to prepare material for publication: SHELXL2013.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536813024653/lh5647sup1.cif

e-69-0m537-sup1.cif (757KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813024653/lh5647Isup2.hkl

e-69-0m537-Isup2.hkl (234.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1S—H1S⋯O2A 0.84 1.96 2.782 (3) 168

Acknowledgments

GL gratefully acknowledges the Southern Arkansas University Faculty Research Grant for financial support.

supplementary crystallographic information

1. Comment

In an attempt to prepare mononuclear [L2NiII]+2, where L is 1-methoxy-2,2,2-tris(pyrazol-1-yl)ethane, a tridentate neutral nitrogen donor ligand, we isolated the major product [Ni(C12H14N60)2][CF3SO3]2·2CH3OH as pink triclinic crystals. In the crystal, the nickel ion is coordinated by six N atoms from the two tridentate tpmOMe ligands (average Ni—N distance = 2.0653 Å) in a distorted octahedral geometry. The Ni atom is situated on an inversion centre. The average N—Ni—N angle between adjacent pyrazole-ring-coordinated N atoms is 84.81° for the six acute angles and 95.19° for the six obtuse angles. Intramolecular O—H···O hydrogen bonds are present between methanol solvent molecules and trifluoromethanesulfonate anions.

2. Experimental

The 1-methoxy-2,2,2-tris(pyrazol-1-yl)ethane ligand was synthesized according to the previously published procedure of Maria et al. (2007). Nickel trifluoromethanesulfonate was used as received. Ni(OTf)2(358 mg, 1 mmol) was dissolved in 40 ml me thanol. 1-Methoxy-2,2,2-tris(pyrazol-1-yl)ethane (258 mg, 1 mmol) was dissolved in 25 ml me thanol. The ligand solution was added dropwise to metal solution with moderate stirring. Once the addition was complete, the resulting solution was filtered and solvent was slowly evaporated in air. Pink crystals were obtained after 2 weeks (343 mg, 73.2% yield). Elemental analysis, calculated for C28H36N12NiO10F6S2: C 35.87, H 3.87, N 17.93; found C 35.69, H 3.64, N 18.02. IR (cm-1): 3625,3483,3146,2921,1616,1522,1421,1388,1341,1324,1254,1232,1199,1167, 1106,1071,1059, 1028,1011,973,920,855,757,673,653,636,603,573,517.

3. Refinement

H atoms were found in difference Fourier maps and subsequently placed at idealized positions with constrained distances of 0.98 Å (RCH3), 1.00 Å (R3CH), 0.95 Å (Csp2H), 0.84 Å (O—H), and with Uiso(H) values set to either 1.2Ueq or 1.5Ueq (RCH3, OH) of the attached atom.

Figures

Fig. 1.

Fig. 1.

The title compound with displacement ellipsoids drawn at the 50% probability level. Unlabeled atoms are related by the symmetry operator (-x+1, -y+1, -z+1). Only the symmetry unique anion and solvent molecule are shown.

Crystal data

[Ni(C12H14N6O)2](CF3O3S)2·2CH4O Z = 1
Mr = 937.52 F(000) = 482
Triclinic, P1 Dx = 1.675 Mg m3
a = 9.0025 (2) Å Mo Kα radiation, λ = 0.71073 Å
b = 9.5921 (2) Å Cell parameters from 4236 reflections
c = 11.9914 (2) Å θ = 1.0–27.5°
α = 105.2683 (8)° µ = 0.74 mm1
β = 103.4796 (8)° T = 90 K
γ = 102.2596 (8)° Block, pink
V = 929.15 (3) Å3 0.19 × 0.18 × 0.15 mm

Data collection

Nonius KappaCCD diffractometer 4271 independent reflections
Radiation source: fine-focus sealed-tube 3292 reflections with I > 2σ(I)
Detector resolution: 9.1 pixels mm-1 Rint = 0.040
φ and ω scans at fixed χ = 55° θmax = 27.5°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Sheldrick, 2008a) h = −11→11
Tmin = 0.753, Tmax = 0.898 k = −12→12
22611 measured reflections l = −15→15

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105 H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0411P)2 + 1.0985P] where P = (Fo2 + 2Fc2)/3
4271 reflections (Δ/σ)max < 0.001
271 parameters Δρmax = 0.45 e Å3
0 restraints Δρmin = −0.48 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Ni1 0.5000 0.5000 0.5000 0.01541 (12)
N1 0.5656 (2) 0.7100 (2) 0.63001 (18) 0.0170 (4)
N2 0.7195 (2) 0.7717 (2) 0.70477 (17) 0.0146 (4)
C1 0.4910 (3) 0.8115 (3) 0.6624 (2) 0.0183 (5)
H1 0.3814 0.7993 0.6255 0.022*
C2 0.5939 (3) 0.9387 (3) 0.7576 (2) 0.0215 (5)
H2 0.5688 1.0264 0.7968 0.026*
C3 0.7388 (3) 0.9105 (3) 0.7828 (2) 0.0188 (5)
H3 0.8347 0.9757 0.8433 0.023*
N3 0.6331 (2) 0.4422 (2) 0.63761 (18) 0.0166 (4)
N4 0.7765 (2) 0.5424 (2) 0.71273 (17) 0.0148 (4)
C4 0.6123 (3) 0.3275 (3) 0.6808 (2) 0.0199 (5)
H4 0.5224 0.2401 0.6468 0.024*
C5 0.7402 (3) 0.3530 (3) 0.7828 (2) 0.0211 (5)
H5 0.7536 0.2881 0.8296 0.025*
C6 0.8421 (3) 0.4903 (3) 0.8014 (2) 0.0187 (5)
H6 0.9405 0.5400 0.8646 0.022*
N5 0.7151 (2) 0.5746 (2) 0.47104 (17) 0.0162 (4)
N6 0.8478 (2) 0.6538 (2) 0.56911 (17) 0.0156 (4)
C7 0.7638 (3) 0.5711 (3) 0.3745 (2) 0.0195 (5)
H7 0.6968 0.5233 0.2929 0.023*
C8 0.9267 (3) 0.6469 (3) 0.4085 (2) 0.0210 (5)
H8 0.9895 0.6592 0.3563 0.025*
C9 0.9763 (3) 0.6993 (3) 0.5324 (2) 0.0185 (5)
H9 1.0812 0.7569 0.5835 0.022*
C10 0.8346 (3) 0.6854 (3) 0.6921 (2) 0.0150 (5)
C11 0.9962 (3) 0.7798 (3) 0.7859 (2) 0.0170 (5)
H11A 1.0337 0.8761 0.7712 0.020*
H11B 0.9858 0.8034 0.8688 0.020*
O1 1.10620 (19) 0.69583 (18) 0.77534 (15) 0.0191 (4)
C12 1.2450 (3) 0.7555 (3) 0.8798 (2) 0.0267 (6)
H12A 1.3066 0.8544 0.8824 0.040*
H12B 1.3111 0.6864 0.8752 0.040*
H12C 1.2124 0.7667 0.9534 0.040*
S1A 0.85393 (7) 0.75255 (7) 0.11470 (5) 0.02007 (15)
O1A 0.8467 (3) 0.6007 (2) 0.11115 (19) 0.0381 (5)
O2A 0.8839 (2) 0.8585 (2) 0.23378 (15) 0.0252 (4)
O3A 0.9434 (2) 0.8109 (3) 0.04420 (17) 0.0406 (6)
C1A 0.6486 (3) 0.7358 (3) 0.0358 (2) 0.0261 (6)
F1A 0.60356 (18) 0.64929 (18) −0.08066 (13) 0.0306 (4)
F2A 0.6306 (3) 0.8709 (2) 0.03702 (18) 0.0555 (6)
F3A 0.5478 (2) 0.6780 (2) 0.08729 (17) 0.0503 (5)
O1S 0.7190 (2) 0.9839 (2) 0.38362 (17) 0.0275 (4)
H1S 0.7699 0.9374 0.3445 0.041*
C1S 0.7689 (3) 0.9892 (3) 0.5057 (3) 0.0286 (6)
H1S1 0.8850 1.0335 0.5393 0.043*
H1S2 0.7396 0.8866 0.5096 0.043*
H1S3 0.7167 1.0512 0.5529 0.043*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ni1 0.0140 (2) 0.0148 (2) 0.0151 (2) 0.00295 (17) 0.00210 (17) 0.00417 (17)
N1 0.0132 (10) 0.0165 (10) 0.0173 (10) 0.0023 (8) 0.0016 (8) 0.0039 (8)
N2 0.0119 (9) 0.0146 (9) 0.0155 (10) 0.0033 (8) 0.0024 (8) 0.0039 (8)
C1 0.0184 (12) 0.0176 (12) 0.0196 (12) 0.0078 (10) 0.0047 (10) 0.0064 (10)
C2 0.0225 (13) 0.0173 (12) 0.0246 (13) 0.0075 (10) 0.0075 (10) 0.0051 (10)
C3 0.0188 (12) 0.0154 (12) 0.0178 (12) 0.0023 (9) 0.0042 (10) 0.0020 (9)
N3 0.0129 (9) 0.0153 (10) 0.0167 (10) 0.0006 (8) 0.0009 (8) 0.0036 (8)
N4 0.0136 (9) 0.0137 (9) 0.0150 (10) 0.0030 (8) 0.0023 (8) 0.0039 (8)
C4 0.0207 (12) 0.0174 (12) 0.0212 (12) 0.0035 (10) 0.0058 (10) 0.0079 (10)
C5 0.0229 (13) 0.0207 (12) 0.0210 (13) 0.0056 (10) 0.0053 (10) 0.0109 (10)
C6 0.0185 (12) 0.0198 (12) 0.0181 (12) 0.0067 (10) 0.0039 (10) 0.0073 (10)
N5 0.0143 (10) 0.0168 (10) 0.0130 (10) 0.0014 (8) 0.0006 (8) 0.0031 (8)
N6 0.0144 (10) 0.0172 (10) 0.0127 (9) 0.0035 (8) 0.0026 (8) 0.0032 (8)
C7 0.0209 (12) 0.0199 (12) 0.0165 (12) 0.0047 (10) 0.0058 (10) 0.0050 (10)
C8 0.0234 (13) 0.0219 (13) 0.0222 (13) 0.0077 (10) 0.0122 (10) 0.0092 (10)
C9 0.0150 (11) 0.0188 (12) 0.0223 (13) 0.0046 (9) 0.0068 (10) 0.0072 (10)
C10 0.0144 (11) 0.0154 (11) 0.0147 (11) 0.0041 (9) 0.0028 (9) 0.0059 (9)
C11 0.0140 (11) 0.0160 (11) 0.0168 (12) 0.0028 (9) 0.0021 (9) 0.0024 (9)
O1 0.0132 (8) 0.0203 (9) 0.0198 (9) 0.0063 (7) 0.0003 (7) 0.0034 (7)
C12 0.0170 (13) 0.0287 (14) 0.0262 (14) 0.0077 (11) −0.0035 (11) 0.0040 (11)
S1A 0.0172 (3) 0.0233 (3) 0.0172 (3) 0.0048 (2) 0.0039 (2) 0.0049 (2)
O1A 0.0420 (12) 0.0284 (11) 0.0354 (12) 0.0180 (9) −0.0050 (9) 0.0053 (9)
O2A 0.0288 (10) 0.0268 (10) 0.0166 (9) 0.0059 (8) 0.0059 (8) 0.0043 (7)
O3A 0.0269 (11) 0.0574 (14) 0.0206 (10) −0.0127 (10) 0.0082 (8) 0.0045 (10)
C1A 0.0256 (14) 0.0271 (14) 0.0246 (14) 0.0103 (11) 0.0070 (11) 0.0053 (11)
F1A 0.0256 (8) 0.0333 (9) 0.0226 (8) 0.0081 (7) −0.0013 (6) 0.0008 (7)
F2A 0.0671 (14) 0.0359 (10) 0.0487 (12) 0.0332 (10) −0.0113 (10) 0.0014 (9)
F3A 0.0248 (9) 0.0771 (14) 0.0403 (11) 0.0038 (9) 0.0153 (8) 0.0096 (10)
O1S 0.0268 (10) 0.0322 (11) 0.0262 (10) 0.0138 (8) 0.0083 (8) 0.0096 (8)
C1S 0.0317 (15) 0.0238 (14) 0.0305 (15) 0.0068 (12) 0.0099 (12) 0.0098 (12)

Geometric parameters (Å, º)

Ni1—N5i 2.0589 (19) N6—C10 1.464 (3)
Ni1—N5 2.059 (2) C7—C8 1.399 (3)
Ni1—N1i 2.0611 (19) C7—H7 0.9500
Ni1—N1 2.0611 (19) C8—C9 1.364 (3)
Ni1—N3i 2.0757 (19) C8—H8 0.9500
Ni1—N3 2.0757 (19) C9—H9 0.9500
N1—C1 1.323 (3) C10—C11 1.531 (3)
N1—N2 1.366 (3) C11—O1 1.410 (3)
N2—C3 1.359 (3) C11—H11A 0.9900
N2—C10 1.468 (3) C11—H11B 0.9900
C1—C2 1.394 (3) O1—C12 1.431 (3)
C1—H1 0.9500 C12—H12A 0.9800
C2—C3 1.369 (3) C12—H12B 0.9800
C2—H2 0.9500 C12—H12C 0.9800
C3—H3 0.9500 S1A—O3A 1.432 (2)
N3—C4 1.331 (3) S1A—O1A 1.433 (2)
N3—N4 1.369 (3) S1A—O2A 1.4437 (18)
N4—C6 1.357 (3) S1A—C1A 1.821 (3)
N4—C10 1.466 (3) C1A—F3A 1.318 (3)
C4—C5 1.396 (3) C1A—F2A 1.336 (3)
C4—H4 0.9500 C1A—F1A 1.337 (3)
C5—C6 1.364 (4) O1S—C1S 1.411 (3)
C5—H5 0.9500 O1S—H1S 0.8400
C6—H6 0.9500 C1S—H1S1 0.9800
N5—C7 1.324 (3) C1S—H1S2 0.9800
N5—N6 1.370 (3) C1S—H1S3 0.9800
N6—C9 1.359 (3)
N5i—Ni1—N5 180.0 C9—N6—C10 129.4 (2)
N5i—Ni1—N1i 85.15 (8) N5—N6—C10 119.86 (18)
N5—Ni1—N1i 94.85 (8) N5—C7—C8 111.1 (2)
N5i—Ni1—N1 94.85 (8) N5—C7—H7 124.4
N5—Ni1—N1 85.15 (8) C8—C7—H7 124.4
N1i—Ni1—N1 180.00 (11) C9—C8—C7 105.6 (2)
N5i—Ni1—N3i 84.78 (8) C9—C8—H8 127.2
N5—Ni1—N3i 95.22 (8) C7—C8—H8 127.2
N1i—Ni1—N3i 84.50 (8) N6—C9—C8 107.2 (2)
N1—Ni1—N3i 95.50 (8) N6—C9—H9 126.4
N5i—Ni1—N3 95.22 (8) C8—C9—H9 126.4
N5—Ni1—N3 84.78 (8) N6—C10—N4 109.33 (18)
N1i—Ni1—N3 95.50 (8) N6—C10—N2 109.35 (18)
N1—Ni1—N3 84.50 (8) N4—C10—N2 108.62 (18)
N3i—Ni1—N3 180.00 (8) N6—C10—C11 110.37 (19)
C1—N1—N2 105.50 (19) N4—C10—C11 110.87 (18)
C1—N1—Ni1 134.77 (17) N2—C10—C11 108.27 (18)
N2—N1—Ni1 119.73 (14) O1—C11—C10 108.34 (18)
C3—N2—N1 110.70 (19) O1—C11—H11A 110.0
C3—N2—C10 130.25 (19) C10—C11—H11A 110.0
N1—N2—C10 119.05 (18) O1—C11—H11B 110.0
N1—C1—C2 111.3 (2) C10—C11—H11B 110.0
N1—C1—H1 124.4 H11A—C11—H11B 108.4
C2—C1—H1 124.4 C11—O1—C12 111.62 (18)
C3—C2—C1 105.5 (2) O1—C12—H12A 109.5
C3—C2—H2 127.2 O1—C12—H12B 109.5
C1—C2—H2 127.2 H12A—C12—H12B 109.5
N2—C3—C2 107.0 (2) O1—C12—H12C 109.5
N2—C3—H3 126.5 H12A—C12—H12C 109.5
C2—C3—H3 126.5 H12B—C12—H12C 109.5
C4—N3—N4 105.24 (19) O3A—S1A—O1A 115.91 (14)
C4—N3—Ni1 135.74 (16) O3A—S1A—O2A 113.55 (12)
N4—N3—Ni1 118.90 (14) O1A—S1A—O2A 115.10 (12)
C6—N4—N3 110.88 (19) O3A—S1A—C1A 103.65 (13)
C6—N4—C10 129.58 (19) O1A—S1A—C1A 102.79 (12)
N3—N4—C10 119.51 (18) O2A—S1A—C1A 103.55 (12)
N3—C4—C5 110.9 (2) F3A—C1A—F2A 107.0 (2)
N3—C4—H4 124.6 F3A—C1A—F1A 108.1 (2)
C5—C4—H4 124.6 F2A—C1A—F1A 106.9 (2)
C6—C5—C4 105.9 (2) F3A—C1A—S1A 111.68 (19)
C6—C5—H5 127.0 F2A—C1A—S1A 111.05 (19)
C4—C5—H5 127.0 F1A—C1A—S1A 111.86 (18)
N4—C6—C5 107.1 (2) C1S—O1S—H1S 109.5
N4—C6—H6 126.5 O1S—C1S—H1S1 109.5
C5—C6—H6 126.5 O1S—C1S—H1S2 109.5
C7—N5—N6 105.39 (19) H1S1—C1S—H1S2 109.5
C7—N5—Ni1 135.53 (16) O1S—C1S—H1S3 109.5
N6—N5—Ni1 119.02 (14) H1S1—C1S—H1S3 109.5
C9—N6—N5 110.65 (18) H1S2—C1S—H1S3 109.5
C1—N1—N2—C3 0.1 (3) N5—N6—C10—N4 59.9 (2)
Ni1—N1—N2—C3 179.31 (15) C9—N6—C10—N2 117.0 (2)
C1—N1—N2—C10 179.7 (2) N5—N6—C10—N2 −58.9 (3)
Ni1—N1—N2—C10 −1.1 (3) C9—N6—C10—C11 −2.0 (3)
N2—N1—C1—C2 −0.2 (3) N5—N6—C10—C11 −177.94 (18)
Ni1—N1—C1—C2 −179.22 (17) C6—N4—C10—N6 124.2 (2)
N1—C1—C2—C3 0.2 (3) N3—N4—C10—N6 −58.1 (3)
N1—N2—C3—C2 0.0 (3) C6—N4—C10—N2 −116.5 (2)
C10—N2—C3—C2 −179.5 (2) N3—N4—C10—N2 61.2 (3)
C1—C2—C3—N2 −0.1 (3) C6—N4—C10—C11 2.3 (3)
C4—N3—N4—C6 −0.4 (3) N3—N4—C10—C11 −179.97 (19)
Ni1—N3—N4—C6 176.26 (15) C3—N2—C10—N6 −120.8 (2)
C4—N3—N4—C10 −178.5 (2) N1—N2—C10—N6 59.7 (3)
Ni1—N3—N4—C10 −1.8 (3) C3—N2—C10—N4 120.0 (2)
N4—N3—C4—C5 0.1 (3) N1—N2—C10—N4 −59.5 (2)
Ni1—N3—C4—C5 −175.75 (18) C3—N2—C10—C11 −0.5 (3)
N3—C4—C5—C6 0.2 (3) N1—N2—C10—C11 −179.99 (19)
N3—N4—C6—C5 0.6 (3) N6—C10—C11—O1 −61.4 (2)
C10—N4—C6—C5 178.4 (2) N4—C10—C11—O1 59.9 (2)
C4—C5—C6—N4 −0.5 (3) N2—C10—C11—O1 178.97 (18)
C7—N5—N6—C9 0.5 (3) C10—C11—O1—C12 −163.6 (2)
Ni1—N5—N6—C9 −177.23 (15) O3A—S1A—C1A—F3A 177.87 (19)
C7—N5—N6—C10 177.1 (2) O1A—S1A—C1A—F3A 56.8 (2)
Ni1—N5—N6—C10 −0.6 (3) O2A—S1A—C1A—F3A −63.4 (2)
N6—N5—C7—C8 0.1 (3) O3A—S1A—C1A—F2A −62.8 (2)
Ni1—N5—C7—C8 177.22 (17) O1A—S1A—C1A—F2A 176.2 (2)
N5—C7—C8—C9 −0.6 (3) O2A—S1A—C1A—F2A 56.0 (2)
N5—N6—C9—C8 −0.9 (3) O3A—S1A—C1A—F1A 56.6 (2)
C10—N6—C9—C8 −177.1 (2) O1A—S1A—C1A—F1A −64.5 (2)
C7—C8—C9—N6 0.9 (3) O2A—S1A—C1A—F1A 175.33 (18)
C9—N6—C10—N4 −124.2 (2)

Symmetry code: (i) −x+1, −y+1, −z+1.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O1S—H1S···O2A 0.84 1.96 2.782 (3) 168

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5647).

References

  1. Bigmore, H. R., Lawrence, S. C., Mountford, P. & Tredget, C. S. (2005). Dalton Trans. pp. 635–651. [DOI] [PubMed]
  2. Lyubartseva, G. & Parkin, S. (2009). Acta Cryst. E65, m1530. [DOI] [PMC free article] [PubMed]
  3. Lyubartseva, G., Parkin, S. & Mallik, U. P. (2011). Acta Cryst. E67, m1656–m1657. [DOI] [PMC free article] [PubMed]
  4. Lyubartseva, G., Parkin, S., Mallik, U. P. & Jeon, H. K. (2012). Acta Cryst. E68, m888. [DOI] [PMC free article] [PubMed]
  5. Maria, L., Cunha, S., Videira, M., Gano, L., Paulo, A., Santos, I. C. & Santos, I. (2007). Dalton Trans. pp. 3010–3019. [DOI] [PubMed]
  6. Nonius (1998). COLLECT Nonius BV, Delft, The Netherlands.
  7. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  8. Paulo, A., Correia, J. D. G., Campello, M. P. C. & Santos, I. (2004). Polyhedron, 23, 331–360.
  9. Sheldrick, G. M. (2008a). SADABS University of Göttingen, Germany.
  10. Sheldrick, G. M. (2008b). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536813024653/lh5647sup1.cif

e-69-0m537-sup1.cif (757KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813024653/lh5647Isup2.hkl

e-69-0m537-Isup2.hkl (234.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES