Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Sep 12;69(Pt 10):m542–m543. doi: 10.1107/S1600536813024768

μ-(2,6-Bis{[3-(di­methyl­amino)­prop­yl]imino­meth­yl}-4-methyl­phenolato)-μ-hydroxido-bis­[(thio­cyanato-κN)copper(II)]

M G Meera a, P Kamatchi Selvaraj b,*, B Viswanathan c, V Ramkumar d
PMCID: PMC3790352  PMID: 24098174

Abstract

In the title compound, [Cu2(C19H31N4O)(OH)(NCS)2], the mol­ecular structure of the dinuclear complex reveals two penta­coordinated CuII ions, which are bridged by the phenolate O atom of the ligand and by an exogenous hydroxide ion. The bridging atoms occupy equatorial positions in the coordination sphere of the metal atoms and complete the equatorial coordination planes with two ligand N atoms, the apical positions being occupied by thio­cyanate N atoms. The crystal structure also features π–π stacking inter­actions involving the benzene rings with a centroid–centroid distance of 3.764 (4)Å. The crystal studied was a non-merohedral twin, with a refined BASF value of 0.203 (2)

Related literature  

For related structures, see: Matsufuji et al. (2005); Amase et al. (2005); Erxleben & Hermann (2000); Higuchi et al. (1995); Koga et al. (1998); Knight et al. (2008). For applications and properties of binuclear copper (II) complexes, see: Adams et al. (2000); Al-Obaidi (2011); Anupama et al. (2012); Aytaç (2010); Hurley (2002); Saha & Koner (2004); Sreedaran et al. (2008).graphic file with name e-69-0m542-scheme1.jpg

Experimental  

Crystal data  

  • [Cu2(C19H31N4O)(OH)(NCS)2]

  • M r = 591.73

  • Monoclinic, Inline graphic

  • a = 11.9706 (5) Å

  • b = 13.7518 (7) Å

  • c = 16.9887 (8) Å

  • β = 109.396 (2)°

  • V = 2637.9 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.80 mm−1

  • T = 298 K

  • 0.35 × 0.25 × 0.20 mm

Data collection  

  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004) T min = 0.572, T max = 0.715

  • 15757 measured reflections

  • 15757 independent reflections

  • 12691 reflections with I > 2σ(I)

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.036

  • wR(F 2) = 0.101

  • S = 1.01

  • 15757 reflections

  • 303 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.73 e Å−3

  • Δρmin = −0.53 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536813024768/bx2448sup1.cif

e-69-0m542-sup1.cif (27KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813024768/bx2448Isup2.hkl

e-69-0m542-Isup2.hkl (754.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Department of Chemistry, IIT Madras, for the data collection and Dr Babu Varghese, Sophisticated Analytical Instrumentation Facility, Indian Institute of Technology, Chennai 600 036, Tamil Nadu, India, for the help rendered with the single crystal XRD studies. MGM and PKS thank the UGC–MRP, Government of India, for financial support.

supplementary crystallographic information

1. Comment

Binuclear copper (II) complexes are of special interest in their design and synthesis. They have distinct role to play as successful synthetic biomimetic devices capable of representing the active sites of various metalloenzymes (Adams, et al., 2000). They are shown to act as possible catalysts favoring a wide variety of organic transformations in both homogeneous and heterogeneous media (Saha, et al., 2004). They also serve as antifungal and antibacterial agents (Sreedaran, et al., 2008; Al-Obaidi, et al. 2011), as DNA binding and cleaving agents (Hurley, 2002), as molecular magnetic materials and as fluorescent probes (Anupama, et al., 2012). Moreover, the presence of the –C=N– groups, electronegative nitrogen, sulfur and oxygen atoms in the complex, may impart corrosion inhibition properties to the synthesized complex (Aytaç, 2010). In the title compound, C21H32Cu2N6O2S2, the molecular structure of the dinuclear cation in complex reveals two pentacoordinated cupric ions, which are bridged by the phenolate oxygen O atoms of the ligand and by an exogenous hydroxo ion. Bridging atoms occupy equatorial positions in the coordination sphere of the metals and completes its equatorial coordination plane with two N atoms of the ligand.The apical position is occupied by thiocyanate N atoms. The molecular structure is stabilized by weak O—H···N hydrogen bond interactions. The crystal structure is stablized by π-π stacking interactions involving the benzene rings [Cg1-Cg1i=3.764 (4)Å] ( symmetry code (i) : -x,-y,-z).The crystal studied was a non-merohedral twin with a refined BASF value of 0.2034 (20)

2. Experimental

A solution of 2,6-Diformyl-4-methylphenol (0.164 g, 1 mmol) in methanol was slowly added to a solution of 3-(Dimethylamino)propylamine (0.25 ml, 2.0 mmol) in 5 ml of methanol and stirred. The resulting mixture was refluxed for 10 min. To the yellow ligand solution thus obtained was added copper (II) nitrate trihydrate (0.485 g, 2 mmol) and the mixture was refluxed for another 30 min. The addition of sodium thiocyanate (0.162 g, 2 mmol) resulted in the precipitation of light green microcrystals. Single crystals suitable for X-ray diffraction were obtained by recrystallization from acetonitrile.

3. Refinement

All hydrogen atoms were fixed geometrically and allowed to ride on the parent carbon atoms with aromatic C—H = 0.93 Å, methylene C—H = 0.97 Å and methyl C—H = 0.96 Å. The displacement parameters were set for phenyl H atoms at Uiso(H) = 1.2Ueq(C) and for methylene and methyl H atoms at Uiso(H) =1.5Ueq(C). There was two fold twinning in the crystal. The input data was converted from HKLF 4 to HKLF 5 format for SHELXL97 program·MERG 0 was added in the ins file and refined.

Figures

Fig. 1.

Fig. 1.

ORTEP of the molecule with atoms represented as 30% probability ellipsoids.

Crystal data

[Cu2(C19H31N4O)(OH)(NCS)2] F(000) = 1224
Mr = 591.73 Dx = 1.490 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 6965 reflections
a = 11.9706 (5) Å θ = 2.5–28.5°
b = 13.7518 (7) Å µ = 1.80 mm1
c = 16.9887 (8) Å T = 298 K
β = 109.396 (2)° Rectangular, green
V = 2637.9 (2) Å3 0.35 × 0.25 × 0.20 mm
Z = 4

Data collection

Bruker APEXII CCD area-detector diffractometer 15757 independent reflections
Radiation source: fine-focus sealed tube 12691 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.000
phi and ω scans θmax = 25.0°, θmin = 2.3°
Absorption correction: multi-scan (TWINABS; Bruker, 2004) h = −14→13
Tmin = 0.572, Tmax = 0.715 k = −16→16
15757 measured reflections l = −19→20

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101 H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0461P)2 + 2.7323P] where P = (Fo2 + 2Fc2)/3
15757 reflections (Δ/σ)max = 0.001
303 parameters Δρmax = 0.73 e Å3
2 restraints Δρmin = −0.53 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.14435 (16) 0.08416 (13) 0.14686 (11) 0.0324 (4)
C2 0.02153 (16) 0.09626 (14) 0.13278 (12) 0.0348 (5)
C3 −0.05365 (17) 0.12155 (15) 0.05291 (12) 0.0420 (5)
H3 −0.1340 0.1291 0.0446 0.050*
C4 −0.01470 (18) 0.13587 (14) −0.01390 (13) 0.0455 (5)
C5 0.10368 (18) 0.12202 (15) −0.00002 (13) 0.0434 (5)
H5 0.1318 0.1300 −0.0445 0.052*
C6 0.18437 (16) 0.09648 (14) 0.07788 (12) 0.0351 (5)
C7 0.17786 (18) 0.19821 (16) 0.46594 (14) 0.0439 (5)
C8 0.60543 (19) 0.19201 (15) 0.32423 (13) 0.0425 (5)
C9 0.30672 (19) 0.08411 (16) 0.08337 (14) 0.0445 (5)
H9 0.3224 0.0936 0.0338 0.053*
C10 −0.0999 (2) 0.16307 (17) −0.09907 (13) 0.0642 (7)
H10A −0.1784 0.1425 −0.1035 0.096*
H10B −0.0762 0.1317 −0.1415 0.096*
H10C −0.0990 0.2323 −0.1062 0.096*
C11 −0.03213 (17) 0.08429 (16) 0.19646 (14) 0.0430 (5)
H11 −0.1136 0.0941 0.1793 0.052*
C12 −0.06173 (19) 0.0563 (2) 0.32495 (15) 0.0586 (7)
H12A −0.1417 0.0738 0.2910 0.070*
H12B −0.0352 0.1028 0.3703 0.070*
C13 −0.0625 (2) −0.0435 (2) 0.36024 (16) 0.0645 (7)
H13A −0.0833 −0.0900 0.3147 0.077*
H13B −0.1236 −0.0461 0.3860 0.077*
C14 0.0528 (2) −0.0738 (2) 0.42343 (14) 0.0645 (7)
H14A 0.0759 −0.0250 0.4671 0.077*
H14B 0.0403 −0.1342 0.4488 0.077*
C15 0.1269 (3) −0.16821 (18) 0.33008 (16) 0.0740 (8)
H15A 0.1060 −0.2252 0.3546 0.111*
H15B 0.1956 −0.1816 0.3146 0.111*
H15C 0.0622 −0.1502 0.2813 0.111*
C16 0.51179 (18) 0.05934 (19) 0.13281 (16) 0.0579 (7)
H16A 0.5629 0.1092 0.1667 0.070*
H16B 0.4998 0.0741 0.0747 0.070*
C17 0.5721 (2) −0.0382 (2) 0.15419 (18) 0.0704 (8)
H17A 0.5198 −0.0876 0.1207 0.084*
H17B 0.6430 −0.0374 0.1385 0.084*
C18 0.60619 (18) −0.0670 (2) 0.24424 (17) 0.0659 (8)
H18A 0.6542 −0.1254 0.2525 0.079*
H18B 0.6553 −0.0160 0.2778 0.079*
C19 0.5583 (2) −0.1110 (2) 0.36522 (16) 0.0779 (8)
H19A 0.6109 −0.1653 0.3714 0.117*
H19B 0.4962 −0.1278 0.3869 0.117*
H19C 0.6016 −0.0563 0.3955 0.117*
C20 0.4338 (2) −0.16796 (18) 0.23131 (18) 0.0767 (8)
H20A 0.4841 −0.2227 0.2327 0.115*
H20B 0.3930 −0.1498 0.1744 0.115*
H20C 0.3771 −0.1850 0.2578 0.115*
C21 0.2588 (2) −0.1131 (2) 0.46299 (15) 0.0758 (8)
H21A 0.2788 −0.0594 0.5012 0.114*
H21B 0.3241 −0.1269 0.4438 0.114*
H21C 0.2420 −0.1693 0.4907 0.114*
Cu1 0.393606 (19) 0.039255 (19) 0.259878 (16) 0.03997 (8)
Cu2 0.18605 (2) 0.039242 (19) 0.329566 (15) 0.03923 (8)
N1 0.01670 (14) 0.06201 (12) 0.27351 (11) 0.0400 (4)
N2 0.39640 (14) 0.06200 (12) 0.14674 (11) 0.0410 (4)
N3 0.50620 (14) −0.08561 (13) 0.27594 (12) 0.0481 (5)
N4 0.15297 (16) −0.08803 (13) 0.39072 (11) 0.0458 (4)
N5 0.20263 (17) 0.14220 (15) 0.42418 (12) 0.0598 (5)
N6 0.52528 (17) 0.14212 (14) 0.31649 (12) 0.0591 (5)
O1 0.21794 (10) 0.06199 (10) 0.22147 (7) 0.0381 (3)
O11 0.35320 (12) 0.01574 (12) 0.35888 (9) 0.0573 (4)
H11O 0.3851 0.0662 0.3891 0.086*
S3 0.71742 (6) 0.26265 (5) 0.33508 (5) 0.0685 (2)
S4 0.14334 (6) 0.27589 (5) 0.52589 (5) 0.0684 (2)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0350 (10) 0.0254 (10) 0.0345 (11) −0.0008 (9) 0.0086 (9) −0.0019 (8)
C2 0.0327 (10) 0.0315 (12) 0.0382 (12) 0.0025 (9) 0.0091 (9) −0.0039 (9)
C3 0.0379 (11) 0.0365 (13) 0.0444 (13) 0.0055 (9) 0.0038 (10) −0.0006 (10)
C4 0.0490 (13) 0.0328 (12) 0.0434 (13) 0.0036 (10) 0.0002 (10) 0.0027 (10)
C5 0.0584 (13) 0.0356 (12) 0.0363 (12) −0.0050 (10) 0.0159 (11) 0.0030 (10)
C6 0.0384 (11) 0.0321 (12) 0.0341 (12) −0.0051 (9) 0.0111 (9) −0.0007 (9)
C7 0.0433 (12) 0.0416 (14) 0.0453 (14) −0.0067 (10) 0.0128 (10) 0.0003 (10)
C8 0.0478 (12) 0.0384 (13) 0.0411 (13) 0.0020 (10) 0.0146 (10) 0.0015 (10)
C9 0.0562 (14) 0.0405 (14) 0.0452 (14) −0.0060 (11) 0.0280 (12) 0.0002 (11)
C10 0.0714 (16) 0.0580 (15) 0.0468 (15) 0.0076 (13) −0.0022 (12) 0.0128 (12)
C11 0.0291 (10) 0.0436 (14) 0.0554 (15) 0.0029 (9) 0.0128 (10) −0.0073 (11)
C12 0.0412 (12) 0.085 (2) 0.0581 (16) −0.0022 (12) 0.0274 (12) −0.0124 (14)
C13 0.0553 (14) 0.095 (2) 0.0505 (15) −0.0254 (14) 0.0273 (13) −0.0086 (15)
C14 0.0776 (17) 0.0796 (19) 0.0455 (14) −0.0293 (15) 0.0327 (13) −0.0004 (13)
C15 0.114 (2) 0.0416 (15) 0.0677 (18) −0.0107 (15) 0.0310 (16) −0.0073 (13)
C16 0.0427 (13) 0.0769 (19) 0.0657 (17) −0.0077 (12) 0.0334 (12) −0.0049 (14)
C17 0.0498 (14) 0.085 (2) 0.087 (2) 0.0089 (14) 0.0366 (14) −0.0185 (17)
C18 0.0357 (12) 0.0666 (18) 0.093 (2) 0.0151 (11) 0.0181 (13) −0.0157 (15)
C19 0.0664 (16) 0.076 (2) 0.075 (2) 0.0375 (15) 0.0012 (14) 0.0123 (15)
C20 0.0779 (18) 0.0373 (15) 0.101 (2) −0.0023 (13) 0.0113 (16) −0.0058 (14)
C21 0.0828 (18) 0.083 (2) 0.0554 (17) −0.0027 (16) 0.0153 (14) 0.0322 (15)
Cu1 0.02982 (13) 0.04586 (17) 0.04599 (17) 0.00438 (11) 0.01494 (12) 0.00773 (12)
Cu2 0.03448 (14) 0.04623 (17) 0.03978 (16) 0.00297 (11) 0.01607 (12) 0.00696 (12)
N1 0.0343 (9) 0.0452 (11) 0.0451 (11) 0.0004 (8) 0.0195 (8) −0.0037 (9)
N2 0.0367 (9) 0.0420 (11) 0.0504 (11) −0.0031 (8) 0.0228 (9) −0.0003 (9)
N3 0.0358 (9) 0.0421 (12) 0.0599 (12) 0.0092 (8) 0.0072 (9) −0.0043 (9)
N4 0.0599 (11) 0.0428 (11) 0.0362 (10) −0.0100 (9) 0.0181 (9) 0.0030 (9)
N5 0.0654 (12) 0.0523 (14) 0.0605 (13) −0.0079 (10) 0.0194 (11) −0.0186 (11)
N6 0.0564 (12) 0.0493 (13) 0.0695 (14) −0.0145 (10) 0.0181 (10) −0.0130 (10)
O1 0.0266 (7) 0.0572 (9) 0.0299 (8) 0.0025 (6) 0.0084 (6) 0.0034 (6)
O11 0.0382 (8) 0.0844 (12) 0.0495 (10) 0.0098 (8) 0.0148 (7) 0.0199 (8)
S3 0.0648 (4) 0.0720 (5) 0.0766 (5) −0.0241 (3) 0.0340 (4) 0.0000 (4)
S4 0.0654 (4) 0.0669 (5) 0.0845 (5) −0.0065 (3) 0.0405 (4) −0.0248 (4)

Geometric parameters (Å, º)

C1—O1 1.3168 (19) C15—H15B 0.9600
C1—C6 1.416 (3) C15—H15C 0.9600
C1—C2 1.419 (2) C16—N2 1.477 (2)
C2—C3 1.400 (3) C16—C17 1.510 (3)
C2—C11 1.439 (3) C16—H16A 0.9700
C3—C4 1.377 (3) C16—H16B 0.9700
C3—H3 0.9300 C17—C18 1.500 (3)
C4—C5 1.370 (3) C17—H17A 0.9700
C4—C10 1.514 (2) C17—H17B 0.9700
C5—C6 1.400 (3) C18—N3 1.489 (3)
C5—H5 0.9300 C18—H18A 0.9700
C6—C9 1.446 (3) C18—H18B 0.9700
C7—N5 1.151 (3) C19—N3 1.477 (3)
C7—S4 1.621 (2) C19—H19A 0.9600
C8—N6 1.151 (2) C19—H19B 0.9600
C8—S3 1.616 (2) C19—H19C 0.9600
C9—N2 1.279 (3) C20—N3 1.474 (3)
C9—H9 0.9300 C20—H20A 0.9600
C10—H10A 0.9600 C20—H20B 0.9600
C10—H10B 0.9600 C20—H20C 0.9600
C10—H10C 0.9600 C21—N4 1.483 (3)
C11—N1 1.281 (3) C21—H21A 0.9600
C11—H11 0.9300 C21—H21B 0.9600
C12—N1 1.482 (2) C21—H21C 0.9600
C12—C13 1.499 (3) Cu1—O11 1.9255 (15)
C12—H12A 0.9700 Cu1—N2 1.9587 (17)
C12—H12B 0.9700 Cu1—O1 2.0085 (12)
C13—C14 1.499 (3) Cu1—N6 2.0985 (19)
C13—H13A 0.9700 Cu1—N3 2.1437 (17)
C13—H13B 0.9700 Cu2—O11 1.9219 (14)
C14—N4 1.492 (3) Cu2—N1 1.9577 (16)
C14—H14A 0.9700 Cu2—O1 2.0203 (12)
C14—H14B 0.9700 Cu2—N5 2.101 (2)
C15—N4 1.470 (3) Cu2—N4 2.1384 (17)
C15—H15A 0.9600 O11—H11O 0.8715
O1—C1—C6 121.49 (17) N3—C18—H18A 108.3
O1—C1—C2 120.93 (18) C17—C18—H18A 108.3
C6—C1—C2 117.58 (16) N3—C18—H18B 108.3
C3—C2—C1 119.27 (18) C17—C18—H18B 108.3
C3—C2—C11 116.95 (17) H18A—C18—H18B 107.4
C1—C2—C11 123.78 (18) N3—C19—H19A 109.5
C4—C3—C2 123.35 (18) N3—C19—H19B 109.5
C4—C3—H3 118.3 H19A—C19—H19B 109.5
C2—C3—H3 118.3 N3—C19—H19C 109.5
C5—C4—C3 116.88 (18) H19A—C19—H19C 109.5
C5—C4—C10 121.9 (2) H19B—C19—H19C 109.5
C3—C4—C10 121.2 (2) N3—C20—H20A 109.5
C4—C5—C6 123.2 (2) N3—C20—H20B 109.5
C4—C5—H5 118.4 H20A—C20—H20B 109.5
C6—C5—H5 118.4 N3—C20—H20C 109.5
C5—C6—C1 119.72 (18) H20A—C20—H20C 109.5
C5—C6—C9 117.17 (19) H20B—C20—H20C 109.5
C1—C6—C9 123.11 (18) N4—C21—H21A 109.5
N5—C7—S4 179.1 (2) N4—C21—H21B 109.5
N6—C8—S3 179.6 (2) H21A—C21—H21B 109.5
N2—C9—C6 129.14 (19) N4—C21—H21C 109.5
N2—C9—H9 115.4 H21A—C21—H21C 109.5
C6—C9—H9 115.4 H21B—C21—H21C 109.5
C4—C10—H10A 109.5 O11—Cu1—N2 167.19 (6)
C4—C10—H10B 109.5 O11—Cu1—O1 76.72 (5)
H10A—C10—H10B 109.5 N2—Cu1—O1 90.78 (6)
C4—C10—H10C 109.5 O11—Cu1—N6 94.66 (7)
H10A—C10—H10C 109.5 N2—Cu1—N6 95.00 (7)
H10B—C10—H10C 109.5 O1—Cu1—N6 126.15 (7)
N1—C11—C2 129.00 (18) O11—Cu1—N3 94.82 (7)
N1—C11—H11 115.5 N2—Cu1—N3 92.17 (7)
C2—C11—H11 115.5 O1—Cu1—N3 135.42 (6)
N1—C12—C13 111.92 (19) N6—Cu1—N3 97.86 (7)
N1—C12—H12A 109.2 O11—Cu2—N1 166.83 (7)
C13—C12—H12A 109.2 O11—Cu2—O1 76.52 (5)
N1—C12—H12B 109.2 N1—Cu2—O1 90.62 (6)
C13—C12—H12B 109.2 O11—Cu2—N5 95.13 (7)
H12A—C12—H12B 107.9 N1—Cu2—N5 94.81 (7)
C12—C13—C14 114.5 (2) O1—Cu2—N5 126.34 (7)
C12—C13—H13A 108.6 O11—Cu2—N4 94.66 (7)
C14—C13—H13A 108.6 N1—Cu2—N4 92.19 (7)
C12—C13—H13B 108.6 O1—Cu2—N4 133.61 (6)
C14—C13—H13B 108.6 N5—Cu2—N4 99.53 (7)
H13A—C13—H13B 107.6 C11—N1—C12 116.86 (17)
N4—C14—C13 115.60 (18) C11—N1—Cu2 125.65 (14)
N4—C14—H14A 108.4 C12—N1—Cu2 117.46 (14)
C13—C14—H14A 108.4 C9—N2—C16 116.05 (18)
N4—C14—H14B 108.4 C9—N2—Cu1 125.50 (14)
C13—C14—H14B 108.4 C16—N2—Cu1 118.35 (15)
H14A—C14—H14B 107.4 C20—N3—C19 108.8 (2)
N4—C15—H15A 109.5 C20—N3—C18 110.60 (19)
N4—C15—H15B 109.5 C19—N3—C18 107.21 (18)
H15A—C15—H15B 109.5 C20—N3—Cu1 108.21 (13)
N4—C15—H15C 109.5 C19—N3—Cu1 110.66 (14)
H15A—C15—H15C 109.5 C18—N3—Cu1 111.32 (14)
H15B—C15—H15C 109.5 C15—N4—C21 109.2 (2)
N2—C16—C17 112.44 (19) C15—N4—C14 110.47 (19)
N2—C16—H16A 109.1 C21—N4—C14 107.06 (18)
C17—C16—H16A 109.1 C15—N4—Cu2 107.68 (14)
N2—C16—H16B 109.1 C21—N4—Cu2 110.35 (14)
C17—C16—H16B 109.1 C14—N4—Cu2 112.04 (14)
H16A—C16—H16B 107.8 C7—N5—Cu2 160.80 (18)
C18—C17—C16 115.2 (2) C8—N6—Cu1 157.66 (19)
C18—C17—H17A 108.5 C1—O1—Cu1 129.96 (12)
C16—C17—H17A 108.5 C1—O1—Cu2 130.01 (12)
C18—C17—H17B 108.5 Cu1—O1—Cu2 100.02 (5)
C16—C17—H17B 108.5 Cu2—O11—Cu1 106.70 (6)
H17A—C17—H17B 107.5 Cu2—O11—H11O 103.5
N3—C18—C17 115.82 (18) Cu1—O11—H11O 101.1
O1—C1—C2—C3 178.85 (17) N6—Cu1—N3—C19 67.38 (16)
C6—C1—C2—C3 −1.3 (3) O11—Cu1—N3—C18 −147.13 (15)
O1—C1—C2—C11 −1.0 (3) N2—Cu1—N3—C18 43.61 (15)
C6—C1—C2—C11 178.84 (19) O1—Cu1—N3—C18 136.92 (14)
C1—C2—C3—C4 −0.2 (3) N6—Cu1—N3—C18 −51.74 (16)
C11—C2—C3—C4 179.66 (19) C13—C14—N4—C15 −63.7 (3)
C2—C3—C4—C5 1.5 (3) C13—C14—N4—C21 177.5 (2)
C2—C3—C4—C10 179.94 (19) C13—C14—N4—Cu2 56.4 (2)
C3—C4—C5—C6 −1.3 (3) O11—Cu2—N4—C15 −89.45 (16)
C10—C4—C5—C6 −179.73 (19) N1—Cu2—N4—C15 79.30 (16)
C4—C5—C6—C1 −0.2 (3) O1—Cu2—N4—C15 −13.65 (19)
C4—C5—C6—C9 179.91 (19) N5—Cu2—N4—C15 174.54 (16)
O1—C1—C6—C5 −178.67 (17) O11—Cu2—N4—C21 29.70 (16)
C2—C1—C6—C5 1.5 (3) N1—Cu2—N4—C21 −161.55 (16)
O1—C1—C6—C9 1.2 (3) O1—Cu2—N4—C21 105.50 (16)
C2—C1—C6—C9 −178.60 (19) N5—Cu2—N4—C21 −66.30 (17)
C5—C6—C9—N2 179.3 (2) O11—Cu2—N4—C14 148.89 (14)
C1—C6—C9—N2 −0.5 (4) N1—Cu2—N4—C14 −42.37 (15)
C3—C2—C11—N1 −179.7 (2) O1—Cu2—N4—C14 −135.31 (13)
C1—C2—C11—N1 0.1 (4) N5—Cu2—N4—C14 52.88 (15)
N1—C12—C13—C14 66.9 (3) S4—C7—N5—Cu2 103 (13)
C12—C13—C14—N4 −67.0 (3) O11—Cu2—N5—C7 −179.4 (6)
N2—C16—C17—C18 −63.9 (3) N1—Cu2—N5—C7 9.3 (6)
C16—C17—C18—N3 66.5 (3) O1—Cu2—N5—C7 103.6 (6)
C2—C11—N1—C12 179.1 (2) N4—Cu2—N5—C7 −83.8 (6)
C2—C11—N1—Cu2 1.3 (3) S3—C8—N6—Cu1 117 (30)
C13—C12—N1—C11 118.7 (2) O11—Cu1—N6—C8 165.6 (5)
C13—C12—N1—Cu2 −63.2 (2) N2—Cu1—N6—C8 −22.9 (5)
O11—Cu2—N1—C11 −13.7 (4) O1—Cu1—N6—C8 −117.5 (5)
O1—Cu2—N1—C11 −1.36 (18) N3—Cu1—N6—C8 70.0 (5)
N5—Cu2—N1—C11 125.20 (19) C6—C1—O1—Cu1 −0.5 (2)
N4—Cu2—N1—C11 −135.05 (18) C2—C1—O1—Cu1 179.35 (13)
O11—Cu2—N1—C12 168.5 (3) C6—C1—O1—Cu2 −179.45 (13)
O1—Cu2—N1—C12 −179.19 (15) C2—C1—O1—Cu2 0.4 (2)
N5—Cu2—N1—C12 −52.63 (16) O11—Cu1—O1—C1 −177.76 (16)
N4—Cu2—N1—C12 47.12 (16) N2—Cu1—O1—C1 −0.57 (16)
C6—C9—N2—C16 −177.2 (2) N6—Cu1—O1—C1 96.20 (16)
C6—C9—N2—Cu1 −0.9 (3) N3—Cu1—O1—C1 −94.45 (17)
C17—C16—N2—C9 −122.6 (2) O11—Cu1—O1—Cu2 1.45 (6)
C17—C16—N2—Cu1 60.8 (2) N2—Cu1—O1—Cu2 178.65 (6)
O11—Cu1—N2—C9 13.6 (4) N6—Cu1—O1—Cu2 −84.59 (9)
O1—Cu1—N2—C9 1.19 (19) N3—Cu1—O1—Cu2 84.76 (10)
N6—Cu1—N2—C9 −125.21 (18) O11—Cu2—O1—C1 177.76 (16)
N3—Cu1—N2—C9 136.69 (18) N1—Cu2—O1—C1 0.62 (16)
O11—Cu1—N2—C16 −170.1 (3) N5—Cu2—O1—C1 −95.81 (16)
O1—Cu1—N2—C16 177.44 (15) N4—Cu2—O1—C1 94.24 (16)
N6—Cu1—N2—C16 51.04 (16) O11—Cu2—O1—Cu1 −1.46 (6)
N3—Cu1—N2—C16 −47.05 (16) N1—Cu2—O1—Cu1 −178.59 (7)
C17—C18—N3—C20 62.5 (3) N5—Cu2—O1—Cu1 84.98 (9)
C17—C18—N3—C19 −179.0 (2) N4—Cu2—O1—Cu1 −84.97 (9)
C17—C18—N3—Cu1 −57.8 (2) N1—Cu2—O11—Cu1 14.2 (4)
O11—Cu1—N3—C20 91.13 (16) O1—Cu2—O11—Cu1 1.56 (7)
N2—Cu1—N3—C20 −78.13 (16) N5—Cu2—O11—Cu1 −124.62 (9)
O1—Cu1—N3—C20 15.2 (2) N4—Cu2—O11—Cu1 135.36 (8)
N6—Cu1—N3—C20 −173.48 (16) N2—Cu1—O11—Cu2 −14.3 (4)
O11—Cu1—N3—C19 −28.01 (16) O1—Cu1—O11—Cu2 −1.57 (7)
N2—Cu1—N3—C19 162.73 (16) N6—Cu1—O11—Cu2 124.51 (8)
O1—Cu1—N3—C19 −103.96 (16) N3—Cu1—O11—Cu2 −137.17 (8)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BX2448).

References

  1. Adams, H., Fenton, D. E., Haque, S. R., Heath, S. L., Ohba, M., Okawa, H. & Spey, S. E. (2000). J. Chem. Soc. Dalton Trans. pp. 1849–1856.
  2. Al-Obaidi, O. H. S. (2011). Bioinorg. Chem. App. 2012, 1–6. [DOI] [PMC free article] [PubMed]
  3. Amase, R., Shiraishi, H., Miyasato, Y., Ohba, M. & Okawa, H. (2005). Bull. Chem. Soc. Jpn, 78, 1814–1820.
  4. Anupama, K., Sandeep, P. N., Dhoolesh, G. K., Krishna, N. & Vidyanand, R. (2012). J. Lumin. 132, 2763–2768.
  5. Aytaç, A. (2010). J. Mater. Sci. 45, 6812–6818.
  6. Bruker (2004). APEX2, SAINT and TWINABS Bruker AXS Inc., Madison, Wisconsin, USA.
  7. Erxleben, A. & Hermann, J. (2000). J. Chem. Soc. Dalton Trans. pp. 569–575.
  8. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  9. Higuchi, C., Sakiyama, H., Okawa, H. & Fenton, D. E. (1995). J. Chem. Soc. Dalton Trans. pp. 4015–4020.
  10. Hurley, L. H. (2002). Nat. Rev. Cancer, 2, 188–200. [DOI] [PubMed]
  11. Knight, P. D., White, A. J. P. & Williams, C. K. (2008). Inorg. Chem. 47, 11711–11719. [DOI] [PubMed]
  12. Koga, T., Furutachi, H., Nakamura, T., Fukita, N., Ohba, M., Takahashi, K. & Okawa, H. (1998). Inorg. Chem. 37, 989–996.
  13. Matsufuji, K., Shiraishi, H., Miyasato, Y., Shiga, T., Ohba, M., Yokoyama, T. & Okawa, H. (2005). Bull. Chem. Soc. Jpn, 78, 851–858.
  14. Saha, P. K. & Koner, S. (2004). Inorg. Chem. Commun. 7, 1164–1166.
  15. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  16. Sreedaran, S., Bharathi, K. S., Rahiman, A. K., Jagadish, L., Kaviyarasan, V. & Narayanan, V. (2008). Polyhedron, 27, 2931–2938.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536813024768/bx2448sup1.cif

e-69-0m542-sup1.cif (27KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813024768/bx2448Isup2.hkl

e-69-0m542-Isup2.hkl (754.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES