Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Sep 21;69(Pt 10):m556–m557. doi: 10.1107/S160053681302518X

Bis((E)-2-{5,5-di­methyl-3-[4-(1H-1,2,4-triazol-1-yl-κN 4)styr­yl]cyclo­hex-2-enyl­idene}malono­nitrile)­diiodido­mercury(II)

Lian-Ke Wang a, Wei-Ju Zhu a, Hong-Ping Zhou a,*
PMCID: PMC3790361  PMID: 24098183

Abstract

In the title complex, [HgI2(C21H19N5)2], the HgII ion is located on a twofold rotation axis and is coordinated by two I atoms and two N atoms from two (E)-2-{5,5-di­methyl-3-[4-(1H-1,2,4-triazol-1-yl)styr­yl]cyclo­hex-2-enyl­idene}malono­nitrile ligands in a distorted tetra­hedral geometry. In the crystal, the mol­ecules are linked by inter­molecular π–π inter­actions between the triazole and benzene rings [centroid–centroid distance = 3.794 (3) Å] into a band extending in [010]. These bands are further connected by C—H⋯N hydrogen bonds into a two-dimensional network parallel to (100).

Related literature  

For background to metal-organic complexes, see: Haneda et al. (2007); Li et al. (2006); Liu et al. (2010, 2011); Satapathy et al. (2012); Sun et al. (2012). For the organic ligand of the title compound, see: Zheng et al. (2013). For related structures, see: Jin, Wang et al. (2013); Jin, Zhang et al. (2013); Zhou et al. (2009).graphic file with name e-69-0m556-scheme1.jpg

Experimental  

Crystal data  

  • [HgI2(C21H19N5)2]

  • M r = 1137.21

  • Monoclinic, Inline graphic

  • a = 38.9622 (16) Å

  • b = 5.5684 (12) Å

  • c = 21.9564 (14) Å

  • β = 117.738 (2)°

  • V = 4216.2 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 5.16 mm−1

  • T = 291 K

  • 0.30 × 0.20 × 0.18 mm

Data collection  

  • Bruker APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001) T min = 0.307, T max = 0.457

  • 14961 measured reflections

  • 4078 independent reflections

  • 3384 reflections with I > 2σ(I)

  • R int = 0.032

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.027

  • wR(F 2) = 0.071

  • S = 1.01

  • 4078 reflections

  • 251 parameters

  • H-atom parameters constrained

  • Δρmax = 0.78 e Å−3

  • Δρmin = −0.52 e Å−3

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: XP in SHELXTL and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) I, Global. DOI: 10.1107/S160053681302518X/hy2634sup1.cif

e-69-0m556-sup1.cif (25.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681302518X/hy2634Isup2.hkl

e-69-0m556-Isup2.hkl (223.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C20—H20⋯N2i 0.93 2.48 3.354 (7) 157

Symmetry code: (i) Inline graphic.

Acknowledgments

This work was supported by the Program for New Century Excellent Talents in Universities (China), the Doctoral Program Foundation of the Ministry of Education of China (grant No. 20113401110004), the National Natural Science Foundation of China (grant Nos. 21271003 and 21271004), the Natural Science Foundation of the Education Committee of Anhui Province (grant No. KJ2012A024), the Natural Science Foundation of Anhui Province (grant No. 1208085MB22) and the 211 Project of Anhui University.

supplementary crystallographic information

1. Comment

The design and synthesis of metal-organic hybrid complexes based on strong coordinate bonds and multiple weak non-covalent forces have become one of the most active fields in coordination chemistry and crystal engineering not only for their fascinating structural features but also for their interesting properties as new functional materials with tremendous potential applications in the areas of luminescence, catalysis, separation, adsorption, biological chemistry (Haneda et al., 2007; Li et al., 2006; Liu et al., 2010, 2011; Satapathy et al., 2012; Sun et al., 2012). The organic ligand of the title compound had been investigated for its optical properties (Zheng et al., 2013). A variety of mercury(II) complexes have been reported (Jin, Wang et al., 2013). Besides, triazole and isophorone-malononitrile complexes have been reported (Jin, Zhang et al., 2013; Zhou et al., 2009). In this paper, we report the synthesis and crystal structure of the title complex (Fig. 1). In the crystal, intermolecular π–π interactions between the triazole and benzene rings [centroid–centroid distance = 3.794 (3) Å] link the molecules into a band extending in [010] (Fig. 2). The neighboring bands are further linked into a two-dimensional network parallel to (100) through C—H···N hydrogen bonds (Fig.3).

2. Experimental

For the preparation of the title complex, (E)-2-(3-(4-(1H-1,2,4-triazol-1-yl)styryl)- 5,5-dimethylcyclohex-2-enylidene)malononitrile (0.341 g, 1 mmol) in 25 ml of dichloromethane was added into a 50 ml colorimeter tube, carefully layered with a clear acetonitrile and benzene solution (25 ml) of HgI2 (0.227 g, 0.5 mmol). Crystals were obtained by slow interlayer diffusion (yield: 0.427 g, 75.1%).

3. Refinement

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.93 (CH), 0.97 (CH2) and 0.96 (CH3) Å and with Uiso(H) = 1.2(1.5 for methyl)Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title complex. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry code: (i) -x, y, 3/2-z.]

Fig. 2.

Fig. 2.

The one-dimensional structure of the title complex, showing π–π interactions (dashed lines).

Fig. 3.

Fig. 3.

The two-dimensional structure of the title complex, showing C—H···N hydrogen bonds (dashed lines).

Crystal data

[HgI2(C21H19N5)2] F(000) = 2184
Mr = 1137.21 Dx = 1.792 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
a = 38.9622 (16) Å Cell parameters from 3126 reflections
b = 5.5684 (12) Å θ = 2.1–23.6°
c = 21.9564 (14) Å µ = 5.16 mm1
β = 117.738 (2)° T = 291 K
V = 4216.2 (10) Å3 Needle, yellow
Z = 4 0.30 × 0.20 × 0.18 mm

Data collection

Bruker APEX CCD diffractometer 4078 independent reflections
Radiation source: fine-focus sealed tube 3384 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.032
φ and ω scans θmax = 26.0°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Bruker, 2001) h = −47→47
Tmin = 0.307, Tmax = 0.457 k = −6→6
14961 measured reflections l = −26→26

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.071 H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.04P)2 + 0.22P] where P = (Fo2 + 2Fc2)/3
4078 reflections (Δ/σ)max = 0.001
251 parameters Δρmax = 0.78 e Å3
0 restraints Δρmin = −0.52 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Hg1 0.0000 1.49817 (4) 0.7500 0.04679 (9)
I1 0.06739 (2) 1.65983 (6) 0.84809 (2) 0.06479 (11)
C19 0.11064 (13) 0.4748 (8) 0.6784 (2) 0.0541 (11)
H19 0.1329 0.4209 0.7164 0.065*
C15 0.06588 (13) 0.4500 (8) 0.5599 (2) 0.0560 (11)
H15 0.0575 0.3788 0.5170 0.067*
C16 0.04479 (12) 0.6381 (8) 0.5667 (2) 0.0540 (10)
H16 0.0227 0.6937 0.5288 0.065*
N5 0.01215 (9) 1.2154 (6) 0.67843 (16) 0.0452 (7)
N3 0.03392 (9) 0.9312 (6) 0.63805 (16) 0.0409 (7)
C13 0.12305 (12) 0.1699 (7) 0.6110 (2) 0.0485 (9)
H13 0.1406 0.1013 0.6525 0.058*
C21 −0.01308 (12) 1.1596 (8) 0.6130 (2) 0.0590 (11)
H21 −0.0370 1.2354 0.5892 0.071*
C20 0.04150 (12) 1.0708 (7) 0.6927 (2) 0.0447 (9)
H20 0.0641 1.0659 0.7344 0.054*
C17 0.05698 (10) 0.7431 (6) 0.63072 (19) 0.0401 (8)
C14 0.09914 (11) 0.3646 (7) 0.6153 (2) 0.0439 (9)
N4 −0.00144 (11) 0.9900 (6) 0.58534 (19) 0.0614 (10)
C18 0.08964 (12) 0.6650 (8) 0.6862 (2) 0.0528 (10)
H18 0.0979 0.7374 0.7290 0.063*
C10 0.14855 (11) −0.1065 (7) 0.5526 (2) 0.0430 (9)
C9 0.17746 (11) −0.2203 (7) 0.61823 (19) 0.0481 (9)
H9A 0.1640 −0.3332 0.6333 0.058*
H9B 0.1885 −0.0966 0.6532 0.058*
C11 0.14662 (11) −0.1692 (7) 0.4915 (2) 0.0468 (9)
H11 0.1295 −0.0878 0.4520 0.056*
C12 0.12256 (12) 0.0798 (7) 0.5548 (2) 0.0490 (10)
H12 0.1040 0.1402 0.5129 0.059*
C6 0.21068 (11) −0.3527 (6) 0.61357 (19) 0.0451 (9)
C5 0.19376 (13) −0.5051 (6) 0.5484 (2) 0.0504 (10)
H5A 0.2147 −0.5826 0.5437 0.061*
H5B 0.1775 −0.6298 0.5524 0.061*
C4 0.17029 (11) −0.3582 (7) 0.4857 (2) 0.0448 (9)
C1 0.19109 (13) −0.6083 (9) 0.4172 (2) 0.0556 (10)
C2 0.17018 (12) −0.4045 (8) 0.4249 (2) 0.0493 (10)
C3 0.14937 (13) −0.2621 (9) 0.3649 (2) 0.0566 (11)
N2 0.13295 (13) −0.1425 (8) 0.3170 (2) 0.0772 (12)
N1 0.20731 (13) −0.7689 (8) 0.4121 (2) 0.0824 (13)
C8 0.24041 (12) −0.1776 (7) 0.6121 (2) 0.0580 (11)
H8A 0.2609 −0.2658 0.6095 0.087*
H8B 0.2510 −0.0819 0.6531 0.087*
H8C 0.2280 −0.0748 0.5726 0.087*
C7 0.23118 (16) −0.5185 (7) 0.6758 (3) 0.0698 (14)
H7A 0.2131 −0.6351 0.6761 0.105*
H7B 0.2411 −0.4252 0.7173 0.105*
H7C 0.2522 −0.5992 0.6732 0.105*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Hg1 0.05187 (14) 0.04752 (14) 0.04360 (14) 0.000 0.02444 (11) 0.000
I1 0.0631 (2) 0.0737 (2) 0.05467 (19) −0.01842 (15) 0.02500 (15) −0.00968 (15)
C19 0.056 (3) 0.069 (3) 0.043 (2) 0.019 (2) 0.027 (2) 0.012 (2)
C15 0.053 (3) 0.064 (3) 0.050 (3) 0.000 (2) 0.023 (2) −0.023 (2)
C16 0.044 (2) 0.066 (3) 0.046 (2) 0.008 (2) 0.0154 (18) −0.016 (2)
N5 0.0489 (19) 0.0457 (18) 0.0442 (18) 0.0023 (15) 0.0242 (16) −0.0050 (15)
N3 0.0427 (18) 0.0461 (17) 0.0376 (17) 0.0000 (14) 0.0219 (15) −0.0028 (14)
C13 0.056 (2) 0.045 (2) 0.053 (2) 0.0027 (18) 0.032 (2) 0.0038 (19)
C21 0.048 (2) 0.077 (3) 0.048 (2) 0.014 (2) 0.019 (2) −0.007 (2)
C20 0.049 (2) 0.047 (2) 0.039 (2) 0.0000 (18) 0.0210 (18) −0.0038 (17)
C17 0.046 (2) 0.0409 (19) 0.043 (2) −0.0022 (17) 0.0285 (18) −0.0026 (17)
C14 0.049 (2) 0.045 (2) 0.049 (2) −0.0011 (18) 0.0314 (19) −0.0004 (18)
N4 0.050 (2) 0.082 (3) 0.044 (2) 0.0147 (18) 0.0156 (17) −0.0155 (18)
C18 0.064 (3) 0.065 (3) 0.035 (2) 0.016 (2) 0.028 (2) −0.001 (2)
C10 0.047 (2) 0.0361 (19) 0.051 (2) −0.0018 (17) 0.0268 (19) −0.0027 (18)
C9 0.057 (2) 0.041 (2) 0.051 (2) −0.0002 (18) 0.029 (2) −0.0021 (19)
C11 0.050 (2) 0.045 (2) 0.045 (2) 0.0068 (18) 0.0219 (19) −0.0007 (18)
C12 0.048 (2) 0.048 (2) 0.055 (3) 0.0043 (19) 0.027 (2) −0.004 (2)
C6 0.055 (2) 0.0315 (19) 0.045 (2) 0.0024 (17) 0.0202 (18) 0.0003 (17)
C5 0.061 (3) 0.032 (2) 0.061 (3) 0.0023 (18) 0.031 (2) −0.0009 (19)
C4 0.042 (2) 0.042 (2) 0.053 (2) −0.0049 (17) 0.0240 (18) −0.0077 (18)
C1 0.056 (3) 0.056 (3) 0.060 (3) −0.002 (2) 0.031 (2) −0.014 (2)
C2 0.047 (2) 0.045 (2) 0.054 (3) −0.0012 (19) 0.023 (2) −0.012 (2)
C3 0.053 (3) 0.070 (3) 0.045 (3) 0.000 (2) 0.021 (2) −0.018 (2)
N2 0.081 (3) 0.087 (3) 0.055 (3) 0.007 (2) 0.024 (2) −0.007 (2)
N1 0.082 (3) 0.075 (3) 0.103 (3) 0.003 (2) 0.053 (3) −0.028 (3)
C8 0.051 (2) 0.047 (2) 0.071 (3) −0.0008 (19) 0.024 (2) −0.002 (2)
C7 0.091 (4) 0.048 (3) 0.062 (3) 0.014 (2) 0.028 (3) 0.009 (2)

Geometric parameters (Å, º)

Hg1—N5 2.422 (3) C10—C9 1.495 (5)
Hg1—I1 2.6606 (8) C9—C6 1.533 (5)
C19—C14 1.385 (6) C9—H9A 0.9700
C19—C18 1.397 (5) C9—H9B 0.9700
C19—H19 0.9300 C11—C4 1.444 (5)
C15—C16 1.381 (5) C11—H11 0.9300
C15—C14 1.384 (6) C12—H12 0.9300
C15—H15 0.9300 C6—C5 1.524 (5)
C16—C17 1.386 (5) C6—C8 1.526 (5)
C16—H16 0.9300 C6—C7 1.531 (6)
N5—C20 1.312 (5) C5—C4 1.494 (6)
N5—C21 1.346 (5) C5—H5A 0.9700
N3—C20 1.342 (5) C5—H5B 0.9700
N3—N4 1.364 (5) C4—C2 1.357 (5)
N3—C17 1.437 (5) C1—N1 1.131 (5)
C13—C12 1.324 (5) C1—C2 1.452 (6)
C13—C14 1.461 (5) C2—C3 1.424 (6)
C13—H13 0.9300 C3—N2 1.153 (5)
C21—N4 1.313 (5) C8—H8A 0.9600
C21—H21 0.9300 C8—H8B 0.9600
C20—H20 0.9300 C8—H8C 0.9600
C17—C18 1.360 (5) C7—H7A 0.9600
C18—H18 0.9300 C7—H7B 0.9600
C10—C11 1.354 (5) C7—H7C 0.9600
C10—C12 1.466 (5)
N5i—Hg1—N5 98.89 (15) C10—C9—H9A 108.6
N5i—Hg1—I1 96.43 (8) C6—C9—H9A 108.6
N5—Hg1—I1 109.14 (7) C10—C9—H9B 108.6
N5i—Hg1—I1i 109.15 (7) C6—C9—H9B 108.6
N5—Hg1—I1i 96.43 (8) H9A—C9—H9B 107.5
I1—Hg1—I1i 140.450 (19) C10—C11—C4 122.2 (4)
C14—C19—C18 121.6 (4) C10—C11—H11 118.9
C14—C19—H19 119.2 C4—C11—H11 118.9
C18—C19—H19 119.2 C13—C12—C10 126.0 (4)
C16—C15—C14 121.7 (4) C13—C12—H12 117.0
C16—C15—H15 119.1 C10—C12—H12 117.0
C14—C15—H15 119.1 C5—C6—C8 109.7 (3)
C15—C16—C17 119.3 (4) C5—C6—C7 108.7 (3)
C15—C16—H16 120.4 C8—C6—C7 108.6 (4)
C17—C16—H16 120.4 C5—C6—C9 108.7 (3)
C20—N5—C21 103.6 (3) C8—C6—C9 111.5 (3)
C20—N5—Hg1 131.0 (3) C7—C6—C9 109.6 (4)
C21—N5—Hg1 125.2 (3) C4—C5—C6 111.9 (3)
C20—N3—N4 109.6 (3) C4—C5—H5A 109.2
C20—N3—C17 129.3 (3) C6—C5—H5A 109.2
N4—N3—C17 121.1 (3) C4—C5—H5B 109.2
C12—C13—C14 127.5 (4) C6—C5—H5B 109.2
C12—C13—H13 116.3 H5A—C5—H5B 107.9
C14—C13—H13 116.3 C2—C4—C11 121.1 (4)
N4—C21—N5 115.0 (4) C2—C4—C5 121.6 (4)
N4—C21—H21 122.5 C11—C4—C5 117.3 (3)
N5—C21—H21 122.5 N1—C1—C2 178.8 (5)
N5—C20—N3 109.7 (4) C4—C2—C3 122.9 (4)
N5—C20—H20 125.1 C4—C2—C1 121.2 (4)
N3—C20—H20 125.1 C3—C2—C1 115.9 (4)
C18—C17—C16 120.7 (3) N2—C3—C2 178.6 (5)
C18—C17—N3 120.3 (3) C6—C8—H8A 109.5
C16—C17—N3 119.0 (3) C6—C8—H8B 109.5
C15—C14—C19 117.5 (3) H8A—C8—H8B 109.5
C15—C14—C13 124.2 (4) C6—C8—H8C 109.5
C19—C14—C13 118.3 (4) H8A—C8—H8C 109.5
C21—N4—N3 102.1 (3) H8B—C8—H8C 109.5
C17—C18—C19 119.2 (4) C6—C7—H7A 109.5
C17—C18—H18 120.4 C6—C7—H7B 109.5
C19—C18—H18 120.4 H7A—C7—H7B 109.5
C11—C10—C12 119.6 (4) C6—C7—H7C 109.5
C11—C10—C9 121.0 (3) H7A—C7—H7C 109.5
C12—C10—C9 119.4 (3) H7B—C7—H7C 109.5
C10—C9—C6 114.9 (3)
C14—C15—C16—C17 −0.6 (7) N3—C17—C18—C19 177.2 (3)
C20—N5—C21—N4 −0.1 (5) C14—C19—C18—C17 0.4 (6)
Hg1—N5—C21—N4 −175.7 (3) C11—C10—C9—C6 16.2 (5)
C21—N5—C20—N3 −0.8 (4) C12—C10—C9—C6 −162.3 (3)
Hg1—N5—C20—N3 174.5 (2) C12—C10—C11—C4 −177.3 (4)
N4—N3—C20—N5 1.4 (5) C9—C10—C11—C4 4.1 (6)
C17—N3—C20—N5 −178.0 (3) C14—C13—C12—C10 176.2 (4)
C15—C16—C17—C18 1.0 (6) C11—C10—C12—C13 −175.1 (4)
C15—C16—C17—N3 −177.2 (4) C9—C10—C12—C13 3.4 (6)
C20—N3—C17—C18 8.1 (6) C10—C9—C6—C5 −45.2 (4)
N4—N3—C17—C18 −171.2 (4) C10—C9—C6—C8 75.8 (4)
C20—N3—C17—C16 −173.8 (4) C10—C9—C6—C7 −163.9 (4)
N4—N3—C17—C16 6.9 (5) C8—C6—C5—C4 −66.4 (4)
C16—C15—C14—C19 0.1 (6) C7—C6—C5—C4 175.1 (4)
C16—C15—C14—C13 −178.7 (4) C9—C6—C5—C4 55.8 (4)
C18—C19—C14—C15 0.0 (6) C10—C11—C4—C2 −174.5 (4)
C18—C19—C14—C13 178.9 (4) C10—C11—C4—C5 7.5 (6)
C12—C13—C14—C15 15.6 (7) C6—C5—C4—C2 143.5 (4)
C12—C13—C14—C19 −163.3 (4) C6—C5—C4—C11 −38.5 (5)
N5—C21—N4—N3 0.9 (5) C11—C4—C2—C3 4.7 (6)
C20—N3—N4—C21 −1.3 (4) C5—C4—C2—C3 −177.4 (4)
C17—N3—N4—C21 178.1 (3) C11—C4—C2—C1 −174.2 (4)
C16—C17—C18—C19 −0.9 (6) C5—C4—C2—C1 3.7 (6)

Symmetry code: (i) −x, y, −z+3/2.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C20—H20···N2ii 0.93 2.48 3.354 (7) 157

Symmetry code: (ii) x, −y+1, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2634).

References

  1. Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  2. Bruker (2001). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Bruker (2007). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Haneda, S., Gan, Z. B., Eda, K. & Hayashi, M. (2007). Organometallics, 26, 6551–6555.
  5. Jin, F., Wang, H.-Z., Zhang, Y., Wang, Y., Zhang, J., Kong, L., Hao, F.-Y., Yang, J.-X., Wu, J.-Y., Tian, Y.-P. & Zhou, H.-P. (2013). CrystEngComm, 15, 3687–3695.
  6. Jin, F., Zhang, Y., Wang, H.-Z., Zhu, H.-Z., Yan, Y., Zhang, J., Wu, J.-Y., Tian, Y.-P. & Zhou, H.-P. (2013). Cryst. Growth Des. 13, 1978–1987.
  7. Li, Y.-Y., Lin, C.-K., Zheng, G.-L., Cheng, Z.-Y., You, H., Wang, W.-D. & Lin, J. (2006). Chem. Mater. 18, 3463–3469.
  8. Liu, Q.-K., Ma, J.-P. & Dong, Y.-B. (2010). J. Am. Chem. Soc. 132, 7005–7017. [DOI] [PubMed]
  9. Liu, Q.-K., Ma, J.-P. & Dong, Y.-B. (2011). Chem. Commun. 47, 12343–12345. [DOI] [PubMed]
  10. Satapathy, R., Wu, Y. H. & Lin, H. C. (2012). Org. Lett. 14, 2564–2567. [DOI] [PubMed]
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Sun, L., Li, G.-Z., Xu, M.-H., Li, X.-J., Li, J. R. & Deng, H. (2012). Eur. J. Inorg. Chem. pp. 1764–1772.
  13. Zheng, Z., Yu, Z.-P., Yang, M.-D., Jin, F., Zhang, Q., Zhou, H.-P., Wu, J.-Y. & Tian, Y.-P. (2013). J. Org. Chem. 78, 3222–3234. [DOI] [PubMed]
  14. Zhou, H.-P., Yin, J.-H., Zheng, L.-X., Wang, P., Hao, F.-Y., Geng, W.-Q., Gan, X.-P., Xu, G.-Y., Wu, J.-Y., Tian, Y.-P., Tao, X.-T., Jiang, M.-H. & Kan, Y.-H. (2009). Cryst. Growth Des. 9, 3789–3798.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, Global. DOI: 10.1107/S160053681302518X/hy2634sup1.cif

e-69-0m556-sup1.cif (25.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681302518X/hy2634Isup2.hkl

e-69-0m556-Isup2.hkl (223.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES