Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Sep 7;69(Pt 10):o1516. doi: 10.1107/S1600536813024471

Dimethyl 3,3′-(phenyl­methyl­ene)bis­(1H-indole-2-carboxyl­ate)

Hong-Shun Sun a,*, Yu-Long Li a, Ning Xu a, Hong Xu a, Ji-Dong Zhang a
PMCID: PMC3790385  PMID: 24098207

Abstract

In the title compound, C27H22N2O4, the two indole ring systems are approximately perpendicular to each other, with a dihedral angle of 84.5 (5)° between their planes; the benzene ring is twisted with respect to the two indole ring systems at angles of 78.5 (5) and 86.5 (3)°. In the crystal, mol­ecules are linked by N—H⋯O hydrogen bonds, weak C—H⋯O and C—H⋯N hydrogen bonds, and C—H⋯π inter­actions into a three-dimensional supra­molecular architecture.

Related literature  

For applications of indole derivatives, see: Poter et al. (1977); Sundberg (1996); Chang et al. (1999); Ge et al. (1999); Ni (2008); Sun et al. (2012).graphic file with name e-69-o1516-scheme1.jpg

Experimental  

Crystal data  

  • C27H22N2O4

  • M r = 438.47

  • Monoclinic, Inline graphic

  • a = 13.604 (3) Å

  • b = 15.560 (3) Å

  • c = 11.274 (2) Å

  • β = 112.66 (3)°

  • V = 2202.2 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.10 mm

Data collection  

  • Enraf–Nonis CAD-4 diffractometer

  • 4196 measured reflections

  • 4021 independent reflections

  • 2322 reflections with I > 2σ(I)

  • R int = 0.028

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.062

  • wR(F 2) = 0.181

  • S = 1.00

  • 4021 reflections

  • 298 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.22 e Å−3

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S1600536813024471/xu5723sup1.cif

e-69-o1516-sup1.cif (23.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813024471/xu5723Isup2.hkl

e-69-o1516-Isup2.hkl (197.1KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813024471/xu5723Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 and Cg4 are the centroids of the N1-pyrrole and C15-benzene rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O2i 0.86 2.02 2.870 (4) 169
C11—H11A⋯O3ii 0.96 2.60 3.221 (4) 123
C11—H11B⋯N1iii 0.96 2.61 3.443 (5) 145
C11—H11C⋯O4i 0.96 2.53 3.333 (5) 142
C5—H5ACg4iv 0.93 2.76 3.659 (4) 164
C11—H11BCg1iii 0.96 2.55 3.366 (4) 143
C21—H21BCg4i 0.96 2.73 3.516 (5) 139

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

The work was supported by the research fund of Nanjing College of Chemical Technology (grant No. NHKY-2013–02).

supplementary crystallographic information

1. Comment

Indole derivatives are found abundantly in a variety of natural plants and exhibit various physiological properties (Poter et al., 1977; Sundberg, 1996). Among them, bis-indolymethane derivatives are found to be kinds of potentially bioactive compounds (Chang et al., 1999; Ge et al., 1999). In recent years, the synthesis and application of bis-indolymethane derivatives have been widely studied. The title compound is one of bis-indolymethane derivatives as a precursor for MRI Contrast Agents(Ni, 2008). We report here its crystal structure.

The molecular structure of the title compound is shown in Fig. 1. The benzene ring is twisted to the two indole rings with the dihedral angles of 101.5 (5) and 93.5 (3)°, respectively. Two indole rings make a dihedral angle of 84.5 (5)° to each other.

As shown in Figure 2, the molecules are linked by N—H···O and C—H···O and C—H···N hydrogen bonds into dimers in the crystal lattice. The structural parameters for the intermolecular hydrogen bonds resulting in the formation of dimers are given in Table 1.

2. Experimental

Methyl indole-2-carboxylate (17.5 g, 100 mmol) was dissolved in 200 ml methanol; commercially available benzaldehyde (5.3 g, 50 mmol) was added and the mixture was heated to reflux temperature. Concentrated HCl (3.7 ml) was added and the reaction was left for 1 h. After cooling the white product was filtered off and washed thoroughly with methanol. The reaction can be followed by TLC (CHCl3:hexane = 1:1). Yield was 93%. Crystals of the title compound suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution.

3. Refinement

H atoms were positioned geometrically, with N— H = 0.86 Å and C—H = 0.93, 0.96, and 0.98 Å for aromatic, methyl, and methine H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C,N), where x = 1.5 for methyl H, and x = 1.2 for all other H atoms.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I), showing the atom-numbering scheme and displacement ellipsoids at the 30% probability level.

Fig. 2.

Fig. 2.

A packing diagram of (I). Intermolecular hydrogen bonds are shown as dashed lines.

Crystal data

C27H22N2O4 F(000) = 920
Mr = 438.47 Dx = 1.322 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 25 reflections
a = 13.604 (3) Å θ = 9–13°
b = 15.560 (3) Å µ = 0.09 mm1
c = 11.274 (2) Å T = 293 K
β = 112.66 (3)° Block, colorless
V = 2202.2 (8) Å3 0.30 × 0.20 × 0.10 mm
Z = 4

Data collection

Enraf–Nonis CAD-4 diffractometer Rint = 0.028
Radiation source: fine-focus sealed tube θmax = 25.4°, θmin = 1.6°
Graphite monochromator h = −16→0
ω/2θ scans k = 0→18
4196 measured reflections l = −12→13
4021 independent reflections 3 standard reflections every 200 reflections
2322 reflections with I > 2σ(I) intensity decay: 1%

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.062 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.181 H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.088P)2] where P = (Fo2 + 2Fc2)/3
4021 reflections (Δ/σ)max < 0.001
298 parameters Δρmax = 0.26 e Å3
0 restraints Δρmin = −0.22 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.52156 (18) −0.10234 (15) 0.9162 (2) 0.0504 (7)
N1 0.3221 (2) −0.07271 (18) 0.8973 (3) 0.0470 (8)
H1A 0.3563 −0.1099 0.9548 0.056*
C1 0.3029 (2) 0.08122 (19) 0.6386 (3) 0.0351 (7)
H1B 0.3709 0.1108 0.6826 0.042*
O2 0.52350 (18) 0.01567 (15) 0.8016 (2) 0.0478 (6)
N2 0.3660 (2) −0.00463 (17) 0.3694 (3) 0.0422 (7)
H2A 0.3961 −0.0012 0.3150 0.051*
C2 0.2866 (3) 0.0248 (2) 0.7391 (3) 0.0371 (8)
O3 0.4526 (2) 0.18689 (16) 0.5589 (3) 0.0593 (7)
C3 0.1909 (3) 0.0105 (2) 0.7638 (3) 0.0377 (8)
O4 0.46982 (19) 0.14311 (15) 0.3787 (2) 0.0502 (6)
C4 0.0870 (3) 0.0436 (2) 0.7147 (3) 0.0456 (9)
H4A 0.0657 0.0822 0.6464 0.055*
C5 0.0171 (3) 0.0181 (2) 0.7694 (4) 0.0539 (10)
H5A −0.0517 0.0403 0.7376 0.065*
C6 0.0467 (3) −0.0403 (2) 0.8713 (4) 0.0545 (10)
H6A −0.0024 −0.0558 0.9064 0.065*
C7 0.1462 (3) −0.0749 (2) 0.9201 (4) 0.0533 (10)
H7A 0.1659 −0.1139 0.9878 0.064*
C8 0.2178 (3) −0.0499 (2) 0.8649 (3) 0.0411 (8)
C9 0.3638 (3) −0.0263 (2) 0.8228 (3) 0.0397 (8)
C10 0.4765 (3) −0.0341 (2) 0.8434 (3) 0.0417 (8)
C11 0.6316 (3) −0.1198 (2) 0.9398 (4) 0.0545 (10)
H11A 0.6544 −0.1702 0.9924 0.082*
H11B 0.6746 −0.0717 0.9832 0.082*
H11C 0.6390 −0.1290 0.8595 0.082*
C12 0.3159 (2) 0.02960 (19) 0.5322 (3) 0.0346 (7)
C13 0.2685 (2) −0.0511 (2) 0.4786 (3) 0.0373 (8)
C14 0.1994 (3) −0.1099 (2) 0.5024 (3) 0.0462 (9)
H14A 0.1743 −0.0993 0.5669 0.055*
C15 0.1699 (3) −0.1824 (2) 0.4296 (4) 0.0556 (10)
H15A 0.1243 −0.2211 0.4454 0.067*
C16 0.2062 (3) −0.2005 (2) 0.3313 (4) 0.0570 (10)
H16A 0.1843 −0.2506 0.2833 0.068*
C17 0.2733 (3) −0.1452 (2) 0.3054 (3) 0.0485 (9)
H17A 0.2985 −0.1573 0.2413 0.058*
C18 0.3028 (2) −0.0704 (2) 0.3775 (3) 0.0402 (8)
C19 0.3741 (2) 0.0555 (2) 0.4624 (3) 0.0360 (7)
C20 0.4351 (3) 0.1350 (2) 0.4750 (3) 0.0394 (8)
C21 0.5280 (3) 0.2203 (3) 0.3776 (4) 0.0608 (11)
H21A 0.5483 0.2193 0.3050 0.091*
H21B 0.5907 0.2235 0.4553 0.091*
H21C 0.4838 0.2695 0.3718 0.091*
C22 0.2189 (3) 0.1521 (2) 0.5862 (3) 0.0380 (8)
C23 0.1452 (3) 0.1525 (3) 0.4629 (4) 0.0649 (12)
H23A 0.1441 0.1072 0.4087 0.078*
C24 0.0724 (4) 0.2182 (3) 0.4161 (4) 0.0899 (17)
H24A 0.0223 0.2164 0.3321 0.108*
C25 0.0744 (4) 0.2856 (3) 0.4939 (5) 0.0797 (14)
H25A 0.0268 0.3309 0.4626 0.096*
C26 0.1465 (4) 0.2865 (3) 0.6181 (5) 0.0688 (12)
H26A 0.1469 0.3319 0.6719 0.083*
C27 0.2187 (3) 0.2202 (2) 0.6638 (4) 0.0493 (9)
H27A 0.2679 0.2216 0.7484 0.059*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0438 (14) 0.0483 (15) 0.0580 (15) 0.0155 (12) 0.0183 (12) 0.0135 (12)
N1 0.0547 (19) 0.0451 (18) 0.0455 (17) 0.0053 (14) 0.0240 (15) 0.0124 (14)
C1 0.0370 (17) 0.0347 (18) 0.0341 (17) 0.0010 (14) 0.0144 (14) −0.0007 (14)
O2 0.0478 (14) 0.0516 (15) 0.0512 (14) 0.0058 (12) 0.0270 (12) 0.0081 (12)
N2 0.0465 (16) 0.0447 (17) 0.0440 (16) −0.0025 (14) 0.0270 (14) −0.0041 (14)
C2 0.0411 (19) 0.0375 (18) 0.0357 (17) 0.0040 (15) 0.0180 (15) −0.0005 (15)
O3 0.082 (2) 0.0447 (15) 0.0680 (17) −0.0167 (14) 0.0468 (16) −0.0162 (14)
C3 0.0401 (19) 0.0353 (18) 0.0395 (18) −0.0035 (15) 0.0174 (15) −0.0030 (15)
O4 0.0603 (16) 0.0501 (15) 0.0481 (14) −0.0144 (12) 0.0296 (12) −0.0017 (12)
C4 0.042 (2) 0.049 (2) 0.046 (2) −0.0019 (17) 0.0178 (17) 0.0003 (17)
C5 0.042 (2) 0.059 (2) 0.065 (2) −0.0045 (18) 0.0251 (19) −0.001 (2)
C6 0.057 (2) 0.054 (2) 0.063 (2) −0.014 (2) 0.036 (2) −0.006 (2)
C7 0.066 (3) 0.045 (2) 0.058 (2) −0.007 (2) 0.034 (2) 0.0022 (19)
C8 0.045 (2) 0.0383 (19) 0.0454 (19) −0.0016 (16) 0.0233 (16) −0.0006 (16)
C9 0.046 (2) 0.0394 (19) 0.0384 (18) 0.0004 (16) 0.0211 (16) 0.0003 (15)
C10 0.051 (2) 0.041 (2) 0.0364 (18) 0.0078 (17) 0.0204 (17) −0.0025 (16)
C11 0.047 (2) 0.054 (2) 0.058 (2) 0.0163 (18) 0.0154 (19) 0.0062 (19)
C12 0.0355 (17) 0.0329 (17) 0.0352 (17) 0.0026 (14) 0.0135 (14) 0.0023 (14)
C13 0.0368 (18) 0.0350 (18) 0.0411 (18) 0.0036 (15) 0.0161 (15) −0.0015 (15)
C14 0.048 (2) 0.043 (2) 0.051 (2) −0.0051 (17) 0.0229 (18) 0.0006 (17)
C15 0.050 (2) 0.047 (2) 0.072 (3) −0.0076 (18) 0.025 (2) −0.005 (2)
C16 0.057 (2) 0.043 (2) 0.064 (3) −0.0056 (19) 0.015 (2) −0.0113 (19)
C17 0.051 (2) 0.048 (2) 0.047 (2) 0.0008 (18) 0.0193 (18) −0.0101 (18)
C18 0.0360 (18) 0.0386 (19) 0.0448 (19) 0.0019 (15) 0.0140 (15) −0.0013 (16)
C19 0.0399 (18) 0.0335 (18) 0.0370 (17) 0.0037 (15) 0.0174 (15) 0.0006 (15)
C20 0.0399 (19) 0.039 (2) 0.043 (2) 0.0038 (15) 0.0203 (16) 0.0043 (17)
C21 0.067 (3) 0.057 (2) 0.064 (3) −0.016 (2) 0.032 (2) 0.005 (2)
C22 0.0425 (19) 0.0363 (18) 0.0433 (19) 0.0023 (15) 0.0256 (16) 0.0028 (15)
C23 0.070 (3) 0.078 (3) 0.042 (2) 0.033 (2) 0.016 (2) −0.003 (2)
C24 0.100 (4) 0.116 (4) 0.047 (3) 0.064 (3) 0.021 (2) 0.011 (3)
C25 0.100 (4) 0.073 (3) 0.079 (3) 0.048 (3) 0.049 (3) 0.028 (3)
C26 0.087 (3) 0.049 (3) 0.084 (3) 0.018 (2) 0.049 (3) −0.002 (2)
C27 0.054 (2) 0.043 (2) 0.051 (2) 0.0056 (18) 0.0204 (18) −0.0040 (18)

Geometric parameters (Å, º)

O1—C10 1.338 (4) C11—H11B 0.9600
O1—C11 1.442 (4) C11—H11C 0.9600
N1—C8 1.369 (4) C12—C19 1.375 (4)
N1—C9 1.385 (4) C12—C13 1.435 (4)
N1—H1A 0.8600 C13—C14 1.410 (4)
C1—C12 1.510 (4) C13—C18 1.420 (4)
C1—C2 1.516 (4) C14—C15 1.361 (5)
C1—C22 1.532 (4) C14—H14A 0.9300
C1—H1B 0.9800 C15—C16 1.405 (5)
O2—C10 1.210 (4) C15—H15A 0.9300
N2—C18 1.363 (4) C16—C17 1.366 (5)
N2—C19 1.378 (4) C16—H16A 0.9300
N2—H2A 0.8600 C17—C18 1.387 (5)
C2—C9 1.364 (4) C17—H17A 0.9300
C2—C3 1.450 (4) C19—C20 1.465 (5)
O3—C20 1.196 (4) C21—H21A 0.9600
C3—C4 1.402 (4) C21—H21B 0.9600
C3—C8 1.412 (4) C21—H21C 0.9600
O4—C20 1.346 (4) C22—C23 1.365 (5)
O4—C21 1.441 (4) C22—C27 1.376 (5)
C4—C5 1.376 (5) C23—C24 1.378 (5)
C4—H4A 0.9300 C23—H23A 0.9300
C5—C6 1.398 (5) C24—C25 1.361 (6)
C5—H5A 0.9300 C24—H24A 0.9300
C6—C7 1.360 (5) C25—C26 1.365 (6)
C6—H6A 0.9300 C25—H25A 0.9300
C7—C8 1.398 (5) C26—C27 1.381 (5)
C7—H7A 0.9300 C26—H26A 0.9300
C9—C10 1.465 (5) C27—H27A 0.9300
C11—H11A 0.9600
C10—O1—C11 117.4 (3) C13—C12—C1 129.0 (3)
C8—N1—C9 109.1 (3) C14—C13—C18 117.7 (3)
C8—N1—H1A 125.5 C14—C13—C12 135.4 (3)
C9—N1—H1A 125.5 C18—C13—C12 106.9 (3)
C12—C1—C2 112.4 (2) C15—C14—C13 119.1 (3)
C12—C1—C22 111.9 (3) C15—C14—H14A 120.4
C2—C1—C22 113.8 (3) C13—C14—H14A 120.4
C12—C1—H1B 106.0 C14—C15—C16 122.0 (3)
C2—C1—H1B 106.0 C14—C15—H15A 119.0
C22—C1—H1B 106.0 C16—C15—H15A 119.0
C18—N2—C19 109.1 (3) C17—C16—C15 120.7 (3)
C18—N2—H2A 125.4 C17—C16—H16A 119.7
C19—N2—H2A 125.4 C15—C16—H16A 119.7
C9—C2—C3 106.7 (3) C16—C17—C18 118.0 (3)
C9—C2—C1 124.0 (3) C16—C17—H17A 121.0
C3—C2—C1 129.3 (3) C18—C17—H17A 121.0
C4—C3—C8 118.1 (3) N2—C18—C17 129.7 (3)
C4—C3—C2 135.4 (3) N2—C18—C13 107.8 (3)
C8—C3—C2 106.5 (3) C17—C18—C13 122.5 (3)
C20—O4—C21 116.7 (3) C12—C19—N2 110.0 (3)
C5—C4—C3 118.9 (3) C12—C19—C20 128.5 (3)
C5—C4—H4A 120.6 N2—C19—C20 121.5 (3)
C3—C4—H4A 120.6 O3—C20—O4 123.3 (3)
C4—C5—C6 121.8 (4) O3—C20—C19 125.4 (3)
C4—C5—H5A 119.1 O4—C20—C19 111.3 (3)
C6—C5—H5A 119.1 O4—C21—H21A 109.5
C7—C6—C5 121.1 (3) O4—C21—H21B 109.5
C7—C6—H6A 119.5 H21A—C21—H21B 109.5
C5—C6—H6A 119.5 O4—C21—H21C 109.5
C6—C7—C8 117.8 (3) H21A—C21—H21C 109.5
C6—C7—H7A 121.1 H21B—C21—H21C 109.5
C8—C7—H7A 121.1 C23—C22—C27 117.6 (3)
N1—C8—C7 129.6 (3) C23—C22—C1 122.9 (3)
N1—C8—C3 107.9 (3) C27—C22—C1 119.5 (3)
C7—C8—C3 122.4 (3) C22—C23—C24 122.1 (4)
C2—C9—N1 109.7 (3) C22—C23—H23A 118.9
C2—C9—C10 129.7 (3) C24—C23—H23A 118.9
N1—C9—C10 120.6 (3) C25—C24—C23 119.5 (4)
O2—C10—O1 124.1 (3) C25—C24—H24A 120.3
O2—C10—C9 124.3 (3) C23—C24—H24A 120.3
O1—C10—C9 111.6 (3) C24—C25—C26 119.8 (4)
O1—C11—H11A 109.5 C24—C25—H25A 120.1
O1—C11—H11B 109.5 C26—C25—H25A 120.1
H11A—C11—H11B 109.5 C25—C26—C27 120.1 (4)
O1—C11—H11C 109.5 C25—C26—H26A 119.9
H11A—C11—H11C 109.5 C27—C26—H26A 119.9
H11B—C11—H11C 109.5 C22—C27—C26 120.9 (4)
C19—C12—C13 106.3 (3) C22—C27—H27A 119.5
C19—C12—C1 124.6 (3) C26—C27—H27A 119.5
C12—C1—C2—C9 69.5 (4) C19—C12—C13—C18 0.7 (3)
C22—C1—C2—C9 −161.9 (3) C1—C12—C13—C18 177.6 (3)
C12—C1—C2—C3 −107.8 (4) C18—C13—C14—C15 0.9 (5)
C22—C1—C2—C3 20.8 (5) C12—C13—C14—C15 179.8 (3)
C9—C2—C3—C4 178.2 (4) C13—C14—C15—C16 0.0 (5)
C1—C2—C3—C4 −4.2 (6) C14—C15—C16—C17 0.1 (6)
C9—C2—C3—C8 0.4 (4) C15—C16—C17—C18 −1.0 (5)
C1—C2—C3—C8 178.1 (3) C19—N2—C18—C17 −179.1 (3)
C8—C3—C4—C5 2.0 (5) C19—N2—C18—C13 0.5 (4)
C2—C3—C4—C5 −175.6 (3) C16—C17—C18—N2 −178.5 (3)
C3—C4—C5—C6 −0.6 (5) C16—C17—C18—C13 2.0 (5)
C4—C5—C6—C7 −0.5 (6) C14—C13—C18—N2 178.5 (3)
C5—C6—C7—C8 0.2 (6) C12—C13—C18—N2 −0.7 (3)
C9—N1—C8—C7 −175.0 (3) C14—C13—C18—C17 −1.9 (5)
C9—N1—C8—C3 2.1 (4) C12—C13—C18—C17 178.9 (3)
C6—C7—C8—N1 178.0 (3) C13—C12—C19—N2 −0.4 (4)
C6—C7—C8—C3 1.3 (5) C1—C12—C19—N2 −177.5 (3)
C4—C3—C8—N1 −179.8 (3) C13—C12—C19—C20 177.8 (3)
C2—C3—C8—N1 −1.5 (4) C1—C12—C19—C20 0.6 (5)
C4—C3—C8—C7 −2.4 (5) C18—N2—C19—C12 −0.1 (4)
C2—C3—C8—C7 175.8 (3) C18—N2—C19—C20 −178.4 (3)
C3—C2—C9—N1 0.8 (4) C21—O4—C20—O3 −1.9 (5)
C1—C2—C9—N1 −177.0 (3) C21—O4—C20—C19 178.0 (3)
C3—C2—C9—C10 −176.8 (3) C12—C19—C20—O3 8.2 (6)
C1—C2—C9—C10 5.4 (5) N2—C19—C20—O3 −173.9 (3)
C8—N1—C9—C2 −1.8 (4) C12—C19—C20—O4 −171.7 (3)
C8—N1—C9—C10 176.0 (3) N2—C19—C20—O4 6.3 (4)
C11—O1—C10—O2 −3.5 (5) C12—C1—C22—C23 17.2 (5)
C11—O1—C10—C9 177.5 (3) C2—C1—C22—C23 −111.7 (4)
C2—C9—C10—O2 12.8 (6) C12—C1—C22—C27 −160.6 (3)
N1—C9—C10—O2 −164.6 (3) C2—C1—C22—C27 70.6 (4)
C2—C9—C10—O1 −168.2 (3) C27—C22—C23—C24 −0.1 (6)
N1—C9—C10—O1 14.4 (4) C1—C22—C23—C24 −177.9 (4)
C2—C1—C12—C19 −150.7 (3) C22—C23—C24—C25 1.0 (8)
C22—C1—C12—C19 79.7 (4) C23—C24—C25—C26 −1.7 (8)
C2—C1—C12—C13 32.8 (4) C24—C25—C26—C27 1.4 (7)
C22—C1—C12—C13 −96.8 (4) C23—C22—C27—C26 −0.1 (5)
C19—C12—C13—C14 −178.3 (4) C1—C22—C27—C26 177.8 (3)
C1—C12—C13—C14 −1.3 (6) C25—C26—C27—C22 −0.5 (6)

Hydrogen-bond geometry (Å, º)

Cg1 and cg4 are the centroids of the N1-pyrrole and C15-benzene rings, respectively.

D—H···A D—H H···A D···A D—H···A
N2—H2A···O2i 0.86 2.02 2.870 (4) 169
C11—H11A···O3ii 0.96 2.60 3.221 (4) 123
C11—H11B···N1iii 0.96 2.61 3.443 (5) 145
C11—H11C···O4i 0.96 2.53 3.333 (5) 142
C5—H5A···Cg4iv 0.93 2.76 3.659 (4) 164
C11—H11B···Cg1iii 0.96 2.55 3.366 (4) 143
C21—H21B···Cg4i 0.96 2.73 3.516 (5) 139

Symmetry codes: (i) −x+1, −y, −z+1; (ii) −x+1, y−1/2, −z+3/2; (iii) −x+1, −y, −z+2; (iv) −x, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5723).

References

  1. Chang, Y.-C., Riby, J., Grace, H. F., Peng, G.-F. & Bieldanes, L. F. (1999). Biochem. Pharmacol. 58, 825–834. [DOI] [PubMed]
  2. Enraf–Nonius (1994). CAD-4 EXPRESS Enraf–Nonius, Delft, The Netherlands.
  3. Ge, X., Fares, F. A. & Fares, S. Y. (1999). Anticancer Res. 19, 3199–3203. [PubMed]
  4. Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  5. Ni, Y.-C. (2008). Curr. Med. Imaging Rev. 4, 96–112.
  6. Poter, J. K., Bacon, C. W., Robins, J. D., Himmelsbach, D. S. & Higman, H. C. (1977). J. Agric. Food Chem. 25, 88–93. [DOI] [PubMed]
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Sun, H.-S., Li, Y.-L., Xu, N., Xu, H. & Zhang, J.-D. (2012). Acta Cryst. E68, o2764. [DOI] [PMC free article] [PubMed]
  9. Sundberg, R. J. (1996). The Chemistry of Indoles, p. 113. New York: Academic Press.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S1600536813024471/xu5723sup1.cif

e-69-o1516-sup1.cif (23.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813024471/xu5723Isup2.hkl

e-69-o1516-Isup2.hkl (197.1KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813024471/xu5723Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES