Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Sep 12;69(Pt 10):o1535. doi: 10.1107/S1600536813024537

3,22-Dioxa-11,14-di­aza­penta­cyclo­[12.8.0.02,11.05,10.015,20]docosa-5(10),6,8,15(20),16,18-hexa­ene-4,21-dione

Xiaolin Ren a, Jiao Feng a, Jinglin Wang b, Bin Liu a, Binsheng Yang a,*
PMCID: PMC3790403  PMID: 24098222

Abstract

In the title compound, C18H14N2O4, the piperazine ring adopts a chair conformation and the dihedral angle between the aromatic rings is 13.09 (9)°. In the crystal, mol­ecules are linked along the c axis by C—H⋯π and N⋯π [H(N)–centroid distances = 2.8030 (2) and 3.376 (2) Å] inter­actions between neighbouring mol­ecules.

Related literature  

For applications of π–π inter­actions, see: Janiak (2000). For C—H⋯π inter­actions, see: Ciunik & Desiraju (2001) and for N⋯π inter­actions, see: Lindeman et al. (1998). For the synthesis of the 2,2′-(ethane-1,2-diylbis(aza­nedi­yl))di­benzoic acid precursor, see: Berger & Telford (2002).graphic file with name e-69-o1535-scheme1.jpg

Experimental  

Crystal data  

  • C18H14N2O4

  • M r = 322.31

  • Triclinic, Inline graphic

  • a = 8.058 (1) Å

  • b = 8.2629 (11) Å

  • c = 12.0972 (14) Å

  • α = 74.956 (2)°

  • β = 73.868 (1)°

  • γ = 72.311 (1)°

  • V = 723.54 (16) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 293 K

  • 0.23 × 0.20 × 0.13 mm

Data collection  

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.976, T max = 0.986

  • 3858 measured reflections

  • 2533 independent reflections

  • 1301 reflections with I > 2σ(I)

  • R int = 0.025

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.051

  • wR(F 2) = 0.098

  • S = 1.01

  • 2533 reflections

  • 217 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.19 e Å−3

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S1600536813024537/ff2118sup1.cif

e-69-o1535-sup1.cif (20.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813024537/ff2118Isup2.hkl

e-69-o1535-Isup2.hkl (124.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813024537/ff2118Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the C6–C11 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯Cg1i 0.98 2.80 3.7337 (3) 159

Symmetry code: (i) Inline graphic.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Nos. 21271122 and 20901048) and Shanxi Scholarship Council of China (2013–018).

supplementary crystallographic information

1. Comment

The C–H···π and π–π interactions are important noncovalent intermolecular forces in determining the crystal packing, molecular assemblies, and structures of large biological systems (Janiak, 2000). In the present work, the crystal of the title compound is generated by noncovalent interactions.

In the title molecule (Fig. 1), the piperazine ring adopts a chair conformation and the dihedral angle between two phenyl rings (C6—C11; C13—C18) is 13.09 (9)°.

As shown in Figure 2, the neighboring molecules of title compound are arranged in a mutual head-to-tail manner by C–H···Cg1i (Cg1 is the centroid of the C6—C11 benzene ring) interactions (black dotted lines) and N···Cg2ii (Cg2 is the centroid of the C13—C18 benzene ring) interactions (pink dotted lines)to form infinite one-dimensional chain structure along the c axis [symmetry code: (i) 1 - x, 1 - y,1 - z; (ii)1 - x, 1 - y, 2 - z].

The adjacent one-dimensional chains, by van der Waals contacts, stack in a side-by-side fashion along the c axis to form three-dimensional structure (Fig. 3).

2. Experimental

The precursor 2,2'-(ethane-1,2-diylbis(azanediyl))dibenzoic acid (EDA) was synthesized according to literature procedures (Berger et al., 2002). The title compound was prepared by stirring a methanolic solution of EDA (300 mg, 1.0 mmol) and triethylamine (1 ml) for 10 min at room temperature. Then, 10 ml of a methanol solution containing CuCl2·2H2O(170 mg, 1 mmol) was added to the mixture and refluxed for 2 h. The mixture was filtered and washed with methanol. The EDA-Cu compound is not achieved as predicted. However, orange single crystals of the title complex suitable for X-ray analysis were obtained after several days from the mother liquor by slow evaporation.

3. Refinement

All H atoms were positioned geometrically [C–H = 0.97 Å for CH2, 0.93 Å for CH] and refined using a riding model, with Uiso = 1.2Ueq of the parent atom.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are presented as small spheres of arbitrary radius.

Fig. 2.

Fig. 2.

The one-dimensional chain structure of the title compound is formed by N···π interactions (pink dotted lines) and C–H···π interactions (black dotted lines) and extending along the c axis (all distances in Å).

Fig. 3.

Fig. 3.

Packing of the title compound viewed along the c axis

Crystal data

C18H14N2O4 Z = 2
Mr = 322.31 F(000) = 336
Triclinic, P1 Dx = 1.479 Mg m3
a = 8.058 (1) Å Mo Kα radiation, λ = 0.71073 Å
b = 8.2629 (11) Å Cell parameters from 695 reflections
c = 12.0972 (14) Å θ = 2.6–22.8°
α = 74.956 (2)° µ = 0.11 mm1
β = 73.868 (1)° T = 293 K
γ = 72.311 (1)° Block, orange
V = 723.54 (16) Å3 0.23 × 0.20 × 0.13 mm

Data collection

Bruker SMART CCD area-detector diffractometer 2533 independent reflections
Radiation source: fine-focus sealed tube 1301 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.025
phi and ω scans θmax = 25.0°, θmin = 1.8°
Absorption correction: multi-scan (SADABS; Bruker, 2005) h = −7→9
Tmin = 0.976, Tmax = 0.986 k = −9→9
3858 measured reflections l = −14→12

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098 H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0216P)2] where P = (Fo2 + 2Fc2)/3
2533 reflections (Δ/σ)max < 0.001
217 parameters Δρmax = 0.18 e Å3
0 restraints Δρmin = −0.19 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.5762 (3) 0.3589 (3) 0.6287 (2) 0.0388 (6)
N2 0.4532 (3) 0.5027 (3) 0.8359 (2) 0.0397 (6)
O1 0.7212 (2) 0.5863 (2) 0.54220 (16) 0.0450 (5)
O2 0.8892 (2) 0.6033 (3) 0.36520 (18) 0.0583 (6)
O3 0.6612 (2) 0.6710 (2) 0.75579 (16) 0.0481 (5)
O4 0.6823 (3) 0.8514 (3) 0.85352 (18) 0.0624 (6)
C1 0.6664 (3) 0.4729 (3) 0.6484 (2) 0.0390 (7)
H1 0.7706 0.4040 0.6809 0.047*
C2 0.5451 (3) 0.5917 (3) 0.7294 (2) 0.0388 (7)
H2 0.4584 0.6804 0.6886 0.047*
C3 0.3676 (3) 0.3824 (3) 0.8175 (2) 0.0485 (8)
H3A 0.2659 0.4473 0.7830 0.058*
H3B 0.3242 0.3144 0.8926 0.058*
C4 0.4938 (4) 0.2636 (4) 0.7389 (2) 0.0494 (8)
H4A 0.5862 0.1867 0.7786 0.059*
H4B 0.4296 0.1932 0.7229 0.059*
C5 0.8153 (4) 0.5144 (4) 0.4472 (3) 0.0441 (8)
C6 0.8080 (4) 0.3362 (4) 0.4543 (3) 0.0415 (7)
C7 0.6848 (4) 0.2634 (3) 0.5421 (3) 0.0398 (7)
C8 0.6709 (4) 0.1016 (4) 0.5381 (3) 0.0527 (8)
H8 0.5882 0.0506 0.5955 0.063*
C9 0.7781 (4) 0.0164 (4) 0.4503 (3) 0.0610 (9)
H9 0.7666 −0.0916 0.4486 0.073*
C10 0.9023 (4) 0.0876 (4) 0.3648 (3) 0.0623 (10)
H10 0.9759 0.0275 0.3065 0.075*
C11 0.9168 (4) 0.2484 (4) 0.3660 (3) 0.0547 (9)
H11 0.9993 0.2985 0.3078 0.066*
C12 0.5914 (4) 0.7686 (4) 0.8402 (3) 0.0468 (8)
C13 0.4154 (4) 0.7550 (4) 0.9111 (2) 0.0420 (7)
C14 0.3523 (4) 0.6153 (4) 0.9128 (2) 0.0419 (7)
C15 0.1977 (4) 0.5903 (4) 0.9944 (3) 0.0554 (9)
H15 0.1545 0.4958 0.9991 0.066*
C16 0.1090 (4) 0.7063 (5) 1.0681 (3) 0.0658 (10)
H16 0.0060 0.6882 1.1226 0.079*
C17 0.1676 (4) 0.8473 (4) 1.0639 (3) 0.0652 (10)
H17 0.1038 0.9257 1.1130 0.078*
C18 0.3217 (4) 0.8707 (4) 0.9860 (3) 0.0561 (9)
H18 0.3643 0.9648 0.9830 0.067*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0462 (14) 0.0398 (14) 0.0361 (15) −0.0196 (11) −0.0053 (13) −0.0104 (12)
N2 0.0460 (14) 0.0456 (15) 0.0318 (15) −0.0205 (11) −0.0029 (12) −0.0100 (12)
O1 0.0564 (13) 0.0462 (12) 0.0346 (13) −0.0208 (10) −0.0007 (11) −0.0122 (11)
O2 0.0621 (14) 0.0704 (16) 0.0456 (14) −0.0305 (12) 0.0059 (12) −0.0188 (12)
O3 0.0530 (12) 0.0557 (13) 0.0465 (13) −0.0281 (10) 0.0007 (11) −0.0234 (11)
O4 0.0723 (15) 0.0659 (15) 0.0631 (16) −0.0366 (11) −0.0022 (12) −0.0268 (12)
C1 0.0440 (17) 0.0419 (18) 0.0337 (18) −0.0148 (14) −0.0061 (15) −0.0090 (15)
C2 0.0437 (17) 0.0441 (18) 0.0350 (18) −0.0152 (13) −0.0070 (15) −0.0148 (15)
C3 0.0548 (19) 0.058 (2) 0.039 (2) −0.0284 (16) −0.0044 (16) −0.0099 (17)
C4 0.063 (2) 0.0487 (19) 0.044 (2) −0.0257 (15) −0.0117 (17) −0.0083 (17)
C5 0.0393 (18) 0.058 (2) 0.037 (2) −0.0149 (15) −0.0047 (16) −0.0143 (18)
C6 0.0414 (18) 0.0430 (18) 0.044 (2) −0.0074 (14) −0.0105 (16) −0.0172 (16)
C7 0.0449 (18) 0.0387 (17) 0.0404 (19) −0.0071 (14) −0.0157 (16) −0.0125 (16)
C8 0.066 (2) 0.0438 (19) 0.055 (2) −0.0168 (15) −0.0167 (18) −0.0139 (18)
C9 0.077 (3) 0.045 (2) 0.068 (3) −0.0081 (18) −0.023 (2) −0.022 (2)
C10 0.064 (2) 0.059 (2) 0.064 (3) 0.0005 (18) −0.013 (2) −0.032 (2)
C11 0.0494 (19) 0.062 (2) 0.053 (2) −0.0088 (16) −0.0069 (17) −0.0213 (19)
C12 0.060 (2) 0.0441 (19) 0.041 (2) −0.0139 (16) −0.0116 (17) −0.0147 (16)
C13 0.0457 (18) 0.0486 (19) 0.0317 (18) −0.0102 (14) −0.0056 (15) −0.0125 (15)
C14 0.0414 (18) 0.052 (2) 0.0321 (18) −0.0112 (15) −0.0084 (15) −0.0083 (16)
C15 0.049 (2) 0.075 (2) 0.047 (2) −0.0219 (17) −0.0087 (18) −0.0140 (19)
C16 0.046 (2) 0.100 (3) 0.051 (2) −0.0181 (19) 0.0043 (18) −0.031 (2)
C17 0.060 (2) 0.083 (3) 0.052 (2) −0.0044 (19) −0.007 (2) −0.033 (2)
C18 0.062 (2) 0.056 (2) 0.051 (2) −0.0088 (17) −0.0126 (19) −0.0195 (18)

Geometric parameters (Å, º)

N1—C7 1.410 (3) C6—C7 1.385 (4)
N1—C1 1.450 (3) C6—C11 1.390 (3)
N1—C4 1.456 (3) C7—C8 1.389 (3)
N2—C14 1.401 (3) C8—C9 1.371 (4)
N2—C2 1.435 (3) C8—H8 0.9300
N2—C3 1.459 (3) C9—C10 1.373 (4)
O1—C5 1.359 (3) C9—H9 0.9300
O1—C1 1.426 (3) C10—C11 1.373 (4)
O2—C5 1.199 (3) C10—H10 0.9300
O3—C12 1.357 (3) C11—H11 0.9300
O3—C2 1.433 (3) C12—C13 1.460 (3)
O4—C12 1.208 (3) C13—C14 1.389 (3)
C1—C2 1.504 (3) C13—C18 1.391 (3)
C1—H1 0.9800 C14—C15 1.391 (3)
C2—H2 0.9800 C15—C16 1.378 (4)
C3—C4 1.497 (3) C15—H15 0.9300
C3—H3A 0.9700 C16—C17 1.368 (4)
C3—H3B 0.9700 C16—H16 0.9300
C4—H4A 0.9700 C17—C18 1.367 (4)
C4—H4B 0.9700 C17—H17 0.9300
C5—C6 1.471 (4) C18—H18 0.9300
C7—N1—C1 111.2 (2) C11—C6—C5 118.5 (3)
C7—N1—C4 117.6 (2) C6—C7—C8 118.1 (3)
C1—N1—C4 111.3 (2) C6—C7—N1 118.6 (3)
C14—N2—C2 111.6 (2) C8—C7—N1 123.2 (3)
C14—N2—C3 117.4 (2) C9—C8—C7 120.5 (3)
C2—N2—C3 113.7 (2) C9—C8—H8 119.7
C5—O1—C1 117.6 (2) C7—C8—H8 119.7
C12—O3—C2 117.6 (2) C8—C9—C10 121.1 (3)
O1—C1—N1 111.1 (2) C8—C9—H9 119.4
O1—C1—C2 104.5 (2) C10—C9—H9 119.4
N1—C1—C2 112.0 (2) C11—C10—C9 119.4 (3)
O1—C1—H1 109.7 C11—C10—H10 120.3
N1—C1—H1 109.7 C9—C10—H10 120.3
C2—C1—H1 109.7 C10—C11—C6 119.9 (3)
O3—C2—N2 109.6 (2) C10—C11—H11 120.0
O3—C2—C1 104.6 (2) C6—C11—H11 120.0
N2—C2—C1 113.3 (2) O4—C12—O3 117.8 (3)
O3—C2—H2 109.7 O4—C12—C13 126.2 (3)
N2—C2—H2 109.7 O3—C12—C13 116.0 (3)
C1—C2—H2 109.7 C14—C13—C18 120.6 (3)
N2—C3—C4 111.6 (2) C14—C13—C12 119.4 (3)
N2—C3—H3A 109.3 C18—C13—C12 119.6 (3)
C4—C3—H3A 109.3 C13—C14—C15 118.3 (3)
N2—C3—H3B 109.3 C13—C14—N2 117.9 (3)
C4—C3—H3B 109.3 C15—C14—N2 123.7 (3)
H3A—C3—H3B 108.0 C16—C15—C14 119.6 (3)
N1—C4—C3 111.8 (2) C16—C15—H15 120.2
N1—C4—H4A 109.3 C14—C15—H15 120.2
C3—C4—H4A 109.3 C17—C16—C15 122.1 (3)
N1—C4—H4B 109.3 C17—C16—H16 119.0
C3—C4—H4B 109.3 C15—C16—H16 119.0
H4A—C4—H4B 107.9 C18—C17—C16 118.7 (3)
O2—C5—O1 117.5 (3) C18—C17—H17 120.6
O2—C5—C6 126.8 (3) C16—C17—H17 120.6
O1—C5—C6 115.6 (3) C17—C18—C13 120.6 (3)
C7—C6—C11 120.9 (3) C17—C18—H18 119.7
C7—C6—C5 120.4 (3) C13—C18—H18 119.7
C5—O1—C1—N1 −51.0 (3) C4—N1—C7—C6 −159.6 (2)
C5—O1—C1—C2 −172.0 (2) C1—N1—C7—C8 152.4 (3)
C7—N1—C1—O1 56.5 (3) C4—N1—C7—C8 22.5 (4)
C4—N1—C1—O1 −170.4 (2) C6—C7—C8—C9 0.8 (4)
C7—N1—C1—C2 172.9 (2) N1—C7—C8—C9 178.7 (3)
C4—N1—C1—C2 −53.9 (3) C7—C8—C9—C10 0.4 (5)
C12—O3—C2—N2 −49.7 (3) C8—C9—C10—C11 −1.3 (5)
C12—O3—C2—C1 −171.4 (2) C9—C10—C11—C6 0.9 (4)
C14—N2—C2—O3 59.1 (3) C7—C6—C11—C10 0.3 (4)
C3—N2—C2—O3 −165.26 (19) C5—C6—C11—C10 −174.5 (3)
C14—N2—C2—C1 175.4 (2) C2—O3—C12—O4 −171.7 (2)
C3—N2—C2—C1 −48.9 (3) C2—O3—C12—C13 11.6 (4)
O1—C1—C2—O3 −69.7 (2) O4—C12—C13—C14 −158.6 (3)
N1—C1—C2—O3 169.9 (2) O3—C12—C13—C14 17.8 (4)
O1—C1—C2—N2 170.9 (2) O4—C12—C13—C18 14.2 (4)
N1—C1—C2—N2 50.6 (3) O3—C12—C13—C18 −169.5 (3)
C14—N2—C3—C4 −176.7 (2) C18—C13—C14—C15 −2.6 (4)
C2—N2—C3—C4 50.3 (3) C12—C13—C14—C15 170.1 (2)
C7—N1—C4—C3 −174.0 (2) C18—C13—C14—N2 −179.6 (2)
C1—N1—C4—C3 56.1 (3) C12—C13—C14—N2 −6.9 (4)
N2—C3—C4—N1 −53.7 (3) C2—N2—C14—C13 −31.8 (3)
C1—O1—C5—O2 −166.5 (2) C3—N2—C14—C13 −165.6 (2)
C1—O1—C5—C6 16.3 (3) C2—N2—C14—C15 151.4 (3)
O2—C5—C6—C7 −164.6 (3) C3—N2—C14—C15 17.6 (4)
O1—C5—C6—C7 12.2 (4) C13—C14—C15—C16 1.9 (4)
O2—C5—C6—C11 10.1 (4) N2—C14—C15—C16 178.7 (3)
O1—C5—C6—C11 −173.0 (2) C14—C15—C16—C17 0.3 (5)
C11—C6—C7—C8 −1.1 (4) C15—C16—C17—C18 −1.8 (5)
C5—C6—C7—C8 173.5 (2) C16—C17—C18—C13 1.1 (5)
C11—C6—C7—N1 −179.2 (2) C14—C13—C18—C17 1.1 (4)
C5—C6—C7—N1 −4.5 (4) C12—C13—C18—C17 −171.6 (3)
C1—N1—C7—C6 −29.6 (3)

Hydrogen-bond geometry (Å, º)

Cg1 is the centroid of the C6–C11 ring.

D—H···A D—H H···A D···A D—H···A
C2—H2···Cg1i 0.98 2.80 3.7337 (3) 159

Symmetry code: (i) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FF2118).

References

  1. Berger, D. J. & Telford, J. R. (2002). Inorg. Chim. Acta, 341, 132–134.
  2. Brandenburg, K. (1999). DIAMOND Crystal Impact GbR, Bonn, Germany.
  3. Bruker (1999). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Bruker (2005). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Ciunik, Z. & Desiraju, G. R. (2001). Chem. Commun. pp. 703–704.
  6. Janiak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885–3896.
  7. Lindeman, S. V., Kosynkin, D. & Kochi, J. K. (1998). J. Am. Chem. Soc. 120, 13268–13269.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S1600536813024537/ff2118sup1.cif

e-69-o1535-sup1.cif (20.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813024537/ff2118Isup2.hkl

e-69-o1535-Isup2.hkl (124.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813024537/ff2118Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES