Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Sep 12;69(Pt 10):o1537. doi: 10.1107/S1600536813023969

N-(2-Bromo­phen­yl)-1,3-selenazolo[5,4-b]pyridin-2-amine

Zhou Bo a, Huang Du Shu a, Liu Wei a,*, Zhou Mei Yun b
PMCID: PMC3790405  PMID: 24098224

Abstract

The mol­ecular structure of the title mol­ecule, C12H8BrN3Se, is built up from fused selenazolo and pyridine rings, linked to a 2-bromo­aniline group. In the crystal, pairs of mol­ecules are linked by N—H⋯N hydrogen bonds into dimers, forming eight-membered ring motifs.

Related literature  

For the bioactivity of organoselenium compounds, see: Garud et al. (2007); Ling et al. (2010); Plamen et al. (2010). For crystallographic studies of selenazolo derivatives, see: Plamen et al. (2004).graphic file with name e-69-o1537-scheme1.jpg

Experimental  

Crystal data  

  • C12H8BrN3Se

  • M r = 353.08

  • Monoclinic, Inline graphic

  • a = 12.5312 (5) Å

  • b = 7.4562 (3) Å

  • c = 13.8913 (5) Å

  • β = 112.331 (4)°

  • V = 1200.60 (8) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 7.96 mm−1

  • T = 295 K

  • 0.30 × 0.30 × 0.10 mm

Data collection  

  • Agilent Xcalibur (Sapphire3, Gemini ultra) diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010) T min = 0.199, T max = 0.299

  • 4420 measured reflections

  • 1921 independent reflections

  • 1779 reflections with I > 2σ(I)

  • R int = 0.025

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.052

  • wR(F 2) = 0.132

  • S = 1.11

  • 1921 reflections

  • 155 parameters

  • H-atom parameters constrained

  • Δρmax = 0.66 e Å−3

  • Δρmin = −1.88 e Å−3

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S1600536813023969/fj2639sup1.cif

e-69-o1537-sup1.cif (21.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813023969/fj2639Isup2.hkl

e-69-o1537-Isup2.hkl (92.6KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813023969/fj2639Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯N2i 1.06 1.88 2.933 (4) 174

Symmetry code: (i) Inline graphic.

Acknowledgments

This work was supported by grants from the National Natural Science Fund (Nos. 31000816 and 21071062).

supplementary crystallographic information

1. Comment

Since the discovery of the importance of Se as a microelement in bacteria and animals, and the function of the selenoenzyme glutathione peroxidase (GPx) as an antioxidant, the interest in organoselenium compounds has increased significantly (Garud, et al. 2007; Ling, et al. 2010; Plamen, et al. 2010,2004). The design and synthesis of organoselenium compounds, especially Se-containing heterocycles, are of our current interest. The title molecule (Fig.1) is built up from two fused rings, viz. selenazolo and pyridine, linked to 2-bromoaniline group. In the crystal, pairs of molecules are linked by N—H—N hydrogen bonds (H—N=2.933 Å) into dimers, forming eight- membered rings motifs.

2. Experimental

To a stirred solution of N-phenyllformamide (10 mmol) in toluene (100 ml) in an ice bath, Et3N (4.0 g, 40 mmol) and Se black powder were added. Then, phosgene (8 g of a 20% solution in toluene,) was added slowly over 30 min. An exothermic reaction took place. After complete addition, the suspension was heated under reflux for 10 h (TLC control). The mixture was filtered and washed with several portions of toluene, and then the filtrate was concentrated and afforded the raw isoselenocyanatobenzene. Isoselenocyanatobenzene was added to a stirred solution of 2-chloropyridin -3-amine (1.28 g, 10 mmol) in 2-propanol at room temperature, and the mixture was heated to reflux for 3 h. After filtration, the precipitate was collected as a yellow solid. The impure product was dissolved in CCl2H2 at room temperature. Colorless crystals suitable for X-ray analysis (90.4% yield) grew over a period of one week when the solution was exposed to the air.

3. Refinement

The structure was solved by direct methods and refined by least squares

method on F2 using the SHELXTL program package. All atoms were refined

anisotropically. Hydrogen atoms were placed at the calculated positions using

a riding model with C(aromatic)-H = 0.95 Å and Uiso(H) = 1.2Ueq(C), and

with N—H = 0.95 Å and Uiso(H) =1.5Ueq(N).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound in (I) showing the atom numbering Scheme. Displacement ellipsoids are drawn at the 50% probability level.

Crystal data

C12H8BrN3Se F(000) = 680
Mr = 353.08 Dx = 1.953 Mg m3
Monoclinic, P21/n Cu Kα radiation, λ = 1.54178 Å
a = 12.5312 (5) Å Cell parameters from 1921 reflections
b = 7.4562 (3) Å θ = 63.3–4.1°
c = 13.8913 (5) Å µ = 7.96 mm1
β = 112.331 (4)° T = 295 K
V = 1200.60 (8) Å3 Prism, colorless
Z = 4 0.30 × 0.30 × 0.10 mm

Data collection

Agilent Xcalibur (Sapphire3, Gemini ultra) diffractometer 1921 independent reflections
Radiation source: fine-focus sealed tube 1779 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.025
Detector resolution: 16.0288 pixels mm-1 θmax = 62.8°, θmin = 4.1°
ω scans h = −14→14
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010) k = −8→8
Tmin = 0.199, Tmax = 0.299 l = −16→14
4420 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.132 H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.1P)2] where P = (Fo2 + 2Fc2)/3
1921 reflections (Δ/σ)max < 0.001
155 parameters Δρmax = 0.66 e Å3
0 restraints Δρmin = −1.88 e Å3

Special details

Experimental. CrysAlisPro, Agilent Technologies, Version 1.171.34.49 (release 20-01-2011 CrysAlis171 .NET) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Se1 0.54412 (4) 0.09933 (7) 0.29605 (3) 0.0347 (2)
Br1 0.25269 (5) −0.30042 (7) 0.03920 (4) 0.0499 (2)
C1 0.8930 (4) 0.1246 (6) 0.3969 (4) 0.0391 (10)
H1 0.9579 0.1449 0.4594 0.047*
N1 0.7879 (3) 0.1260 (5) 0.4012 (3) 0.0390 (9)
C6 0.5142 (3) 0.0633 (5) 0.1513 (3) 0.0244 (8)
N2 0.6067 (3) 0.0572 (5) 0.1289 (2) 0.0283 (7)
C5 0.7000 (4) 0.1010 (5) 0.3106 (3) 0.0294 (9)
C10 0.1263 (4) −0.0412 (8) 0.1036 (3) 0.0467 (13)
H10 0.0714 −0.1346 0.0929 0.056*
N3 0.4086 (3) 0.0347 (5) 0.0812 (2) 0.0307 (8)
H3 0.4002 0.0097 0.0038 0.11 (3)*
C4 0.7091 (3) 0.0741 (5) 0.2149 (3) 0.0255 (8)
C9 0.2266 (4) −0.0716 (6) 0.0859 (3) 0.0320 (9)
C3 0.8190 (4) 0.0674 (6) 0.2134 (3) 0.0354 (10)
H3A 0.8303 0.0447 0.1507 0.042*
C7 0.3078 (3) 0.0625 (6) 0.1015 (3) 0.0264 (8)
C8 0.2863 (4) 0.2307 (6) 0.1358 (3) 0.0359 (10)
H8 0.3407 0.3248 0.1466 0.043*
C2 0.9120 (4) 0.0950 (6) 0.3064 (4) 0.0409 (11)
H2 0.9885 0.0937 0.3079 0.049*
C11 0.1872 (4) 0.2608 (8) 0.1538 (4) 0.0471 (12)
H11 0.1743 0.3748 0.1779 0.056*
C12 0.1068 (4) 0.1272 (9) 0.1372 (4) 0.0534 (15)
H12 0.0379 0.1496 0.1486 0.064*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Se1 0.0303 (3) 0.0541 (4) 0.0266 (3) −0.00181 (18) 0.0184 (2) −0.00480 (18)
Br1 0.0459 (4) 0.0368 (4) 0.0550 (4) −0.0067 (2) 0.0055 (3) 0.0005 (2)
C1 0.028 (2) 0.044 (2) 0.034 (2) 0.000 (2) −0.0008 (18) −0.0034 (19)
N1 0.038 (2) 0.045 (2) 0.0263 (18) −0.0011 (17) 0.0045 (16) −0.0022 (16)
C6 0.0217 (19) 0.0271 (19) 0.0281 (19) −0.0004 (15) 0.0135 (16) −0.0024 (15)
N2 0.0222 (17) 0.0396 (18) 0.0269 (17) −0.0023 (14) 0.0137 (14) −0.0037 (14)
C5 0.034 (2) 0.028 (2) 0.028 (2) 0.0000 (16) 0.0148 (18) −0.0021 (15)
C10 0.022 (2) 0.075 (4) 0.041 (3) −0.009 (2) 0.010 (2) 0.016 (2)
N3 0.0199 (17) 0.047 (2) 0.0287 (17) −0.0016 (15) 0.0134 (14) −0.0077 (15)
C4 0.022 (2) 0.0283 (19) 0.0254 (19) −0.0012 (15) 0.0082 (16) −0.0003 (15)
C9 0.024 (2) 0.044 (2) 0.027 (2) −0.0020 (18) 0.0082 (17) 0.0063 (17)
C3 0.024 (2) 0.048 (3) 0.039 (2) 0.0023 (18) 0.0179 (18) 0.0001 (19)
C7 0.0174 (18) 0.042 (2) 0.0230 (18) −0.0001 (16) 0.0111 (15) −0.0002 (16)
C8 0.031 (2) 0.042 (2) 0.039 (2) 0.0025 (19) 0.0177 (19) −0.0041 (19)
C2 0.023 (2) 0.049 (3) 0.046 (3) −0.0020 (18) 0.008 (2) 0.001 (2)
C11 0.038 (3) 0.067 (3) 0.040 (3) 0.015 (2) 0.018 (2) −0.007 (2)
C12 0.028 (3) 0.098 (4) 0.041 (3) 0.010 (3) 0.021 (2) 0.005 (3)

Geometric parameters (Å, º)

Se1—C5 1.886 (4) N3—C7 1.410 (5)
Se1—C6 1.920 (4) N3—H3 1.0555
Br1—C9 1.897 (5) C4—C3 1.387 (6)
C1—N1 1.340 (7) C9—C7 1.384 (6)
C1—C2 1.384 (7) C3—C2 1.387 (6)
C1—H1 0.9500 C3—H3A 0.9500
N1—C5 1.334 (6) C7—C8 1.404 (6)
C6—N2 1.309 (5) C8—C11 1.375 (6)
C6—N3 1.328 (5) C8—H8 0.9500
N2—C4 1.388 (5) C2—H2 0.9500
C5—C4 1.390 (6) C11—C12 1.372 (8)
C10—C9 1.388 (7) C11—H11 0.9500
C10—C12 1.393 (8) C12—H12 0.9500
C10—H10 0.9500
C5—Se1—C6 83.98 (17) C7—C9—C10 121.1 (4)
N1—C1—C2 123.6 (4) C7—C9—Br1 119.4 (3)
N1—C1—H1 118.2 C10—C9—Br1 119.5 (4)
C2—C1—H1 118.2 C4—C3—C2 117.9 (4)
C5—N1—C1 115.4 (4) C4—C3—H3A 121.0
N2—C6—N3 123.0 (3) C2—C3—H3A 121.0
N2—C6—Se1 114.5 (3) C9—C7—C8 118.3 (4)
N3—C6—Se1 122.3 (3) C9—C7—N3 121.6 (4)
C6—N2—C4 113.9 (3) C8—C7—N3 120.1 (4)
N1—C5—C4 125.7 (4) C11—C8—C7 120.7 (5)
N1—C5—Se1 123.5 (3) C11—C8—H8 119.6
C4—C5—Se1 110.7 (3) C7—C8—H8 119.6
C9—C10—C12 119.5 (5) C1—C2—C3 119.7 (4)
C9—C10—H10 120.3 C1—C2—H2 120.1
C12—C10—H10 120.3 C3—C2—H2 120.1
C6—N3—C7 123.2 (3) C12—C11—C8 120.5 (5)
C6—N3—H3 117.4 C12—C11—H11 119.8
C7—N3—H3 118.6 C8—C11—H11 119.8
C3—C4—N2 125.6 (4) C11—C12—C10 120.0 (4)
C3—C4—C5 117.5 (4) C11—C12—H12 120.0
N2—C4—C5 116.8 (4) C10—C12—H12 120.0
C2—C1—N1—C5 −1.6 (7) C12—C10—C9—C7 0.3 (7)
C5—Se1—C6—N2 −0.2 (3) C12—C10—C9—Br1 −179.6 (4)
C5—Se1—C6—N3 175.3 (4) N2—C4—C3—C2 177.1 (4)
N3—C6—N2—C4 −174.2 (4) C5—C4—C3—C2 −2.5 (6)
Se1—C6—N2—C4 1.3 (4) C10—C9—C7—C8 0.0 (6)
C1—N1—C5—C4 0.1 (6) Br1—C9—C7—C8 179.8 (3)
C1—N1—C5—Se1 −179.5 (3) C10—C9—C7—N3 −178.3 (4)
C6—Se1—C5—N1 178.7 (4) Br1—C9—C7—N3 1.5 (5)
C6—Se1—C5—C4 −0.9 (3) C6—N3—C7—C9 −125.4 (4)
N2—C6—N3—C7 −172.0 (4) C6—N3—C7—C8 56.4 (6)
Se1—C6—N3—C7 12.8 (6) C9—C7—C8—C11 0.3 (6)
C6—N2—C4—C3 178.2 (4) N3—C7—C8—C11 178.7 (4)
C6—N2—C4—C5 −2.1 (5) N1—C1—C2—C3 0.9 (8)
N1—C5—C4—C3 2.0 (6) C4—C3—C2—C1 1.2 (7)
Se1—C5—C4—C3 −178.4 (3) C7—C8—C11—C12 −0.9 (7)
N1—C5—C4—N2 −177.7 (4) C8—C11—C12—C10 1.1 (8)
Se1—C5—C4—N2 1.9 (4) C9—C10—C12—C11 −0.8 (7)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N3—H3···N2i 1.06 1.88 2.933 (4) 174

Symmetry code: (i) −x+1, −y, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2639).

References

  1. Agilent (2010). CrysAlis PRO Agilent Technologies, Yarnton, England.
  2. Garud, D. R., Koketsu, M. & Ishihara, H. (2007). Molecules, 12, 504–535. [DOI] [PMC free article] [PubMed]
  3. Ling, C., Zheng, Z., Jiang, X., Zhong, W. & Li, S. (2010). Bioorg. Med. Chem. Lett. 20, 5123–5125. [DOI] [PubMed]
  4. Plamen, K. A., Anthony, L. & Heinz, H. (2004). Helv. Chim. Acta, 87, 1883–1887.
  5. Plamen, K. A., Anthony, L. & Heinz, H. (2010). Helv. Chim. Acta, 93, 395–404.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S1600536813023969/fj2639sup1.cif

e-69-o1537-sup1.cif (21.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813023969/fj2639Isup2.hkl

e-69-o1537-Isup2.hkl (92.6KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813023969/fj2639Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES