Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Sep 12;69(Pt 10):o1541. doi: 10.1107/S160053681302477X

3-(3-Methyl­phen­yl)-5-(quinolin-8-yl­meth­oxy)-1,2,4-oxa­diazole monohydrate

Lu Yang a,b, Wei Liu a,b, Han Wang a,b,*, Xing-Wei Chen a,b, Hai-Bo Wang b
PMCID: PMC3790408  PMID: 24098227

Abstract

In the title compound, C19H15N3O2·H2O, the oxa­diazole ring and the quinoline unit are almost coplanar, making a dihedral angle of 7.66 (8)°. The dihedral angle between the benzene ring and the quinoline system is 25.95 (8)° while that between the benzene and the oxa­diazole rings is 18.88 (9)°. The water mol­ecule is hydrogen bonded to an oxa­diazole N atom and to the quinoline N atom. In the crystal, these units are linked via C—H⋯O hydrogen bonds, forming two-dimensional net­works lying parallel to the ab plane.

Related literature  

For the preparation of the title compound, see: Chiou & Shine (1989). For the biological activity of 1,2,4-oxa­diazole derivatives, see: Street et al. (1990). For metal complexes of related compounds, see: da Silva et al. (1999); Pibiri et al. (2010); Terenzi et al. (2011). For bond-length data, see: Allen et al. (1987). graphic file with name e-69-o1541-scheme1.jpg

Experimental  

Crystal data  

  • C19H15N3O2·H2O

  • M r = 335.36

  • Triclinic, Inline graphic

  • a = 7.2070 (14) Å

  • b = 7.6200 (15) Å

  • c = 15.109 (3) Å

  • α = 92.62 (3)°

  • β = 90.19 (3)°

  • γ = 92.15 (3)°

  • V = 828.3 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.30 × 0.10 × 0.10 mm

Data collection  

  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968) T min = 0.973, T max = 0.991

  • 3302 measured reflections

  • 3039 independent reflections

  • 1949 reflections with I > 2σ(I)

  • R int = 0.015

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.054

  • wR(F 2) = 0.162

  • S = 1.00

  • 3039 reflections

  • 233 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.18 e Å−3

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) D, I. DOI: 10.1107/S160053681302477X/im2428sup1.cif

e-69-o1541-sup1.cif (26.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681302477X/im2428Isup2.hkl

e-69-o1541-Isup2.hkl (149.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
OW—HWB⋯N2 0.91 (3) 2.09 (3) 2.980 (3) 169 (3)
OW—HWA⋯N1 0.94 (3) 1.91 (3) 2.830 (3) 165 (3)
C7—H7A⋯OW i 0.93 2.51 3.272 (3) 139
C10—H10A⋯OW ii 0.97 2.55 3.482 (3) 160
C10—H10B⋯OW iii 0.97 2.59 3.534 (3) 164

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

supplementary crystallographic information

1. Comment

1,2,4-Oxadiazole derivatives have shown high biological activity, such as antibacterial, anti-HIV and weed control (Street et al., 1990). They are therefore widely used in medicinal chemistry and as pesticides. 1,2,4-Oxadiazole derivatives in combination with metal ions can also be used in fluorescent recognition (da Silva et al., 1999; Pibiri et al., 2010; Terenzi et al., 2011). The title compound 5-(quinoline-8-ylmethoxy)-3-p-tolyl-1,2,4-oxadiazole was also used in metal ions fluorescent recognition. In the molecule of 5-(quinoline-8-ylmethoxy)-3-p-tolyl-1,2,4-oxadiazole hydrate (Fig. 1) bond lengths (Allen et al., 1987) and angles are within normal ranges.The oxadiazol ring and the quinoline moiety are almost coplanar showing a dihedral angle of 7.66 (8)°. The dihedral angles between the benzene ring and the quinoline system is 25.95 (8)°, the corresponding angle between the benzene and the oxadiazol rings is 18.88 (9)°. The crystal structure is established by intermolecular N—H···O and O—H···O hydrogen bonds (Fig. 2).

2. Experimental

5-(Quinoline-8-ylmethoxy)-3-p-tolyl-1,2,4-oxadiazole was prepared by a literature method (Chiou & Shine, 1989). 3-(4-Methyl-phenyl)-5-chloromethyl-1,2,4-oxadizole (3.4 g, 16.4 mmol), 8-hydroxy-quinoline (2.4 g, 16.4 mmol), potassium carbonate (3.4 g ,24.6 mmol) and potassium iodide (catalytic amount) were added to acetone (40 ml). The mixture was then heated to reflux for 6 hours. After being cooled to room temperature, the mixture was filtered and evaporated to afford the product as a yellow solid. The crude product was re-crystallized from ethyl acetate (yield 3.1g, 59.8%). Crystals suitable for X-ray analysis were obtained by slow evaporation of an ethyl acetate solution.

3. Refinement

H atoms were positioned geometrically, with C-H = 0.93, 0.97 and 0.96 Å for aromatic, methylene and methyl H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C,N), where x = 1.5 for methyl H and x = 1.2 for all other H atoms. Hydrogen atoms of the solvent water molecule have been determined from Fourier maps and refined freely.

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title molecule with displacement ellipsoids drawn at the 50% probability level.

Fig. 2.

Fig. 2.

Packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.

Crystal data

C19H15N3O2·H2O Z = 2
Mr = 335.36 F(000) = 352
Triclinic, P1 Dx = 1.345 Mg m3
Hall symbol: -P 1 Melting point: 342 K
a = 7.2070 (14) Å Mo Kα radiation, λ = 0.71073 Å
b = 7.6200 (15) Å Cell parameters from 25 reflections
c = 15.109 (3) Å θ = 9–13°
α = 92.62 (3)° µ = 0.09 mm1
β = 90.19 (3)° T = 293 K
γ = 92.15 (3)° Block, yellow
V = 828.3 (3) Å3 0.30 × 0.10 × 0.10 mm

Data collection

Enraf–Nonius CAD-4 diffractometer 1949 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.015
Graphite monochromator θmax = 25.4°, θmin = 1.4°
ω/2θ scans h = 0→8
Absorption correction: ψ scan (North et al., 1968) k = −9→9
Tmin = 0.973, Tmax = 0.991 l = −18→18
3302 measured reflections 3 standard reflections every 200 reflections
3039 independent reflections intensity decay: 1%

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.054 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.162 w = 1/[σ2(Fo2) + (0.097P)2] where P = (Fo2 + 2Fc2)/3
S = 1.00 (Δ/σ)max < 0.001
3039 reflections Δρmax = 0.24 e Å3
233 parameters Δρmin = −0.18 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.033 (7)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.0819 (2) 0.7951 (2) 0.99656 (11) 0.0571 (5)
N1 −0.1889 (3) 0.6301 (2) 1.08273 (13) 0.0522 (5)
C1 0.2813 (3) 0.8077 (3) 1.12657 (18) 0.0596 (7)
H1B 0.3763 0.8670 1.0974 0.071*
N2 0.0057 (3) 0.8438 (2) 0.81930 (13) 0.0511 (5)
O2 0.2873 (2) 0.9553 (2) 0.80096 (12) 0.0695 (6)
C2 0.3046 (4) 0.7675 (4) 1.21478 (19) 0.0667 (7)
H2B 0.4155 0.8005 1.2437 0.080*
C3 0.1700 (4) 0.6819 (4) 1.25913 (18) 0.0656 (7)
H3A 0.1894 0.6553 1.3178 0.079*
N3 0.2016 (3) 0.9460 (3) 0.71676 (15) 0.0714 (7)
C4 −0.0008 (3) 0.6320 (3) 1.21701 (17) 0.0551 (6)
C5 −0.1489 (4) 0.5465 (3) 1.25918 (18) 0.0642 (7)
H5A −0.1374 0.5179 1.3181 0.077*
C6 −0.3092 (4) 0.5051 (3) 1.21418 (19) 0.0653 (7)
H6A −0.4084 0.4483 1.2416 0.078*
C7 −0.3218 (3) 0.5497 (3) 1.12629 (18) 0.0594 (7)
H7A −0.4323 0.5206 1.0962 0.071*
C8 −0.0273 (3) 0.6721 (3) 1.12723 (16) 0.0475 (6)
C9 0.1196 (3) 0.7605 (3) 1.08256 (16) 0.0486 (6)
C10 0.2240 (3) 0.8842 (3) 0.94993 (17) 0.0557 (6)
H10A 0.3386 0.8219 0.9528 0.067*
H10B 0.2460 1.0022 0.9757 0.067*
C11 0.1608 (3) 0.8911 (3) 0.85698 (17) 0.0511 (6)
C12 0.0369 (3) 0.8783 (3) 0.73185 (16) 0.0535 (6)
C13 −0.0981 (3) 0.8373 (3) 0.66076 (16) 0.0553 (6)
C14 −0.2843 (4) 0.8113 (3) 0.67896 (17) 0.0617 (7)
H14A −0.3249 0.8161 0.7374 0.074*
C15 −0.4105 (4) 0.7784 (4) 0.61087 (18) 0.0687 (7)
H15A −0.5356 0.7628 0.6245 0.082*
C16 −0.3573 (4) 0.7677 (3) 0.52325 (17) 0.0677 (8)
C17 −0.1699 (5) 0.7904 (4) 0.50615 (19) 0.0847 (9)
H17A −0.1291 0.7826 0.4478 0.102*
C18 −0.0424 (4) 0.8242 (4) 0.57307 (19) 0.0814 (9)
H18A 0.0828 0.8385 0.5594 0.098*
C19 −0.4974 (5) 0.7358 (4) 0.45006 (19) 0.0905 (10)
H19A −0.4352 0.7339 0.3940 0.136*
H19B −0.5845 0.8282 0.4523 0.136*
H19C −0.5622 0.6250 0.4571 0.136*
OW −0.3313 (2) 0.7299 (3) 0.91840 (14) 0.0733 (6)
HWB −0.236 (5) 0.757 (4) 0.8819 (19) 0.088*
HWA −0.274 (4) 0.682 (4) 0.967 (2) 0.088*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0383 (8) 0.0683 (11) 0.0639 (11) −0.0106 (8) −0.0065 (8) 0.0075 (8)
N1 0.0400 (10) 0.0500 (11) 0.0661 (13) −0.0038 (9) −0.0033 (10) 0.0013 (9)
C1 0.0387 (13) 0.0624 (16) 0.0769 (19) 0.0010 (11) −0.0102 (12) −0.0030 (13)
N2 0.0425 (11) 0.0550 (12) 0.0551 (12) −0.0019 (9) 0.0074 (9) −0.0021 (9)
O2 0.0450 (10) 0.0884 (13) 0.0744 (13) −0.0133 (9) 0.0078 (9) 0.0081 (10)
C2 0.0498 (15) 0.0751 (18) 0.0742 (19) 0.0041 (13) −0.0197 (14) −0.0088 (14)
C3 0.0634 (17) 0.0752 (18) 0.0579 (16) 0.0075 (14) −0.0165 (14) −0.0034 (13)
N3 0.0556 (13) 0.0913 (17) 0.0670 (15) −0.0103 (12) 0.0084 (12) 0.0106 (12)
C4 0.0528 (14) 0.0486 (13) 0.0640 (16) 0.0094 (11) −0.0032 (12) −0.0022 (11)
C5 0.0694 (18) 0.0598 (16) 0.0643 (17) 0.0119 (14) 0.0029 (14) 0.0052 (13)
C6 0.0580 (16) 0.0608 (16) 0.0773 (19) −0.0011 (13) 0.0091 (14) 0.0079 (14)
C7 0.0457 (14) 0.0567 (15) 0.0753 (18) −0.0028 (12) −0.0016 (13) 0.0017 (13)
C8 0.0405 (12) 0.0420 (12) 0.0595 (15) 0.0032 (10) −0.0053 (11) −0.0046 (10)
C9 0.0370 (12) 0.0478 (13) 0.0607 (15) 0.0047 (10) −0.0081 (11) −0.0021 (11)
C10 0.0327 (11) 0.0617 (15) 0.0713 (17) −0.0062 (11) 0.0050 (11) −0.0053 (12)
C11 0.0351 (12) 0.0505 (13) 0.0668 (16) −0.0005 (10) 0.0058 (11) −0.0041 (11)
C12 0.0478 (13) 0.0534 (14) 0.0592 (16) 0.0016 (11) 0.0118 (11) 0.0019 (11)
C13 0.0573 (15) 0.0544 (14) 0.0540 (15) 0.0009 (12) 0.0074 (12) 0.0002 (11)
C14 0.0577 (15) 0.0757 (17) 0.0516 (15) 0.0001 (13) 0.0060 (12) 0.0021 (12)
C15 0.0590 (15) 0.0846 (19) 0.0623 (18) −0.0007 (14) −0.0003 (13) 0.0034 (14)
C16 0.085 (2) 0.0642 (17) 0.0536 (17) 0.0042 (15) −0.0039 (14) 0.0020 (13)
C17 0.090 (2) 0.112 (3) 0.0512 (17) −0.0007 (19) 0.0109 (16) −0.0037 (16)
C18 0.0700 (18) 0.111 (2) 0.0616 (18) −0.0049 (17) 0.0182 (16) −0.0037 (16)
C19 0.111 (3) 0.100 (2) 0.0606 (18) 0.003 (2) −0.0170 (18) 0.0006 (17)
OW 0.0446 (10) 0.1012 (15) 0.0735 (13) −0.0152 (10) −0.0081 (9) 0.0147 (11)

Geometric parameters (Å, º)

O1—C9 1.366 (3) C7—H7A 0.9300
O1—C10 1.415 (3) C8—C9 1.422 (3)
N1—C7 1.313 (3) C10—C11 1.479 (4)
N1—C8 1.363 (3) C10—H10A 0.9700
C1—C9 1.368 (3) C10—H10B 0.9700
C1—C2 1.392 (4) C12—C13 1.462 (3)
C1—H1B 0.9300 C13—C14 1.380 (4)
N2—C11 1.285 (3) C13—C18 1.386 (4)
N2—C12 1.376 (3) C14—C15 1.379 (4)
O2—C11 1.340 (3) C14—H14A 0.9300
O2—N3 1.410 (3) C15—C16 1.379 (4)
C2—C3 1.346 (4) C15—H15A 0.9300
C2—H2B 0.9300 C16—C17 1.381 (4)
C3—C4 1.415 (3) C16—C19 1.501 (4)
C3—H3A 0.9300 C17—C18 1.373 (4)
N3—C12 1.301 (3) C17—H17A 0.9300
C4—C5 1.400 (4) C18—H18A 0.9300
C4—C8 1.418 (3) C19—H19A 0.9600
C5—C6 1.358 (4) C19—H19B 0.9600
C5—H5A 0.9300 C19—H19C 0.9600
C6—C7 1.389 (4) OW—HWB 0.91 (3)
C6—H6A 0.9300 OW—HWA 0.94 (3)
C9—O1—C10 116.60 (18) O1—C10—H10B 110.3
C7—N1—C8 117.4 (2) C11—C10—H10B 110.3
C9—C1—C2 120.5 (2) H10A—C10—H10B 108.5
C9—C1—H1B 119.8 N2—C11—O2 113.4 (2)
C2—C1—H1B 119.8 N2—C11—C10 131.4 (2)
C11—N2—C12 103.1 (2) O2—C11—C10 115.16 (19)
C11—O2—N3 105.97 (17) N3—C12—N2 114.0 (2)
C3—C2—C1 121.4 (2) N3—C12—C13 122.2 (2)
C3—C2—H2B 119.3 N2—C12—C13 123.9 (2)
C1—C2—H2B 119.3 C14—C13—C18 118.2 (3)
C2—C3—C4 120.4 (3) C14—C13—C12 121.0 (2)
C2—C3—H3A 119.8 C18—C13—C12 120.8 (2)
C4—C3—H3A 119.8 C15—C14—C13 120.2 (2)
C12—N3—O2 103.59 (19) C15—C14—H14A 119.9
C5—C4—C3 123.8 (3) C13—C14—H14A 119.9
C5—C4—C8 117.1 (2) C14—C15—C16 122.2 (3)
C3—C4—C8 119.0 (2) C14—C15—H15A 118.9
C6—C5—C4 120.1 (3) C16—C15—H15A 118.9
C6—C5—H5A 120.0 C15—C16—C17 116.9 (3)
C4—C5—H5A 120.0 C15—C16—C19 121.3 (3)
C5—C6—C7 118.5 (3) C17—C16—C19 121.8 (3)
C5—C6—H6A 120.7 C18—C17—C16 121.7 (3)
C7—C6—H6A 120.7 C18—C17—H17A 119.2
N1—C7—C6 124.6 (2) C16—C17—H17A 119.2
N1—C7—H7A 117.7 C17—C18—C13 120.8 (3)
C6—C7—H7A 117.7 C17—C18—H18A 119.6
N1—C8—C4 122.3 (2) C13—C18—H18A 119.6
N1—C8—C9 119.1 (2) C16—C19—H19A 109.5
C4—C8—C9 118.7 (2) C16—C19—H19B 109.5
O1—C9—C1 125.1 (2) H19A—C19—H19B 109.5
O1—C9—C8 114.81 (19) C16—C19—H19C 109.5
C1—C9—C8 120.1 (2) H19A—C19—H19C 109.5
O1—C10—C11 107.17 (18) H19B—C19—H19C 109.5
O1—C10—H10A 110.3 HWB—OW—HWA 104 (3)
C11—C10—H10A 110.3
C9—C1—C2—C3 0.0 (4) C12—N2—C11—O2 0.9 (3)
C1—C2—C3—C4 −0.8 (4) C12—N2—C11—C10 −177.9 (2)
C11—O2—N3—C12 −0.1 (3) N3—O2—C11—N2 −0.5 (3)
C2—C3—C4—C5 −178.5 (2) N3—O2—C11—C10 178.5 (2)
C2—C3—C4—C8 0.6 (4) O1—C10—C11—N2 5.4 (4)
C3—C4—C5—C6 179.2 (2) O1—C10—C11—O2 −173.34 (19)
C8—C4—C5—C6 0.1 (4) O2—N3—C12—N2 0.7 (3)
C4—C5—C6—C7 0.0 (4) O2—N3—C12—C13 −177.1 (2)
C8—N1—C7—C6 0.1 (4) C11—N2—C12—N3 −1.0 (3)
C5—C6—C7—N1 −0.1 (4) C11—N2—C12—C13 176.7 (2)
C7—N1—C8—C4 0.0 (3) N3—C12—C13—C14 −162.3 (3)
C7—N1—C8—C9 −179.5 (2) N2—C12—C13—C14 20.1 (4)
C5—C4—C8—N1 −0.1 (3) N3—C12—C13—C18 17.4 (4)
C3—C4—C8—N1 −179.2 (2) N2—C12—C13—C18 −160.1 (3)
C5—C4—C8—C9 179.4 (2) C18—C13—C14—C15 −1.8 (4)
C3—C4—C8—C9 0.3 (3) C12—C13—C14—C15 177.9 (2)
C10—O1—C9—C1 1.1 (3) C13—C14—C15—C16 0.9 (4)
C10—O1—C9—C8 179.53 (19) C14—C15—C16—C17 0.4 (4)
C2—C1—C9—O1 179.3 (2) C14—C15—C16—C19 −178.6 (3)
C2—C1—C9—C8 0.9 (4) C15—C16—C17—C18 −0.7 (5)
N1—C8—C9—O1 0.0 (3) C19—C16—C17—C18 178.2 (3)
C4—C8—C9—O1 −179.54 (19) C16—C17—C18—C13 −0.2 (5)
N1—C8—C9—C1 178.5 (2) C14—C13—C18—C17 1.5 (5)
C4—C8—C9—C1 −1.1 (3) C12—C13—C18—C17 −178.2 (3)
C9—O1—C10—C11 174.34 (18)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
OW—HWB···N2 0.91 (3) 2.09 (3) 2.980 (3) 169 (3)
OW—HWA···N1 0.94 (3) 1.91 (3) 2.830 (3) 165 (3)
C7—H7A···OWi 0.93 2.51 3.272 (3) 139
C10—H10A···OWii 0.97 2.55 3.482 (3) 160
C10—H10B···OWiii 0.97 2.59 3.534 (3) 164

Symmetry codes: (i) −x−1, −y+1, −z+2; (ii) x+1, y, z; (iii) −x, −y+2, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IM2428).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Chiou, S. & Shine, H. J. (1989). J. Heterocycl. Chem. 26, 125–128.
  3. Enraf–Nonius (1994). CAD-4 EXPRESS Enraf–Nonius, Delft, The Netherlands.
  4. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  5. Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  6. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  7. Pibiri, I., Piccionello, A. P., Calabrese, A., Buscemi, S., Vivona, N. & Pace, A. (2010). Eur. J. Org. Chem. pp. 4549–4553.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Silva, A. S. da, de Silva, M. A. A., Carvalho, C. E. M., Antunes, O. A. C., Herrera, J. O. M., Brinn, I. M. & Mangrich, A. S. (1999). Inorg. Chim. Acta 292, 1–6.
  10. Street, L. J., Baker, R., Book, T., Kneen, C. O., MacLeod, A. M., Merchant, K. J., Showell, G. A., Saunders, J., Herbert, R. H., Freedman, S. B. & Harley, E. A. (1990). J. Med. Chem. 33, 2690–2697. [DOI] [PubMed]
  11. Terenzi, A., Barone, G., Piccionello, A. P., Giorgi, G., Guarecello, A. & Pace, A. (2011). Inorg. Chim. Acta, 373, 62–67.
  12. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) D, I. DOI: 10.1107/S160053681302477X/im2428sup1.cif

e-69-o1541-sup1.cif (26.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681302477X/im2428Isup2.hkl

e-69-o1541-Isup2.hkl (149.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES