Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Sep 18;69(Pt 10):o1543–o1544. doi: 10.1107/S1600536813024975

Amino­[(1H-benzimidazol-2-yl)amino]­methaniminium 4-methyl­benzene­sulfonate

Shaaban K Mohamed a,b, Mehmet Akkurt c, Mahmoud A A Elremaily d,e, Ali M Ali d,e, Mustafa R Albayati f,*
PMCID: PMC3790410  PMID: 24098229

Abstract

The asymmetric unit of the title salt, C8H10N5 +·C7H7O3S, consists of two amino­[(1H-benzimidazol-2-yl)amino]­meth­an­im­inium cations and two 4-methyl­benzene­sulfonate anions. The cations are each stabilized by intra­molecular N—H⋯N hydrogen bonds between the free amino groups and the imine N atoms of the benzimidazole units, forming S(6) ring motifs. In the crystal, cations and anions are linked by N—H⋯O and C—H⋯O hydrogen bonds, forming a three-dimensional supra­molecular framework. Two strong π–π stacking inter­actions [centroid–centroid distances = 3.4112 (14) and 3.4104 (14) Å] also occur between the centroids of the imidazole rings of like cations.

Related literature  

For the synthesis of guanidine-containing compounds, see: Wu et al. (2002); Hopkins et al. (2002); Kilburn et al. (2002); Manimala & Anslyn (2002). For pharmaceutical and chemical applications of guanidines, see: Han et al. (2008); Hannon & Anslyn (1993); Ekelund et al. (2001); Kovacevic & Maksic (2001); Costa et al. (1998). For graph-set motifs, see: Bernstein et al. (1995) and for standard bond lengths, see: Allen et al. (1987).graphic file with name e-69-o1543-scheme1.jpg

Experimental  

Crystal data  

  • C8H10N5 +·C7H7O3S

  • M r = 347.41

  • Monoclinic, Inline graphic

  • a = 12.3821 (4) Å

  • b = 17.8077 (7) Å

  • c = 14.5112 (5) Å

  • β = 90.013 (2)°

  • V = 3199.7 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 100 K

  • 0.35 × 0.10 × 0.04 mm

Data collection  

  • Bruker APEXII CCD diffractometer

  • 20618 measured reflections

  • 5679 independent reflections

  • 4108 reflections with I > 2σ(I)

  • R int = 0.044

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.044

  • wR(F 2) = 0.109

  • S = 1.05

  • 5679 reflections

  • 469 parameters

  • 15 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.38 e Å−3

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536813024975/sj5349sup1.cif

e-69-o1543-sup1.cif (39.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813024975/sj5349Isup2.hkl

e-69-o1543-Isup2.hkl (311.3KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813024975/sj5349Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—HN1⋯O1i 0.86 (2) 2.11 (2) 2.948 (3) 166 (2)
N3—HN3⋯O6ii 0.86 (2) 1.95 (2) 2.805 (3) 173 (2)
N6—HN6⋯O6iii 0.88 (2) 2.09 (2) 2.944 (3) 164 (2)
N8—HN8⋯O1iv 0.87 (2) 1.93 (2) 2.799 (2) 177 (2)
N4—H4A⋯N2 0.87 (2) 1.97 (2) 2.686 (3) 139 (2)
N4—H4B⋯O3 0.87 (2) 2.06 (2) 2.909 (3) 166 (2)
N5—H5A⋯O5ii 0.89 (2) 1.98 (2) 2.871 (3) 176 (3)
N5—H5B⋯O2 0.88 (2) 1.99 (2) 2.863 (3) 169 (3)
N9—H9A⋯N7 0.86 (2) 1.98 (2) 2.683 (3) 138 (2)
N9—H9B⋯O5v 0.85 (2) 2.06 (2) 2.906 (3) 174 (2)
N10—H10A⋯O4v 0.88 (2) 2.00 (2) 2.863 (3) 167 (3)
N10—H10B⋯O3iv 0.89 (2) 1.99 (2) 2.872 (3) 179 (3)
C7—H7C⋯O4vi 0.98 2.53 3.283 (3) 133

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic.

Acknowledgments

Manchester Metropolitan University, Erciyes University and Sohag University are gratefully acknowledged for supporting this study. The authors also thank José Romero Garzón, Centro de Instrumentación Científica, Universidad de Granada, for the data collection.

supplementary crystallographic information

1. Comment

Guanidines are structurally novel molecules reported to exhibit remarkable biological and pharmacological activities, which are affected by the guanidine functionality (Han et al., 2008; Hannon & Anslyn, 1993). Guanidino-containing drugs such as metaiodobenzylguanidine, MIBG, and methylglyoxalbisguanylhydrazone, MGBG, were shown several decades ago to have antitumor properties and have been subjected to intense preclinical and clinical evaluation (Ekelund et al., 2001). Guanidines are also known as useful basic catalysts (Kovacevic & Maksic, 2001; Costa et al., 1998). The synthesis of guanidine derivatives has also attracted continued research interests in recent years, resulting in many new efficient synthetic methods and guanidinylation reagents for different classes of guanidine compounds (Wu et al., 2002; Hopkins et al., 2002; Kilburn et al., 2002; Manimala & Anslyn, 2002). Against this background, we report herein the the synthesis and crystal structure of the title compound.

As seen as in Fig. 1, the asymmetric unit contains two amino(1H-benzimidazol-2-ylamino)methaniminium) cations and two 4-methylbenzenesulfonate anions. The bond lengths in the title compound are within the normal range (Allen et al., 1987).

In the cations, intramolecular N4—H4A···N2 and N9—H9A···N7 hydrogen bonds generate six-membered S(6) rings in each cation (Bernstein et al., 1995). In the crystal, a three-dimensional supramolecular framework is formed via intermolecular N—H···O and C—H···O hydrogen bonds between the cations and anions (Table 1, Fig. 2). Furthermore, two strong π-π stacking interactions [Cg1···Cg1 (-x, 1 - y, -z) = 3.4112 (14) Å and Cg4···Cg4 (1 - x, 1 - y, 2 - z) = 3.4104 (14) Å] also occur between the imidazole rings of like cations (Cg1 and Cg4 are the centroids of the N1/C8/C13/N2/C14 and N6/C23/C28/N7/C29 ring respectively).

2. Experimental

A mixture of 175 mg (1 mmol) 1-(1H-benzimidazol-2-yl)guanidine and 191 mg (1 mmol) of 4-methylbenzenesulfonyl chloride was heated under reflux in 50 ml ethanol together with few drops of triethylamine for 6 h. The solid product started to be deposited during heating and filtered off after completion. The crude solid was washed with ethanol and recrystallized to afford colourless plates suitable for X-ray difraction (M.p. 539–541 K).

3. Refinement

The C-bound H atoms were placed at geometrically idealized positions with C—H = 0.95 and 0.98 Å for aromatic and methyl H-atoms, respectively. The C-bound H-atoms were refined using a riding model with Uiso(H) = 1.2Ueq(Caromatic) and 1.5Ueq(Cmethyl). The N-bound H atoms were located in a difference Fourier map and their positions were refined with distance restraints [N—H = 0.88 (2) Å] and with Uiso(H) = 1.2Ueq(N). The presence of pseudosymmetry in the structure suggests the orthorhombic space group Pbcn, but attempts to refine the structure in this space group resulted in an unsatisfactory model.

Figures

Fig. 1.

Fig. 1.

The asymmetric unit of the title compound with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

View of the packing and hydrogen bonding (dashed lines) along the a axis of the title compound.

Crystal data

C8H10N5+·C7H7O3S F(000) = 1456
Mr = 347.41 Dx = 1.442 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 9624 reflections
a = 12.3821 (4) Å θ = 2.5–25.1°
b = 17.8077 (7) Å µ = 0.23 mm1
c = 14.5112 (5) Å T = 100 K
β = 90.013 (2)° Plate, colourless
V = 3199.7 (2) Å3 0.35 × 0.10 × 0.04 mm
Z = 8

Data collection

Bruker APEXII CCD diffractometer 4108 reflections with I > 2σ(I)
Radiation source: sealed tube Rint = 0.044
Graphite monochromator θmax = 25.1°, θmin = 2.5°
φ and ω scans h = −14→14
20618 measured reflections k = −17→21
5679 independent reflections l = −17→17

Refinement

Refinement on F2 15 restraints
Least-squares matrix: full H atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.044 W = 1/[Σ2(FO2) + (0.0495P)2 + 1.3622P] where P = (FO2 + 2FC2)/3
wR(F2) = 0.109 (Δ/σ)max < 0.001
S = 1.05 Δρmax = 0.33 e Å3
5679 reflections Δρmin = −0.38 e Å3
469 parameters

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 −0.06286 (16) 0.53699 (11) 0.14245 (14) 0.0175 (6)
N2 0.09357 (15) 0.48502 (11) 0.09774 (13) 0.0169 (6)
N3 −0.03173 (16) 0.40955 (11) 0.18217 (14) 0.0180 (6)
N4 0.12756 (17) 0.34452 (13) 0.15854 (15) 0.0213 (7)
N5 −0.01669 (17) 0.28656 (13) 0.22877 (15) 0.0228 (7)
C8 −0.00584 (19) 0.59345 (14) 0.09792 (15) 0.0175 (8)
C9 −0.0290 (2) 0.66825 (15) 0.08044 (17) 0.0225 (8)
C10 0.0487 (2) 0.70888 (15) 0.03340 (18) 0.0267 (9)
C11 0.1448 (2) 0.67604 (14) 0.00378 (18) 0.0239 (8)
C12 0.1676 (2) 0.60121 (14) 0.02124 (16) 0.0210 (8)
C13 0.09108 (19) 0.56002 (14) 0.06984 (16) 0.0169 (7)
C14 0.00195 (18) 0.47560 (13) 0.14059 (16) 0.0158 (7)
C15 0.02761 (19) 0.34569 (14) 0.18891 (16) 0.0181 (8)
N6 0.56311 (16) 0.46290 (12) 1.14251 (14) 0.0176 (7)
N7 0.40627 (15) 0.51515 (11) 1.09786 (13) 0.0165 (6)
N8 0.53226 (16) 0.59052 (11) 1.18216 (14) 0.0174 (6)
N9 0.37236 (17) 0.65557 (12) 1.15834 (15) 0.0206 (7)
N10 0.51667 (17) 0.71349 (13) 1.22845 (15) 0.0239 (7)
C23 0.50569 (19) 0.40666 (14) 1.09794 (16) 0.0174 (7)
C24 0.5292 (2) 0.33155 (14) 1.08030 (18) 0.0230 (8)
C25 0.4513 (2) 0.29117 (15) 1.03352 (18) 0.0256 (8)
C26 0.3551 (2) 0.32380 (14) 1.00391 (18) 0.0240 (8)
C27 0.33247 (19) 0.39879 (14) 1.02117 (16) 0.0208 (8)
C28 0.40902 (19) 0.43994 (14) 1.06964 (16) 0.0170 (7)
C29 0.49835 (18) 0.52464 (14) 1.14061 (15) 0.0162 (8)
C30 0.47239 (19) 0.65446 (14) 1.18866 (16) 0.0168 (8)
S1 0.21220 (5) 0.14511 (3) 0.19245 (4) 0.0171 (2)
O1 0.25453 (12) 0.08701 (10) 0.25384 (11) 0.0209 (5)
O2 0.09531 (12) 0.14896 (9) 0.19288 (11) 0.0208 (5)
O3 0.26233 (12) 0.21792 (9) 0.21165 (11) 0.0199 (5)
C1 0.25080 (18) 0.12068 (13) 0.07911 (17) 0.0182 (8)
C2 0.1867 (2) 0.14390 (16) 0.00683 (19) 0.0307 (9)
C3 0.2188 (2) 0.13075 (18) −0.08296 (19) 0.0363 (10)
C4 0.3145 (2) 0.09439 (17) −0.10240 (19) 0.0312 (9)
C5 0.3776 (2) 0.07199 (19) −0.0290 (2) 0.0385 (10)
C6 0.3467 (2) 0.08403 (17) 0.06154 (19) 0.0321 (9)
C7 0.3494 (2) 0.0806 (2) −0.2003 (2) 0.0464 (13)
S2 0.71207 (5) 0.14502 (3) 0.80768 (4) 0.0170 (2)
O4 0.59550 (13) 0.14897 (10) 0.80726 (11) 0.0211 (5)
O5 0.76233 (12) 0.21802 (9) 0.78844 (11) 0.0210 (5)
O6 0.75459 (13) 0.08684 (10) 0.74612 (11) 0.0218 (5)
C16 0.8464 (2) 0.08440 (17) 0.93848 (19) 0.0330 (9)
C17 0.8775 (2) 0.07195 (19) 1.0293 (2) 0.0397 (10)
C18 0.8143 (2) 0.09440 (17) 1.10254 (18) 0.0295 (9)
C19 0.7187 (2) 0.13093 (18) 1.08268 (19) 0.0353 (10)
C20 0.6868 (2) 0.14404 (16) 0.99331 (19) 0.0301 (9)
C21 0.75051 (19) 0.12081 (14) 0.92102 (16) 0.0178 (8)
C22 0.8491 (2) 0.0808 (2) 1.2004 (2) 0.0486 (13)
HN1 −0.1196 (16) 0.5434 (14) 0.1755 (16) 0.0210*
HN3 −0.0980 (14) 0.4078 (15) 0.1986 (17) 0.0220*
H4A 0.148 (2) 0.3840 (12) 0.1274 (17) 0.0260*
H4B 0.1687 (18) 0.3051 (12) 0.1641 (18) 0.0260*
H5A −0.0860 (14) 0.2874 (16) 0.2457 (18) 0.0270*
H5B 0.021 (2) 0.2448 (12) 0.2250 (19) 0.0270*
H9 −0.09500 0.69050 0.09980 0.0270*
H10 0.03620 0.76050 0.02100 0.0320*
H11 0.19580 0.70560 −0.02910 0.0290*
H12 0.23300 0.57890 0.00080 0.0250*
HN6 0.6213 (15) 0.4571 (15) 1.1766 (16) 0.0210*
HN8 0.5993 (14) 0.5904 (15) 1.2000 (16) 0.0210*
H9A 0.353 (2) 0.6174 (12) 1.1260 (16) 0.0250*
H9B 0.3349 (19) 0.6944 (12) 1.1706 (18) 0.0250*
H10A 0.478 (2) 0.7546 (12) 1.2263 (19) 0.0290*
H10B 0.5849 (14) 0.7141 (16) 1.2466 (18) 0.0290*
H24 0.59530 0.30930 1.09940 0.0280*
H25 0.46380 0.23950 1.02110 0.0310*
H26 0.30410 0.29410 0.97130 0.0290*
H27 0.26710 0.42120 1.00060 0.0250*
H2 0.12040 0.16900 0.01870 0.0370*
H3 0.17410 0.14710 −0.13220 0.0440*
H5 0.44430 0.04750 −0.04100 0.0460*
H6 0.39100 0.06730 0.11090 0.0390*
H7A 0.33560 0.12570 −0.23730 0.0690*
H7B 0.30860 0.03830 −0.22580 0.0690*
H7C 0.42680 0.06900 −0.20160 0.0690*
H16 0.89080 0.06800 0.88910 0.0400*
H17 0.94410 0.04730 1.04120 0.0480*
H19 0.67400 0.14740 1.13190 0.0420*
H20 0.62060 0.16920 0.98150 0.0360*
H22A 0.80090 0.04390 1.22900 0.0730*
H22B 0.84580 0.12800 1.23500 0.0730*
H22C 0.92330 0.06170 1.20100 0.0730*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0175 (11) 0.0148 (11) 0.0202 (11) 0.0030 (9) 0.0011 (8) −0.0053 (9)
N2 0.0175 (11) 0.0146 (11) 0.0187 (10) 0.0009 (9) −0.0013 (8) −0.0022 (9)
N3 0.0129 (10) 0.0180 (12) 0.0232 (11) 0.0025 (9) 0.0019 (8) 0.0001 (9)
N4 0.0207 (12) 0.0157 (13) 0.0275 (12) 0.0043 (9) 0.0027 (9) 0.0042 (10)
N5 0.0198 (11) 0.0176 (13) 0.0311 (12) 0.0049 (10) 0.0052 (9) 0.0061 (10)
C8 0.0206 (13) 0.0171 (14) 0.0149 (12) 0.0004 (10) −0.0044 (9) −0.0027 (10)
C9 0.0251 (14) 0.0175 (14) 0.0249 (13) 0.0049 (11) −0.0062 (11) −0.0048 (11)
C10 0.0340 (16) 0.0160 (15) 0.0300 (14) 0.0006 (12) −0.0085 (12) 0.0008 (12)
C11 0.0266 (14) 0.0202 (14) 0.0250 (13) −0.0053 (11) −0.0048 (11) 0.0034 (12)
C12 0.0209 (13) 0.0218 (15) 0.0204 (13) −0.0014 (11) −0.0038 (10) −0.0014 (11)
C13 0.0204 (13) 0.0124 (13) 0.0178 (12) 0.0007 (10) −0.0059 (10) −0.0037 (10)
C14 0.0170 (12) 0.0141 (13) 0.0162 (12) 0.0004 (10) −0.0025 (9) −0.0028 (10)
C15 0.0180 (13) 0.0197 (15) 0.0167 (12) 0.0020 (11) −0.0008 (10) −0.0011 (10)
N6 0.0163 (11) 0.0157 (12) 0.0208 (11) 0.0034 (9) −0.0005 (8) 0.0031 (9)
N7 0.0190 (11) 0.0135 (11) 0.0171 (10) 0.0001 (9) 0.0012 (8) 0.0004 (9)
N8 0.0142 (10) 0.0154 (12) 0.0227 (11) 0.0021 (9) −0.0021 (8) 0.0005 (9)
N9 0.0200 (12) 0.0127 (12) 0.0290 (12) 0.0035 (9) −0.0014 (9) −0.0056 (10)
N10 0.0198 (12) 0.0177 (13) 0.0342 (13) 0.0039 (10) −0.0042 (10) −0.0051 (10)
C23 0.0201 (13) 0.0146 (13) 0.0174 (12) −0.0003 (10) 0.0049 (10) 0.0027 (10)
C24 0.0250 (14) 0.0169 (14) 0.0272 (14) 0.0042 (11) 0.0062 (11) 0.0025 (11)
C25 0.0318 (15) 0.0137 (14) 0.0312 (15) −0.0006 (12) 0.0112 (12) −0.0005 (12)
C26 0.0268 (14) 0.0190 (14) 0.0262 (14) −0.0059 (12) 0.0044 (11) −0.0033 (12)
C27 0.0185 (13) 0.0205 (15) 0.0234 (13) −0.0014 (11) 0.0050 (10) 0.0014 (11)
C28 0.0203 (13) 0.0150 (13) 0.0156 (12) 0.0009 (10) 0.0052 (10) 0.0030 (10)
C29 0.0178 (13) 0.0161 (14) 0.0148 (12) 0.0009 (10) 0.0021 (9) 0.0030 (10)
C30 0.0184 (13) 0.0166 (14) 0.0153 (12) −0.0007 (10) 0.0007 (10) 0.0001 (10)
S1 0.0165 (3) 0.0142 (3) 0.0205 (3) 0.0006 (2) 0.0007 (2) 0.0022 (3)
O1 0.0190 (9) 0.0171 (10) 0.0267 (9) 0.0007 (7) −0.0013 (7) 0.0067 (8)
O2 0.0166 (9) 0.0212 (10) 0.0245 (9) 0.0000 (7) 0.0024 (7) 0.0013 (8)
O3 0.0222 (9) 0.0130 (9) 0.0245 (9) −0.0008 (7) −0.0026 (7) 0.0001 (7)
C1 0.0182 (13) 0.0117 (13) 0.0246 (13) −0.0023 (10) 0.0032 (10) 0.0000 (11)
C2 0.0279 (15) 0.0370 (17) 0.0272 (14) 0.0119 (13) 0.0009 (12) −0.0022 (13)
C3 0.0344 (17) 0.049 (2) 0.0254 (15) 0.0067 (14) −0.0032 (12) −0.0034 (14)
C4 0.0267 (15) 0.0379 (18) 0.0291 (15) −0.0119 (13) 0.0026 (12) −0.0130 (13)
C5 0.0242 (15) 0.051 (2) 0.0404 (18) 0.0084 (14) 0.0052 (13) −0.0144 (15)
C6 0.0251 (15) 0.0411 (19) 0.0302 (15) 0.0109 (13) −0.0043 (12) −0.0029 (14)
C7 0.0329 (17) 0.073 (3) 0.0332 (17) −0.0122 (16) 0.0085 (13) −0.0214 (17)
S2 0.0163 (3) 0.0140 (3) 0.0206 (3) 0.0006 (2) −0.0008 (2) −0.0022 (3)
O4 0.0170 (9) 0.0209 (10) 0.0253 (9) 0.0016 (7) −0.0014 (7) −0.0022 (8)
O5 0.0213 (9) 0.0137 (10) 0.0279 (9) −0.0003 (7) 0.0010 (7) −0.0009 (8)
O6 0.0196 (9) 0.0186 (10) 0.0271 (9) 0.0019 (7) 0.0010 (7) −0.0054 (8)
C16 0.0260 (15) 0.0418 (19) 0.0311 (15) 0.0109 (13) 0.0044 (12) 0.0083 (14)
C17 0.0252 (16) 0.053 (2) 0.0410 (18) 0.0095 (14) −0.0048 (13) 0.0168 (16)
C18 0.0275 (15) 0.0349 (18) 0.0262 (14) −0.0088 (13) −0.0032 (11) 0.0110 (13)
C19 0.0334 (16) 0.048 (2) 0.0245 (15) 0.0070 (14) 0.0019 (12) 0.0014 (14)
C20 0.0271 (15) 0.0367 (17) 0.0266 (14) 0.0116 (13) −0.0002 (11) 0.0016 (13)
C21 0.0194 (13) 0.0114 (13) 0.0226 (13) −0.0029 (10) −0.0044 (10) 0.0016 (10)
C22 0.0365 (18) 0.075 (3) 0.0342 (17) −0.0139 (17) −0.0102 (14) 0.0238 (18)

Geometric parameters (Å, º)

S1—O2 1.4490 (16) C9—H9 0.9500
S1—O3 1.4642 (17) C10—H10 0.9500
S1—O1 1.4624 (18) C11—H11 0.9500
S1—C1 1.767 (3) C12—H12 0.9500
S2—C21 1.766 (2) C23—C24 1.393 (4)
S2—O6 1.4659 (18) C23—C28 1.397 (3)
S2—O5 1.4681 (17) C24—C25 1.381 (4)
S2—O4 1.4451 (17) C25—C26 1.393 (4)
N1—C14 1.356 (3) C26—C27 1.387 (4)
N1—C8 1.388 (3) C27—C28 1.389 (3)
N2—C14 1.305 (3) C24—H24 0.9500
N2—C13 1.396 (3) C25—H25 0.9500
N3—C15 1.357 (3) C26—H26 0.9500
N3—C14 1.386 (3) C27—H27 0.9500
N4—C15 1.314 (3) C1—C6 1.379 (3)
N5—C15 1.321 (3) C1—C2 1.379 (4)
N1—HN1 0.86 (2) C2—C3 1.382 (4)
N3—HN3 0.855 (18) C3—C4 1.380 (4)
N4—H4A 0.87 (2) C4—C7 1.505 (4)
N4—H4B 0.87 (2) C4—C5 1.380 (4)
N5—H5A 0.893 (18) C5—C6 1.385 (4)
N5—H5B 0.88 (2) C2—H2 0.9500
N6—C29 1.361 (3) C3—H3 0.9500
N6—C23 1.388 (3) C5—H5 0.9500
N7—C28 1.401 (3) C6—H6 0.9500
N7—C29 1.309 (3) C7—H7B 0.9800
N8—C29 1.384 (3) C7—H7C 0.9800
N8—C30 1.362 (3) C7—H7A 0.9800
N9—C30 1.315 (3) C16—C17 1.391 (4)
N10—C30 1.319 (3) C16—C21 1.376 (4)
N6—HN6 0.88 (2) C17—C18 1.379 (4)
N8—HN8 0.870 (18) C18—C19 1.381 (4)
N9—H9B 0.85 (2) C18—C22 1.504 (4)
N9—H9A 0.86 (2) C19—C20 1.376 (4)
N10—H10B 0.885 (19) C20—C21 1.376 (4)
N10—H10A 0.88 (2) C16—H16 0.9500
C8—C9 1.386 (4) C17—H17 0.9500
C8—C13 1.400 (3) C19—H19 0.9500
C9—C10 1.384 (4) C20—H20 0.9500
C10—C11 1.394 (4) C22—H22A 0.9800
C11—C12 1.386 (4) C22—H22B 0.9800
C12—C13 1.391 (3) C22—H22C 0.9800
O2—S1—C1 106.62 (10) C25—C26—C27 121.2 (2)
O3—S1—C1 106.28 (10) C26—C27—C28 117.5 (2)
O1—S1—O3 111.02 (10) N7—C28—C23 109.9 (2)
O1—S1—C1 107.21 (10) N7—C28—C27 129.5 (2)
O1—S1—O2 112.88 (9) C23—C28—C27 120.6 (2)
O2—S1—O3 112.38 (9) N7—C29—N8 125.5 (2)
O6—S2—C21 107.36 (11) N6—C29—N7 114.7 (2)
O4—S2—O5 112.31 (10) N6—C29—N8 119.8 (2)
O5—S2—C21 106.21 (11) N8—C30—N10 118.1 (2)
O5—S2—O6 110.96 (10) N8—C30—N9 120.2 (2)
O4—S2—O6 113.00 (10) N9—C30—N10 121.8 (2)
O4—S2—C21 106.55 (11) C25—C24—H24 122.00
C8—N1—C14 105.87 (19) C23—C24—H24 122.00
C13—N2—C14 104.01 (19) C24—C25—H25 119.00
C14—N3—C15 125.4 (2) C26—C25—H25 119.00
C8—N1—HN1 125.5 (17) C25—C26—H26 119.00
C14—N1—HN1 127.1 (16) C27—C26—H26 119.00
C14—N3—HN3 116.2 (18) C28—C27—H27 121.00
C15—N3—HN3 118.0 (18) C26—C27—H27 121.00
C15—N4—H4A 115.7 (16) S1—C1—C6 121.45 (19)
C15—N4—H4B 122.2 (15) S1—C1—C2 118.58 (18)
H4A—N4—H4B 122 (2) C2—C1—C6 119.8 (2)
C15—N5—H5A 120.4 (18) C1—C2—C3 120.1 (2)
H5A—N5—H5B 123 (2) C2—C3—C4 121.3 (3)
C15—N5—H5B 115.2 (16) C5—C4—C7 121.3 (2)
C23—N6—C29 105.77 (19) C3—C4—C5 117.7 (3)
C28—N7—C29 103.93 (19) C3—C4—C7 121.1 (2)
C29—N8—C30 125.0 (2) C4—C5—C6 122.1 (2)
C29—N6—HN6 126.1 (17) C1—C6—C5 119.1 (2)
C23—N6—HN6 126.6 (18) C1—C2—H2 120.00
C29—N8—HN8 114.7 (17) C3—C2—H2 120.00
C30—N8—HN8 120.1 (18) C4—C3—H3 119.00
C30—N9—H9B 117.1 (16) C2—C3—H3 119.00
C30—N9—H9A 115.7 (16) C4—C5—H5 119.00
H9A—N9—H9B 127 (2) C6—C5—H5 119.00
C30—N10—H10B 122.5 (18) C1—C6—H6 120.00
H10A—N10—H10B 122 (2) C5—C6—H6 120.00
C30—N10—H10A 115.1 (16) H7B—C7—H7C 110.00
C9—C8—C13 122.2 (2) C4—C7—H7A 109.00
N1—C8—C13 105.3 (2) C4—C7—H7B 110.00
N1—C8—C9 132.5 (2) C4—C7—H7C 109.00
C8—C9—C10 116.7 (2) H7A—C7—H7B 109.00
C9—C10—C11 121.8 (2) H7A—C7—H7C 109.00
C10—C11—C12 121.4 (2) C17—C16—C21 119.2 (2)
C11—C12—C13 117.5 (2) C16—C17—C18 121.8 (2)
N2—C13—C8 110.0 (2) C17—C18—C19 117.5 (2)
C8—C13—C12 120.5 (2) C17—C18—C22 121.2 (2)
N2—C13—C12 129.6 (2) C19—C18—C22 121.2 (2)
N1—C14—N3 119.8 (2) C18—C19—C20 121.5 (2)
N1—C14—N2 114.9 (2) C19—C20—C21 120.2 (2)
N2—C14—N3 125.3 (2) S2—C21—C16 121.26 (19)
N4—C15—N5 121.7 (2) S2—C21—C20 118.83 (19)
N3—C15—N5 118.3 (2) C16—C21—C20 119.7 (2)
N3—C15—N4 119.9 (2) C17—C16—H16 120.00
C10—C9—H9 122.00 C21—C16—H16 120.00
C8—C9—H9 122.00 C16—C17—H17 119.00
C11—C10—H10 119.00 C18—C17—H17 119.00
C9—C10—H10 119.00 C18—C19—H19 119.00
C10—C11—H11 119.00 C20—C19—H19 119.00
C12—C11—H11 119.00 C19—C20—H20 120.00
C13—C12—H12 121.00 C21—C20—H20 120.00
C11—C12—H12 121.00 C18—C22—H22A 109.00
N6—C23—C24 132.2 (2) C18—C22—H22B 109.00
N6—C23—C28 105.6 (2) C18—C22—H22C 109.00
C24—C23—C28 122.2 (2) H22A—C22—H22B 109.00
C23—C24—C25 116.4 (2) H22A—C22—H22C 110.00
C24—C25—C26 122.1 (2) H22B—C22—H22C 109.00
O1—S1—C1—C2 152.0 (2) C13—C8—C9—C10 0.1 (4)
O2—S1—C1—C2 30.8 (2) N1—C8—C9—C10 179.8 (2)
O3—S1—C1—C2 −89.3 (2) N1—C8—C13—C12 179.1 (2)
O1—S1—C1—C6 −32.8 (2) C8—C9—C10—C11 1.0 (4)
O2—S1—C1—C6 −153.9 (2) C9—C10—C11—C12 −0.9 (4)
O3—S1—C1—C6 86.0 (2) C10—C11—C12—C13 −0.2 (4)
O5—S2—C21—C20 89.1 (2) C11—C12—C13—C8 1.2 (3)
O6—S2—C21—C20 −152.1 (2) C11—C12—C13—N2 −179.0 (2)
O6—S2—C21—C16 32.8 (2) C28—C23—C24—C25 −0.4 (4)
O4—S2—C21—C16 154.2 (2) N6—C23—C24—C25 179.7 (2)
O5—S2—C21—C16 −85.9 (2) C24—C23—C28—N7 179.0 (2)
O4—S2—C21—C20 −30.8 (2) N6—C23—C28—N7 −1.0 (3)
C14—N1—C8—C9 −178.3 (3) N6—C23—C28—C27 179.2 (2)
C14—N1—C8—C13 1.4 (2) C24—C23—C28—C27 −0.8 (4)
C8—N1—C14—N3 178.5 (2) C23—C24—C25—C26 1.1 (4)
C8—N1—C14—N2 −1.8 (3) C24—C25—C26—C27 −0.8 (4)
C13—N2—C14—N3 −179.0 (2) C25—C26—C27—C28 −0.4 (4)
C14—N2—C13—C8 −0.3 (3) C26—C27—C28—C23 1.2 (3)
C13—N2—C14—N1 1.3 (3) C26—C27—C28—N7 −178.6 (2)
C14—N2—C13—C12 180.0 (2) S1—C1—C2—C3 175.1 (2)
C14—N3—C15—N5 −178.4 (2) C2—C1—C6—C5 0.8 (4)
C15—N3—C14—N2 3.6 (4) C6—C1—C2—C3 −0.3 (4)
C14—N3—C15—N4 3.5 (4) S1—C1—C6—C5 −174.4 (2)
C15—N3—C14—N1 −176.6 (2) C1—C2—C3—C4 0.1 (4)
C23—N6—C29—N8 178.4 (2) C2—C3—C4—C7 −179.7 (3)
C23—N6—C29—N7 −1.5 (3) C2—C3—C4—C5 −0.4 (4)
C29—N6—C23—C24 −178.6 (3) C3—C4—C5—C6 1.0 (5)
C29—N6—C23—C28 1.5 (2) C7—C4—C5—C6 −179.8 (3)
C28—N7—C29—N8 −179.1 (2) C4—C5—C6—C1 −1.1 (5)
C29—N7—C28—C27 180.0 (3) C17—C16—C21—C20 −0.3 (4)
C29—N7—C28—C23 0.2 (3) C17—C16—C21—S2 174.8 (2)
C28—N7—C29—N6 0.8 (3) C21—C16—C17—C18 0.7 (5)
C30—N8—C29—N6 −176.5 (2) C16—C17—C18—C19 −0.8 (5)
C29—N8—C30—N9 3.6 (4) C16—C17—C18—C22 −179.8 (3)
C30—N8—C29—N7 3.4 (4) C17—C18—C19—C20 0.5 (4)
C29—N8—C30—N10 −178.4 (2) C22—C18—C19—C20 179.5 (3)
N1—C8—C13—N2 −0.7 (3) C18—C19—C20—C21 −0.1 (4)
C9—C8—C13—N2 179.0 (2) C19—C20—C21—C16 0.0 (4)
C9—C8—C13—C12 −1.2 (4) C19—C20—C21—S2 −175.2 (2)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—HN1···O1i 0.86 (2) 2.11 (2) 2.948 (3) 166 (2)
N3—HN3···O6ii 0.86 (2) 1.95 (2) 2.805 (3) 173 (2)
N6—HN6···O6iii 0.88 (2) 2.09 (2) 2.944 (3) 164 (2)
N8—HN8···O1iv 0.87 (2) 1.93 (2) 2.799 (2) 177 (2)
N4—H4A···N2 0.87 (2) 1.97 (2) 2.686 (3) 139 (2)
N4—H4B···O3 0.87 (2) 2.06 (2) 2.909 (3) 166 (2)
N5—H5A···O5ii 0.89 (2) 1.98 (2) 2.871 (3) 176 (3)
N5—H5B···O2 0.88 (2) 1.99 (2) 2.863 (3) 169 (3)
N9—H9A···N7 0.86 (2) 1.98 (2) 2.683 (3) 138 (2)
N9—H9B···O5v 0.85 (2) 2.06 (2) 2.906 (3) 174 (2)
N10—H10A···O4v 0.88 (2) 2.00 (2) 2.863 (3) 167 (3)
N10—H10B···O3iv 0.89 (2) 1.99 (2) 2.872 (3) 179 (3)
C2—H2···O2 0.95 2.57 2.929 (3) 103
C7—H7C···O4vi 0.98 2.53 3.283 (3) 133
C20—H20···O4 0.95 2.57 2.928 (3) 102

Symmetry codes: (i) −x, y+1/2, −z+1/2; (ii) x−1, −y+1/2, z−1/2; (iii) x, −y+1/2, z+1/2; (iv) −x+1, y+1/2, −z+3/2; (v) −x+1, −y+1, −z+2; (vi) x, y, z−1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ5349).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  3. Bruker (2013). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Costa, M., Chiusoli, G. P., Taffurelli, D. & Dalmonego, G. (1998). J. Chem. Soc. Perkin Trans. 1, pp. 1541–1546.
  5. Ekelund, S., Nygren, P. & Larsson, R. (2001). Biochem. Pharmacol. 61, 1183–1193. [DOI] [PubMed]
  6. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  7. Han, J.-J., Xu, Y.-F., Su, Y.-P., She, X.-P. & Pan, X.-F. (2008). Catal. Commun. 9, 2077–2079.
  8. Hannon, C. L. & Anslyn, E. V. (1993). Bioorg. Chem. Front. 3, 193–255.
  9. Hopkins, T. P., Dener, J. M. & Boldi, A. M. (2002). J. Comb. Chem 4, 167–174. [DOI] [PubMed]
  10. Kilburn, J. P., Lau, J. & Jones, R. C. F. (2002). Tetrahedron, 58, 1739–1743.
  11. Kovacevic, B. & Maksic, Z. B. (2001). Org. Lett. 3, 1523–1526. [DOI] [PubMed]
  12. Manimala, J. C. & Anslyn, E. V. (2002). Tetrahedron Lett. 43, 565–567.
  13. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  14. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  15. Wu, Y.-Q., Hamilton, S. K., Wilkinson, D. E. & Hamilton, G. S. (2002). J. Org. Chem. 67, 7553–7556. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536813024975/sj5349sup1.cif

e-69-o1543-sup1.cif (39.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813024975/sj5349Isup2.hkl

e-69-o1543-Isup2.hkl (311.3KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813024975/sj5349Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES