Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Sep 18;69(Pt 10):o1545. doi: 10.1107/S1600536813024276

[(4E)-3-Ethyl-1-methyl-2,6-di­phenyl­piperidin-4-yl­idene]amino 3-methyl­benzoate

T Vinuchakkaravarthy a, R Sivakumar b, T Srinivasan a, V Thanikachalam b, D Velmurugan a,*
PMCID: PMC3790411  PMID: 24098230

Abstract

In the title compound, C28H30N2O2, the piperidine ring exists in a chair conformation with an equatorial orientation of the phenyl rings and methyl group substituted on the heterocycle. In the crystal, C—H⋯π inter­actions result in chains of mol­ecules running parallel to the a-axis direction.

Related literature  

For the synthesis and background to the biological activity of piperidinyl-4-one derivatives, see: Parthiban et al. (2009, 2011). For crystal structures of related compounds, see: Park et al. (2012a ,b ). For ring puckering parameters, see: Cremer & Pople (1975).graphic file with name e-69-o1545-scheme1.jpg

Experimental  

Crystal data  

  • C28H30N2O2

  • M r = 426.54

  • Triclinic, Inline graphic

  • a = 10.5220 (15) Å

  • b = 11.8295 (16) Å

  • c = 11.987 (3) Å

  • α = 112.871 (11)°

  • β = 97.939 (11)°

  • γ = 110.123 (8)°

  • V = 1225.5 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 293 K

  • 0.20 × 0.20 × 0.20 mm

Data collection  

  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008) T min = 0.986, T max = 0.986

  • 18615 measured reflections

  • 5042 independent reflections

  • 3610 reflections with I > 2σ(I)

  • R int = 0.023

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.046

  • wR(F 2) = 0.139

  • S = 1.03

  • 5042 reflections

  • 292 parameters

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.17 e Å−3

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S1600536813024276/pv2635sup1.cif

e-69-o1545-sup1.cif (31.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813024276/pv2635Isup2.hkl

e-69-o1545-Isup2.hkl (241.9KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813024276/pv2635Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the C15–C20 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11⋯Cg1i 0.93 2.93 3.761 (2) 149
C23—H23⋯Cg1ii 0.93 2.89 3.730 (3) 151

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors thank the TBI X-ray facility, CAS in Crystallography and Biophysics, University of Madras, India, for the data collection·TV, TS and DV thank the UGC (SAP–CAS) for providing facilities to the department.

supplementary crystallographic information

1. Comment

Piperdin-4-one nucleus is an important pharmacophore due to its broad spectrum of biological actions ranging from antibacterial to anticancer (Parthiban et al., 2009; 2011). Hence, the synthesis and steriochemical analysis of piperdin-4-one nucleus based pharmacophores has gained much interest in the field of medicinal chemistry.

The bond distances and angles in the title compound (Fig. 1) agree very well with the corresponding bond distances and angles reported in closely related compounds (Park et al., 2012a; 2012b). The piperidone ring (N1/C1—/C5) adopts a chair conformation with puckering parameters: Q =0.570 (2) Å, θ = 177.6 (2)° and φ = 3439 (4)° (Cremer & Pople, 1975).

In the crystal, the molecules are stabilized by intermolecular C11—H11···Cg1i and C23—H23···Cg1ii hydrogen bond interactions, where Cg1 is the center of gravity of ring atoms involving C15—C20 of the interacting molecules, respectively (Table 1). The packing of the molecules within the crystal is shown in Fig. 2.

2. Experimental

3-Ethyl-2,6-diphenylpiperidin-4-one was synthesized by Mannich condensation using benzaldehyde (2 mol), ammonium acetate (1 mol) and ethyl methyl ketone (1 mol) in absolute ethanol and warmed for 30 min and stirred overnight at room temperature. The product was treated with methyl iodide (1.5 mol) in the presence of potassium carbonate (2 mol) in acetone (10 ml) and refluxed to give 1-methyl-3-ethyl-2,6-diphenylpiperidin-4-one. The oximation was done by hydroxylamine hydrochloride (2 mol) in presence of sodium acetate (2 mol) in ethanol (10 ml) and refluxed. The resulting oxime (0.5 g, 1.55 mmol) was stirred with dry pyridine (5 ml), added 3-methylbenzoic acid (0.23 g, 1.7 mmol) followed by phosphorus oxychloride (0.21 ml, 2.3 mmol) in dropwise addition and stirred at ambient temperature for 15 min; the progress of the reaction was monitored by thin layer chromatography. Upon completion of the reaction, saturated sodium bicarbonate solution (8 ml) was added to the reaction mixture, solid was formed and it was filtered and dried to get a white solid (0.58 g, 87.8%) which was recrystallized from ethanol to yield crystals suitable for X-ray crystallographic studies.

3. Refinement

H atoms were positioned geometrically (C—H = 0.93–0.98 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.5Ueq(C) for methyl H and 1.2Ueq(C) for other H atoms.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are presented as small spheres of arbitrary radius.

Fig. 2.

Fig. 2.

The crystal packing arrangement of the title compound viewed down the b axis showing intermolecular C—H···π hydrogen bond interactions (dashed lines). symmetry codes: (i) 2-X,1-Y,1-Z (ii) 3-X,1-Y,1-Z

Crystal data

C28H30N2O2 Z = 2
Mr = 426.54 F(000) = 456
Triclinic, P1 Dx = 1.156 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 10.5220 (15) Å Cell parameters from 5087 reflections
b = 11.8295 (16) Å θ = 1.9–26.5°
c = 11.987 (3) Å µ = 0.07 mm1
α = 112.871 (11)° T = 293 K
β = 97.939 (11)° Block, colorless
γ = 110.123 (8)° 0.20 × 0.20 × 0.20 mm
V = 1225.5 (4) Å3

Data collection

Bruker SMART APEXII CCD diffractometer 5042 independent reflections
Radiation source: fine-focus sealed tube 3610 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.023
ω and φ scans θmax = 26.5°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Bruker, 2008) h = −13→13
Tmin = 0.986, Tmax = 0.986 k = −14→14
18615 measured reflections l = −15→15

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.139 H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0639P)2 + 0.1881P] where P = (Fo2 + 2Fc2)/3
5042 reflections (Δ/σ)max < 0.001
292 parameters Δρmax = 0.15 e Å3
0 restraints Δρmin = −0.17 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.89609 (15) 0.09484 (14) 0.34733 (14) 0.0517 (3)
H1 0.9758 0.0793 0.3798 0.062*
C2 0.88999 (15) 0.21364 (15) 0.45884 (13) 0.0532 (3)
H2 0.8121 0.2300 0.4241 0.064*
C3 1.02600 (15) 0.33834 (14) 0.49960 (14) 0.0535 (3)
C4 1.04934 (17) 0.37330 (15) 0.39518 (14) 0.0571 (4)
H4A 1.1390 0.4536 0.4267 0.069*
H4B 0.9733 0.3934 0.3654 0.069*
C5 1.05203 (15) 0.25298 (14) 0.28511 (13) 0.0517 (3)
H5 1.1339 0.2390 0.3154 0.062*
C6 0.76059 (16) −0.03556 (14) 0.29564 (14) 0.0542 (4)
C7 0.7643 (2) −0.15236 (18) 0.29179 (19) 0.0775 (5)
H7 0.8509 −0.1509 0.3238 0.093*
C8 0.6392 (3) −0.27266 (19) 0.2404 (2) 0.0977 (7)
H8 0.6432 −0.3515 0.2361 0.117*
C9 0.5122 (3) −0.2753 (2) 0.1966 (2) 0.0937 (6)
H9 0.4288 −0.3555 0.1635 0.112*
C10 0.5065 (2) −0.1611 (2) 0.20100 (19) 0.0807 (5)
H10 0.4189 −0.1630 0.1713 0.097*
C11 0.62958 (17) −0.04179 (16) 0.24912 (16) 0.0639 (4)
H11 0.6241 0.0354 0.2502 0.077*
C12 0.85682 (19) 0.18214 (18) 0.56631 (16) 0.0724 (5)
H12A 0.7807 0.0907 0.5294 0.087*
H12B 0.9405 0.1839 0.6139 0.087*
C13 0.8129 (2) 0.2812 (3) 0.6574 (2) 0.1013 (7)
H13A 0.8910 0.3707 0.7004 0.152*
H13B 0.7872 0.2525 0.7191 0.152*
H13C 0.7327 0.2832 0.6105 0.152*
C14 1.31474 (16) 0.59266 (16) 0.75477 (14) 0.0573 (4)
C15 1.43652 (16) 0.71158 (16) 0.76655 (15) 0.0590 (4)
C16 1.51466 (19) 0.81891 (18) 0.88722 (18) 0.0763 (5)
H16 1.4912 0.8145 0.9579 0.092*
C17 1.6272 (2) 0.9324 (2) 0.9027 (3) 0.0959 (7)
H17 1.6793 1.0050 0.9839 0.115*
C18 1.6625 (2) 0.9387 (2) 0.7998 (3) 0.0988 (8)
H18 1.7391 1.0160 0.8119 0.119*
C19 1.5872 (2) 0.8331 (2) 0.6777 (2) 0.0920 (7)
C20 1.47272 (18) 0.71950 (19) 0.66290 (18) 0.0723 (5)
H20 1.4196 0.6475 0.5815 0.087*
C21 1.6253 (3) 0.8389 (4) 0.5631 (3) 0.1622 (15)
H21A 1.5714 0.8753 0.5285 0.243*
H21B 1.6037 0.7487 0.4997 0.243*
H21C 1.7253 0.8963 0.5878 0.243*
C22 1.07151 (17) 0.28834 (14) 0.17812 (14) 0.0547 (4)
C23 1.19935 (19) 0.31668 (16) 0.15166 (16) 0.0679 (4)
H23 1.2729 0.3102 0.1977 0.081*
C24 1.2191 (3) 0.35446 (18) 0.0577 (2) 0.0875 (6)
H24 1.3055 0.3727 0.0408 0.105*
C25 1.1128 (3) 0.36531 (19) −0.0108 (2) 0.0965 (7)
H25 1.1268 0.3912 −0.0738 0.116*
C26 0.9851 (3) 0.3376 (2) 0.01431 (18) 0.0893 (6)
H26 0.9123 0.3446 −0.0321 0.107*
C27 0.9640 (2) 0.29925 (17) 0.10809 (15) 0.0687 (4)
H27 0.8771 0.2807 0.1243 0.082*
C28 0.9312 (2) 0.01436 (16) 0.14152 (17) 0.0701 (5)
H28A 0.9489 0.0364 0.0744 0.105*
H28B 0.8433 −0.0664 0.1083 0.105*
H28C 1.0079 −0.0012 0.1756 0.105*
N1 0.92147 (12) 0.12787 (11) 0.24286 (11) 0.0493 (3)
N2 1.10892 (13) 0.39464 (13) 0.61306 (12) 0.0616 (3)
O1 1.23463 (11) 0.50961 (11) 0.63113 (10) 0.0681 (3)
O2 1.28828 (14) 0.57319 (14) 0.84073 (11) 0.0882 (4)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0478 (8) 0.0499 (8) 0.0622 (8) 0.0209 (7) 0.0187 (7) 0.0307 (7)
C2 0.0504 (8) 0.0505 (8) 0.0542 (8) 0.0156 (7) 0.0179 (6) 0.0255 (7)
C3 0.0539 (8) 0.0482 (8) 0.0518 (8) 0.0164 (7) 0.0176 (7) 0.0222 (7)
C4 0.0621 (9) 0.0454 (8) 0.0526 (8) 0.0131 (7) 0.0163 (7) 0.0221 (7)
C5 0.0467 (8) 0.0494 (8) 0.0586 (8) 0.0176 (7) 0.0188 (6) 0.0270 (7)
C6 0.0576 (9) 0.0454 (8) 0.0618 (8) 0.0195 (7) 0.0245 (7) 0.0279 (7)
C7 0.0865 (13) 0.0599 (11) 0.1044 (14) 0.0362 (10) 0.0408 (11) 0.0483 (10)
C8 0.126 (2) 0.0494 (11) 0.1286 (18) 0.0337 (12) 0.0604 (16) 0.0492 (12)
C9 0.0915 (16) 0.0567 (12) 0.1021 (15) 0.0041 (11) 0.0354 (12) 0.0313 (11)
C10 0.0603 (11) 0.0702 (12) 0.0894 (13) 0.0080 (9) 0.0193 (9) 0.0360 (10)
C11 0.0579 (9) 0.0524 (9) 0.0750 (10) 0.0160 (8) 0.0192 (8) 0.0312 (8)
C12 0.0696 (11) 0.0687 (11) 0.0636 (10) 0.0087 (9) 0.0225 (8) 0.0348 (9)
C13 0.0995 (16) 0.1203 (18) 0.0744 (12) 0.0333 (14) 0.0482 (11) 0.0423 (12)
C14 0.0551 (9) 0.0585 (9) 0.0520 (8) 0.0213 (8) 0.0133 (7) 0.0241 (7)
C15 0.0485 (8) 0.0579 (9) 0.0647 (9) 0.0204 (7) 0.0097 (7) 0.0285 (8)
C16 0.0624 (11) 0.0660 (11) 0.0757 (11) 0.0228 (9) 0.0083 (9) 0.0190 (9)
C17 0.0648 (12) 0.0629 (12) 0.1178 (18) 0.0174 (10) 0.0008 (12) 0.0214 (12)
C18 0.0517 (11) 0.0727 (14) 0.159 (2) 0.0133 (10) 0.0089 (13) 0.0625 (16)
C19 0.0600 (11) 0.1018 (16) 0.1250 (18) 0.0199 (12) 0.0197 (12) 0.0798 (15)
C20 0.0551 (9) 0.0785 (12) 0.0759 (11) 0.0147 (9) 0.0111 (8) 0.0449 (10)
C21 0.1018 (19) 0.216 (4) 0.180 (3) 0.011 (2) 0.0387 (19) 0.156 (3)
C22 0.0625 (9) 0.0416 (7) 0.0548 (8) 0.0174 (7) 0.0242 (7) 0.0205 (6)
C23 0.0717 (11) 0.0522 (9) 0.0771 (11) 0.0199 (8) 0.0379 (9) 0.0292 (8)
C24 0.1104 (16) 0.0569 (11) 0.0910 (14) 0.0218 (11) 0.0622 (13) 0.0335 (10)
C25 0.157 (2) 0.0591 (11) 0.0719 (12) 0.0315 (13) 0.0545 (14) 0.0364 (10)
C26 0.1257 (18) 0.0718 (12) 0.0653 (11) 0.0371 (12) 0.0196 (11) 0.0359 (10)
C27 0.0769 (11) 0.0651 (10) 0.0615 (9) 0.0275 (9) 0.0206 (8) 0.0307 (8)
C28 0.0791 (11) 0.0522 (9) 0.0778 (11) 0.0282 (9) 0.0415 (9) 0.0241 (8)
N1 0.0489 (7) 0.0413 (6) 0.0549 (6) 0.0166 (5) 0.0219 (5) 0.0207 (5)
N2 0.0531 (7) 0.0586 (8) 0.0584 (8) 0.0078 (6) 0.0162 (6) 0.0285 (6)
O1 0.0575 (7) 0.0676 (7) 0.0544 (6) 0.0030 (6) 0.0117 (5) 0.0287 (5)
O2 0.0914 (9) 0.0885 (9) 0.0587 (7) 0.0120 (7) 0.0212 (6) 0.0347 (7)

Geometric parameters (Å, º)

C1—N1 1.4809 (17) C14—O1 1.3511 (18)
C1—C6 1.515 (2) C14—C15 1.482 (2)
C1—C2 1.547 (2) C15—C20 1.376 (2)
C1—H1 0.9800 C15—C16 1.381 (2)
C2—C3 1.502 (2) C16—C17 1.375 (3)
C2—C12 1.526 (2) C16—H16 0.9300
C2—H2 0.9800 C17—C18 1.358 (3)
C3—N2 1.2740 (19) C17—H17 0.9300
C3—C4 1.4884 (19) C18—C19 1.381 (3)
C4—C5 1.532 (2) C18—H18 0.9300
C4—H4A 0.9700 C19—C20 1.390 (2)
C4—H4B 0.9700 C19—C21 1.503 (3)
C5—N1 1.4699 (17) C20—H20 0.9300
C5—C22 1.5142 (19) C21—H21A 0.9600
C5—H5 0.9800 C21—H21B 0.9600
C6—C11 1.379 (2) C21—H21C 0.9600
C6—C7 1.379 (2) C22—C23 1.383 (2)
C7—C8 1.394 (3) C22—C27 1.387 (2)
C7—H7 0.9300 C23—C24 1.380 (3)
C8—C9 1.352 (3) C23—H23 0.9300
C8—H8 0.9300 C24—C25 1.367 (3)
C9—C10 1.354 (3) C24—H24 0.9300
C9—H9 0.9300 C25—C26 1.375 (3)
C10—C11 1.380 (2) C25—H25 0.9300
C10—H10 0.9300 C26—C27 1.384 (2)
C11—H11 0.9300 C26—H26 0.9300
C12—C13 1.516 (3) C27—H27 0.9300
C12—H12A 0.9700 C28—N1 1.4666 (19)
C12—H12B 0.9700 C28—H28A 0.9600
C13—H13A 0.9600 C28—H28B 0.9600
C13—H13B 0.9600 C28—H28C 0.9600
C13—H13C 0.9600 N2—O1 1.4492 (16)
C14—O2 1.1883 (18)
N1—C1—C6 109.65 (11) O2—C14—O1 124.24 (15)
N1—C1—C2 111.57 (11) O2—C14—C15 125.66 (14)
C6—C1—C2 111.31 (11) O1—C14—C15 110.08 (13)
N1—C1—H1 108.1 C20—C15—C16 119.39 (16)
C6—C1—H1 108.1 C20—C15—C14 122.82 (15)
C2—C1—H1 108.1 C16—C15—C14 117.79 (16)
C3—C2—C12 114.71 (12) C17—C16—C15 119.9 (2)
C3—C2—C1 107.06 (11) C17—C16—H16 120.1
C12—C2—C1 113.67 (12) C15—C16—H16 120.1
C3—C2—H2 107.0 C18—C17—C16 120.2 (2)
C12—C2—H2 107.0 C18—C17—H17 119.9
C1—C2—H2 107.0 C16—C17—H17 119.9
N2—C3—C4 128.60 (13) C17—C18—C19 121.6 (2)
N2—C3—C2 117.74 (13) C17—C18—H18 119.2
C4—C3—C2 113.50 (12) C19—C18—H18 119.2
C3—C4—C5 109.35 (12) C18—C19—C20 117.8 (2)
C3—C4—H4A 109.8 C18—C19—C21 122.1 (2)
C5—C4—H4A 109.8 C20—C19—C21 120.2 (2)
C3—C4—H4B 109.8 C15—C20—C19 121.16 (18)
C5—C4—H4B 109.8 C15—C20—H20 119.4
H4A—C4—H4B 108.3 C19—C20—H20 119.4
N1—C5—C22 111.99 (11) C19—C21—H21A 109.5
N1—C5—C4 110.54 (11) C19—C21—H21B 109.5
C22—C5—C4 108.78 (11) H21A—C21—H21B 109.5
N1—C5—H5 108.5 C19—C21—H21C 109.5
C22—C5—H5 108.5 H21A—C21—H21C 109.5
C4—C5—H5 108.5 H21B—C21—H21C 109.5
C11—C6—C7 117.80 (15) C23—C22—C27 118.32 (15)
C11—C6—C1 121.02 (12) C23—C22—C5 120.77 (15)
C7—C6—C1 121.17 (14) C27—C22—C5 120.84 (14)
C6—C7—C8 120.51 (19) C24—C23—C22 120.75 (19)
C6—C7—H7 119.7 C24—C23—H23 119.6
C8—C7—H7 119.7 C22—C23—H23 119.6
C9—C8—C7 120.33 (18) C25—C24—C23 120.65 (19)
C9—C8—H8 119.8 C25—C24—H24 119.7
C7—C8—H8 119.8 C23—C24—H24 119.7
C8—C9—C10 119.89 (19) C24—C25—C26 119.32 (18)
C8—C9—H9 120.1 C24—C25—H25 120.3
C10—C9—H9 120.1 C26—C25—H25 120.3
C9—C10—C11 120.6 (2) C25—C26—C27 120.5 (2)
C9—C10—H10 119.7 C25—C26—H26 119.7
C11—C10—H10 119.7 C27—C26—H26 119.7
C6—C11—C10 120.88 (16) C26—C27—C22 120.43 (18)
C6—C11—H11 119.6 C26—C27—H27 119.8
C10—C11—H11 119.6 C22—C27—H27 119.8
C13—C12—C2 113.43 (16) N1—C28—H28A 109.5
C13—C12—H12A 108.9 N1—C28—H28B 109.5
C2—C12—H12A 108.9 H28A—C28—H28B 109.5
C13—C12—H12B 108.9 N1—C28—H28C 109.5
C2—C12—H12B 108.9 H28A—C28—H28C 109.5
H12A—C12—H12B 107.7 H28B—C28—H28C 109.5
C12—C13—H13A 109.5 C28—N1—C5 108.74 (11)
C12—C13—H13B 109.5 C28—N1—C1 109.56 (11)
H13A—C13—H13B 109.5 C5—N1—C1 113.06 (11)
C12—C13—H13C 109.5 C3—N2—O1 108.75 (11)
H13A—C13—H13C 109.5 C14—O1—N2 113.11 (11)
H13B—C13—H13C 109.5
N1—C1—C2—C3 −55.08 (15) C16—C17—C18—C19 0.3 (3)
C6—C1—C2—C3 −177.93 (11) C17—C18—C19—C20 0.4 (3)
N1—C1—C2—C12 177.19 (12) C17—C18—C19—C21 −179.9 (2)
C6—C1—C2—C12 54.34 (16) C16—C15—C20—C19 0.5 (3)
C12—C2—C3—N2 9.1 (2) C14—C15—C20—C19 179.61 (16)
C1—C2—C3—N2 −118.05 (15) C18—C19—C20—C15 −0.8 (3)
C12—C2—C3—C4 −175.05 (13) C21—C19—C20—C15 179.5 (2)
C1—C2—C3—C4 57.83 (16) N1—C5—C22—C23 −129.64 (14)
N2—C3—C4—C5 116.68 (18) C4—C5—C22—C23 107.88 (16)
C2—C3—C4—C5 −58.66 (17) N1—C5—C22—C27 53.35 (18)
C3—C4—C5—N1 55.01 (16) C4—C5—C22—C27 −69.13 (17)
C3—C4—C5—C22 178.37 (12) C27—C22—C23—C24 −0.2 (2)
N1—C1—C6—C11 −65.70 (17) C5—C22—C23—C24 −177.26 (14)
C2—C1—C6—C11 58.24 (18) C22—C23—C24—C25 0.3 (3)
N1—C1—C6—C7 113.34 (16) C23—C24—C25—C26 −0.3 (3)
C2—C1—C6—C7 −122.72 (16) C24—C25—C26—C27 0.1 (3)
C11—C6—C7—C8 1.1 (3) C25—C26—C27—C22 0.0 (3)
C1—C6—C7—C8 −178.01 (16) C23—C22—C27—C26 0.0 (2)
C6—C7—C8—C9 −1.7 (3) C5—C22—C27—C26 177.10 (15)
C7—C8—C9—C10 0.9 (3) C22—C5—N1—C28 61.00 (15)
C8—C9—C10—C11 0.4 (3) C4—C5—N1—C28 −177.53 (12)
C7—C6—C11—C10 0.3 (2) C22—C5—N1—C1 −177.08 (11)
C1—C6—C11—C10 179.37 (15) C4—C5—N1—C1 −55.61 (14)
C9—C10—C11—C6 −1.1 (3) C6—C1—N1—C28 −58.12 (15)
C3—C2—C12—C13 71.5 (2) C2—C1—N1—C28 178.09 (12)
C1—C2—C12—C13 −164.88 (15) C6—C1—N1—C5 −179.58 (11)
O2—C14—C15—C20 170.94 (17) C2—C1—N1—C5 56.63 (15)
O1—C14—C15—C20 −10.5 (2) C4—C3—N2—O1 3.1 (2)
O2—C14—C15—C16 −10.0 (2) C2—C3—N2—O1 178.31 (12)
O1—C14—C15—C16 168.57 (14) O2—C14—O1—N2 1.7 (2)
C20—C15—C16—C17 0.2 (3) C15—C14—O1—N2 −176.83 (11)
C14—C15—C16—C17 −178.97 (16) C3—N2—O1—C14 166.95 (14)
C15—C16—C17—C18 −0.6 (3)

Hydrogen-bond geometry (Å, º)

Cg1 is the centroid of the C15–C20 ring.

D—H···A D—H H···A D···A D—H···A
C11—H11···Cg1i 0.93 2.93 3.761 (2) 149
C23—H23···Cg1ii 0.93 2.89 3.730 (3) 151

Symmetry codes: (i) −x+2, −y+1, −z+1; (ii) −x+3, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2635).

References

  1. Bruker (2008). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  3. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  4. Park, D. H., Ramkumar, V. & Parthiban, P. (2012a). Acta Cryst. E68, o524. [DOI] [PMC free article] [PubMed]
  5. Park, D. H., Ramkumar, V. & Parthiban, P. (2012b). Acta Cryst. E68, o525. [DOI] [PMC free article] [PubMed]
  6. Parthiban, P., Balasubramanian, S., Aridoss, G. & Kabilan, S. (2009). Bioorg. Med. Chem. Lett. 19, 2981–2985. [DOI] [PubMed]
  7. Parthiban, P., Pallela, R., Kim, S. K., Park, D. H. & Jeong, Y. T. (2011). Bioorg. Med. Chem. Lett. 21, 6678–6686. [DOI] [PubMed]
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S1600536813024276/pv2635sup1.cif

e-69-o1545-sup1.cif (31.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813024276/pv2635Isup2.hkl

e-69-o1545-Isup2.hkl (241.9KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813024276/pv2635Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES