Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Sep 18;69(Pt 10):o1558–o1559. doi: 10.1107/S1600536813025324

12-(2-Hy­droxy-6-oxo­cyclo­hex-1-en­yl)-9,10-di­hydro-8H-benzo[a]xanthen-11(12H)-one

Mehmet Akkurt a, Shaaban K Mohamed b, Alan R Kennedy c, Antar A Abdelhamid d, Gary J Miller e, Mustafa R Albayati f,*
PMCID: PMC3790420  PMID: 24098239

Abstract

In the xanthenone system of the title compound, C23H20O4, the pyran ring has a maximum deviation of 0.111 (1) Å from planarity and the outer cyclo­hexene ring exhibits a puckered conformation. The three methyl­ene C atoms of the cyclo­hexene ring bonded to the pyran unit are disordered over two sets of sites [occupancies = 0.570 (3) and 0.430 (3)]. In the crystal, mol­ecules are linked by C—H⋯O and O—H⋯O hydrogen bonds, forming a two-dimensional network parallel to (110). A C—H⋯π inter­action occurs between these networks.

Related literature  

For related xanthenone structures, see: Li et al. (2004); Abdelhamid et al. (2011); Mohamed et al. (2011, 2012). Reddy et al. (2009); Çelik et al. (2009). For the industrial and pharmaceutical significance of xanthenes, see: Zare et al. (2012); Menchen et al. (2003a ,b ); Sarma & Baruah, (2005). For ring conformations, see: Cremer & Pople (1975) and for standard bond lengths, see: Allen et al. (1987).graphic file with name e-69-o1558-scheme1.jpg

Experimental  

Crystal data  

  • C23H20O4

  • M r = 360.41

  • Orthorhombic, Inline graphic

  • a = 14.2855 (15) Å

  • b = 13.7461 (12) Å

  • c = 18.400 (2) Å

  • V = 3613.2 (6) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 123 K

  • 0.20 × 0.18 × 0.16 mm

Data collection  

  • Oxford Diffraction Xcalibur, Eos diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010) T min = 0.994, T max = 1.000

  • 17944 measured reflections

  • 4541 independent reflections

  • 3366 reflections with I > 2σ(I)

  • R int = 0.042

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.051

  • wR(F 2) = 0.114

  • S = 1.04

  • 4541 reflections

  • 258 parameters

  • 8 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.25 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S1600536813025324/sj5351sup1.cif

e-69-o1558-sup1.cif (32.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813025324/sj5351Isup2.hkl

e-69-o1558-Isup2.hkl (222.6KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813025324/sj5351Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg3 is the centroid of the C2–C7 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O4i 0.95 (2) 1.64 (2) 2.5793 (15) 170 (2)
C3—H3A⋯O3 0.95 2.43 3.367 (2) 168
C9—H9⋯O2ii 0.95 2.34 3.275 (2) 170
C14—H14BCg3iii 0.99 2.85 3.750 (2) 152

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

AAA thanks the Ministry of Higher Education in Egypt for a grant to support this collaborative project. Manchester Metropolitan University, Erciyes University and University of Strathclyde are gratefully acknowledged for facilitating this study.

supplementary crystallographic information

1. Comment

Xanthene derivatives have been used as antibacterial, antiviral, antitumor and anti-inflammatory agents (Zare et al., 2012). These compounds also have applications as dyes in laser technology (Menchen et al., 2003a,b), and as pH sensitive fluorescent materials for the visualization of biomolecules (Sarma & Baruah, 2005). Extending our previous studies of xanthenones (Abdelhamid et al., 2011; Mohamed et al., 2011, 2012), we report herein the synthesis and crystal study of a new of xanthenone derivative.

In the title compound shown in Fig. 1, the pyran ring (O1/C1/C10—C12/C17) has a maximum deviation of 0.111 (1) Å from planarity and the outer cyclohexene ring (C12–C17) of the xanthenone moiety is puckered with the puckering parameters (Cremer & Pople, 1975) of QT = 0.455 (2) Å, θ = 124.4 (2) and φ = 352.8 (3)°. The three methylene C atoms (C20/C21/C22) of the other cyclohexene ring attached to the pyran moiety at atom C11 are disordered over two sets of sites with a ratio of refined occupancies of 0.570 (3): 0.430 (3) and both components of the disordered cyclohexene ring are puckered [puckering parameters: QT = 0.445 (6) Å, θ = 48.7 (6) and φ = 183.8 (10)° for major component (C18/C19/C20B–C22B/C23), and QT = 0.471 (8) Å, θ = 130.2 (8) and φ = 353.3 (13)° for minor component (C18/C19/C20A–C22A/C23)].

The bond lengths in the title compound are within normal ranges (Allen et al., 1987) and are comparable those of similar compounds (Li et al., 2004; Abdelhamid et al., 2011; Çelik et al., 2009; Mohamed et al., 2011, 2012; Reddy et al., 2009).

In the crystal structure, C—H···O and O—H···O hydrogen bonds link the neigbouring molecules (Table 1), forming two dimensional networks parallel to the ab-plane (Figs. 2 & 3). A C14—H14B···π interaction also exists between these planes.

2. Experimental

The title compound was obtained as the main product during a three component reaction of 1 mmol (206 mg) 4-nitro-2-(trifluoromethyl)aniline, 1 mmol (172 mg) 2-hydroxy-1-naphthaldehyde and 1 mmol (112 mg) 1,3-cyclohexandione in 50 ml ethanol. The reaction mixture was refluxed for 7 h at 351 K. On cooling, the resulting solid was collected, washed with cold ethanol and dried by filtration. The crude product was crystallized by the slow evaporation method over 24 h using ethanol as a solvent. M.p. = 517 K, yield = 95%.

3. Refinement

The hydroxyl H atoms were found from a difference Fourier map and refined freely. The C-bound H-atoms were refined using a riding model with C—H = 0.95 - 1.00 Å and Uĩso(H) = 1.2Ueq(C). The three methylene C atoms (C20/C21/C22) of the other cyclohexene ring bonded to the pyran moiety are disordered over two sets of sites with a ratio of refined occupancies of 0.570 (3): 0.430 (3) [in the refinement, DFIX and EADP instructions were used for the disordered atoms].

Figures

Fig. 1.

Fig. 1.

The structure of the title compound with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level. For clarity only atoms of one disorder component of the disordered methylene groups are shown.

Fig. 2.

Fig. 2.

The packing and hydrogen bonding (dashed lines) of the title compound viewing along the a axis. For clarity only atoms of the major disorder component of the disordered methylene groups are shown.

Fig. 3.

Fig. 3.

The packing and hydrogen bonding (dashed lines) of the title compound viewing along the c axis. For clarity only atoms of the major disorder component of the disordered methylene groups are shown.

Crystal data

C23H20O4 F(000) = 1520
Mr = 360.41 Dx = 1.325 Mg m3
Orthorhombic, Pbca Mo Kα radiation, λ = 0.7107 Å
Hall symbol: -P 2ac 2ab Cell parameters from 3838 reflections
a = 14.2855 (15) Å θ = 3.0–29.5°
b = 13.7461 (12) Å µ = 0.09 mm1
c = 18.400 (2) Å T = 123 K
V = 3613.2 (6) Å3 Block, colourless
Z = 8 0.20 × 0.18 × 0.16 mm

Data collection

Oxford Diffraction Xcalibur, Eos diffractometer 4541 independent reflections
Radiation source: Enhance (Mo) X-ray Source 3366 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.042
Detector resolution: 16.0727 pixels mm-1 θmax = 29.5°, θmin = 3.0°
ω scans h = −18→18
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010) k = −17→17
Tmin = 0.994, Tmax = 1.000 l = −16→25
17944 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.114 H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.037P)2 + 1.8151P] where P = (Fo2 + 2Fc2)/3
4541 reflections (Δ/σ)max = 0.001
258 parameters Δρmax = 0.40 e Å3
8 restraints Δρmin = −0.25 e Å3

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
O1 0.03562 (8) 0.89828 (7) 0.24583 (6) 0.0232 (3)
O2 0.02801 (9) 0.61517 (8) 0.38998 (6) 0.0269 (4)
O3 0.18481 (8) 0.51704 (7) 0.29379 (7) 0.0245 (3)
O4 0.22989 (8) 0.85224 (7) 0.30414 (6) 0.0206 (3)
C1 0.11053 (11) 0.75665 (10) 0.19287 (8) 0.0170 (4)
C2 0.14830 (11) 0.71387 (10) 0.12835 (8) 0.0190 (4)
C3 0.18506 (11) 0.61770 (11) 0.12698 (9) 0.0208 (4)
C4 0.21973 (12) 0.57841 (12) 0.06413 (9) 0.0259 (5)
C5 0.21989 (12) 0.63171 (13) −0.00100 (9) 0.0289 (5)
C6 0.18492 (12) 0.72413 (12) −0.00158 (9) 0.0279 (5)
C7 0.14894 (12) 0.76802 (11) 0.06208 (9) 0.0233 (5)
C8 0.11215 (13) 0.86400 (11) 0.06150 (9) 0.0275 (5)
C9 0.07720 (12) 0.90419 (11) 0.12294 (9) 0.0264 (5)
C10 0.07683 (11) 0.84974 (11) 0.18784 (9) 0.0206 (4)
C11 0.10633 (10) 0.70142 (9) 0.26465 (8) 0.0150 (4)
C12 0.04078 (10) 0.75335 (10) 0.31646 (8) 0.0173 (4)
C13 0.00454 (11) 0.69966 (11) 0.37919 (9) 0.0212 (5)
C14 −0.06429 (13) 0.75053 (13) 0.42855 (10) 0.0330 (6)
C15 −0.04989 (15) 0.86009 (13) 0.43098 (11) 0.0370 (6)
C16 −0.05019 (13) 0.90186 (12) 0.35487 (10) 0.0288 (5)
C17 0.01241 (11) 0.84547 (11) 0.30557 (9) 0.0205 (4)
C18 0.20297 (10) 0.68519 (10) 0.29769 (8) 0.0145 (4)
C19 0.23694 (11) 0.59364 (10) 0.31102 (8) 0.0180 (4)
C20B 0.3353 (4) 0.5759 (6) 0.3367 (5) 0.0207 (11) 0.570 (3)
C21B 0.3740 (2) 0.66151 (19) 0.37967 (17) 0.0236 (7) 0.570 (3)
C22B 0.3603 (5) 0.7555 (5) 0.3376 (5) 0.0214 (11) 0.570 (3)
C23 0.26030 (11) 0.76828 (10) 0.31416 (8) 0.0160 (4)
C22A 0.3539 (7) 0.7519 (7) 0.3496 (7) 0.0214 (11) 0.430 (3)
C20A 0.3268 (6) 0.5728 (8) 0.3504 (7) 0.0207 (11) 0.430 (3)
C21A 0.3963 (3) 0.6529 (3) 0.3323 (2) 0.0236 (7) 0.430 (3)
H3A 0.18560 0.58020 0.17030 0.0250*
H6 0.18470 0.75980 −0.04580 0.0330*
H4 0.24410 0.51410 0.06460 0.0310*
H5 0.24410 0.60370 −0.04430 0.0350*
H3 0.2178 (17) 0.4587 (17) 0.3029 (12) 0.060 (7)*
H14A −0.05800 0.72400 0.47830 0.0400*
H14B −0.12870 0.73660 0.41160 0.0400*
H15A −0.10050 0.89050 0.45990 0.0440*
H15B 0.01050 0.87490 0.45490 0.0440*
H16A −0.11480 0.90080 0.33540 0.0350*
H16B −0.02910 0.97040 0.35650 0.0350*
H20C 0.37600 0.56360 0.29420 0.0250* 0.570 (3)
H20D 0.33630 0.51700 0.36770 0.0250* 0.570 (3)
H21C 0.34160 0.66600 0.42710 0.0280* 0.570 (3)
H21D 0.44160 0.65130 0.38910 0.0280* 0.570 (3)
H22C 0.37900 0.81120 0.36840 0.0260* 0.570 (3)
H22D 0.40120 0.75510 0.29410 0.0260* 0.570 (3)
H8 0.11210 0.90030 0.01760 0.0330*
H9 0.05310 0.96860 0.12230 0.0320*
H11 0.07880 0.63600 0.25440 0.0180*
H20A 0.35200 0.50900 0.33500 0.0250* 0.430 (3)
H20B 0.31560 0.57080 0.40350 0.0250* 0.430 (3)
H21A 0.41270 0.64980 0.28010 0.0280* 0.430 (3)
H21B 0.45420 0.64360 0.36100 0.0280* 0.430 (3)
H22A 0.34670 0.75800 0.40290 0.0260* 0.430 (3)
H22B 0.39770 0.80330 0.33340 0.0260* 0.430 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0271 (6) 0.0151 (5) 0.0274 (6) 0.0044 (4) −0.0008 (5) 0.0007 (4)
O2 0.0325 (7) 0.0199 (6) 0.0284 (6) −0.0053 (5) 0.0035 (5) 0.0024 (5)
O3 0.0248 (6) 0.0096 (5) 0.0392 (7) 0.0003 (4) −0.0094 (5) −0.0003 (4)
O4 0.0222 (6) 0.0106 (5) 0.0290 (6) −0.0015 (4) 0.0001 (5) 0.0000 (4)
C1 0.0156 (7) 0.0143 (7) 0.0212 (8) −0.0028 (6) −0.0029 (6) 0.0018 (6)
C2 0.0161 (7) 0.0197 (7) 0.0213 (8) −0.0045 (6) −0.0029 (6) 0.0004 (6)
C3 0.0208 (8) 0.0196 (7) 0.0220 (8) −0.0029 (6) −0.0009 (7) −0.0006 (6)
C4 0.0242 (9) 0.0240 (8) 0.0295 (9) −0.0024 (7) 0.0017 (7) −0.0052 (7)
C5 0.0264 (9) 0.0385 (10) 0.0219 (8) −0.0062 (7) 0.0028 (7) −0.0075 (7)
C6 0.0267 (9) 0.0370 (9) 0.0201 (8) −0.0090 (7) −0.0026 (7) 0.0037 (7)
C7 0.0213 (8) 0.0263 (8) 0.0222 (8) −0.0070 (6) −0.0033 (7) 0.0027 (7)
C8 0.0309 (10) 0.0265 (8) 0.0251 (9) −0.0054 (7) −0.0053 (8) 0.0098 (7)
C9 0.0290 (9) 0.0170 (7) 0.0333 (10) −0.0004 (6) −0.0064 (8) 0.0069 (7)
C10 0.0197 (8) 0.0173 (7) 0.0249 (8) −0.0014 (6) −0.0026 (7) 0.0000 (6)
C11 0.0158 (7) 0.0105 (6) 0.0186 (7) −0.0009 (5) −0.0010 (6) −0.0002 (5)
C12 0.0129 (7) 0.0171 (7) 0.0220 (8) −0.0009 (6) −0.0013 (6) −0.0028 (6)
C13 0.0168 (8) 0.0231 (8) 0.0236 (8) −0.0040 (6) −0.0013 (7) −0.0018 (6)
C14 0.0263 (10) 0.0400 (10) 0.0326 (10) 0.0039 (8) 0.0110 (8) 0.0010 (8)
C15 0.0332 (11) 0.0389 (10) 0.0390 (11) 0.0124 (8) 0.0068 (9) −0.0085 (8)
C16 0.0237 (9) 0.0242 (8) 0.0386 (10) 0.0067 (7) 0.0018 (8) −0.0061 (7)
C17 0.0161 (8) 0.0192 (7) 0.0261 (8) 0.0008 (6) −0.0027 (7) −0.0023 (6)
C18 0.0147 (7) 0.0138 (6) 0.0150 (7) 0.0005 (5) 0.0004 (6) −0.0003 (5)
C19 0.0189 (8) 0.0137 (7) 0.0213 (8) 0.0003 (6) −0.0010 (6) −0.0011 (6)
C20B 0.0199 (13) 0.0172 (8) 0.025 (3) 0.0027 (9) −0.0037 (16) 0.0015 (15)
C21B 0.0171 (12) 0.0240 (11) 0.0297 (13) 0.0017 (9) −0.0052 (11) −0.0040 (12)
C22B 0.0152 (11) 0.0190 (9) 0.030 (3) −0.0042 (9) 0.0005 (15) −0.0012 (14)
C23 0.0166 (7) 0.0153 (7) 0.0161 (7) −0.0005 (5) 0.0026 (6) −0.0006 (6)
C22A 0.0152 (11) 0.0190 (9) 0.030 (3) −0.0042 (9) 0.0005 (15) −0.0012 (14)
C20A 0.0199 (13) 0.0172 (8) 0.025 (3) 0.0027 (9) −0.0037 (16) 0.0015 (15)
C21A 0.0171 (12) 0.0240 (11) 0.0297 (13) 0.0017 (9) −0.0052 (11) −0.0040 (12)

Geometric parameters (Å, º)

O1—C10 1.3894 (19) C20B—C21B 1.522 (9)
O1—C17 1.3584 (19) C21A—C22A 1.523 (11)
O2—C13 1.2250 (19) C21B—C22B 1.519 (8)
O3—C19 1.3281 (18) C22A—C23 1.505 (11)
O4—C23 1.2469 (17) C22B—C23 1.503 (8)
O3—H3 0.95 (2) C3—H3A 0.9500
C1—C10 1.370 (2) C4—H4 0.9500
C1—C11 1.525 (2) C5—H5 0.9500
C1—C2 1.431 (2) C6—H6 0.9500
C2—C3 1.423 (2) C8—H8 0.9500
C2—C7 1.429 (2) C9—H9 0.9500
C3—C4 1.369 (2) C11—H11 1.0000
C4—C5 1.405 (2) C14—H14A 0.9900
C5—C6 1.365 (2) C14—H14B 0.9900
C6—C7 1.414 (2) C15—H15A 0.9900
C7—C8 1.420 (2) C15—H15B 0.9900
C8—C9 1.354 (2) C16—H16A 0.9900
C9—C10 1.409 (2) C16—H16B 0.9900
C11—C18 1.525 (2) C20A—H20B 0.9900
C11—C12 1.515 (2) C20A—H20A 0.9900
C12—C13 1.465 (2) C20B—H20D 0.9900
C12—C17 1.345 (2) C20B—H20C 0.9900
C13—C14 1.510 (2) C21A—H21B 0.9900
C14—C15 1.521 (3) C21A—H21A 0.9900
C15—C16 1.514 (3) C21B—H21D 0.9900
C16—C17 1.491 (2) C21B—H21C 0.9900
C18—C23 1.438 (2) C22A—H22B 0.9900
C18—C19 1.371 (2) C22A—H22A 0.9900
C19—C20B 1.502 (6) C22B—H22D 0.9900
C19—C20A 1.502 (10) C22B—H22C 0.9900
C20A—C21A 1.520 (11)
C10—O1—C17 117.92 (11) C5—C4—H4 120.00
C19—O3—H3 110.5 (14) C4—C5—H5 120.00
C2—C1—C11 121.94 (12) C6—C5—H5 120.00
C10—C1—C11 120.64 (13) C5—C6—H6 119.00
C2—C1—C10 117.41 (13) C7—C6—H6 119.00
C1—C2—C7 119.77 (13) C7—C8—H8 120.00
C3—C2—C7 117.82 (14) C9—C8—H8 120.00
C1—C2—C3 122.41 (13) C8—C9—H9 120.00
C2—C3—C4 121.00 (15) C10—C9—H9 120.00
C3—C4—C5 121.03 (15) C1—C11—H11 107.00
C4—C5—C6 119.44 (15) C12—C11—H11 107.00
C5—C6—C7 121.57 (15) C18—C11—H11 107.00
C2—C7—C6 119.14 (14) C13—C14—H14A 109.00
C6—C7—C8 121.64 (15) C13—C14—H14B 109.00
C2—C7—C8 119.21 (14) C15—C14—H14A 109.00
C7—C8—C9 120.62 (15) C15—C14—H14B 109.00
C8—C9—C10 119.49 (14) H14A—C14—H14B 108.00
O1—C10—C9 113.41 (13) C14—C15—H15A 110.00
C1—C10—C9 123.49 (15) C14—C15—H15B 110.00
O1—C10—C1 123.06 (14) C16—C15—H15A 110.00
C1—C11—C18 112.50 (12) C16—C15—H15B 110.00
C12—C11—C18 112.19 (12) H15A—C15—H15B 108.00
C1—C11—C12 109.56 (11) C15—C16—H16A 109.00
C11—C12—C17 122.43 (13) C15—C16—H16B 109.00
C13—C12—C17 119.04 (14) C17—C16—H16A 109.00
C11—C12—C13 118.49 (12) C17—C16—H16B 109.00
O2—C13—C14 121.31 (15) H16A—C16—H16B 108.00
C12—C13—C14 118.09 (13) C19—C20A—H20A 110.00
O2—C13—C12 120.58 (14) C19—C20A—H20B 110.00
C13—C14—C15 112.84 (15) C21A—C20A—H20A 110.00
C14—C15—C16 110.37 (15) C21A—C20A—H20B 110.00
C15—C16—C17 111.34 (15) H20A—C20A—H20B 108.00
O1—C17—C16 111.15 (13) H20C—C20B—H20D 108.00
C12—C17—C16 125.43 (15) C19—C20B—H20D 109.00
O1—C17—C12 123.39 (14) C21B—C20B—H20C 109.00
C11—C18—C19 121.74 (13) C19—C20B—H20C 109.00
C19—C18—C23 119.33 (13) C21B—C20B—H20D 109.00
C11—C18—C23 118.92 (12) C20A—C21A—H21B 110.00
O3—C19—C18 119.12 (14) C22A—C21A—H21A 110.00
O3—C19—C20A 116.3 (4) C20A—C21A—H21A 110.00
C18—C19—C20B 122.4 (3) H21A—C21A—H21B 108.00
C18—C19—C20A 124.3 (4) C22A—C21A—H21B 110.00
O3—C19—C20B 118.1 (3) C20B—C21B—H21D 110.00
C19—C20A—C21A 108.3 (7) C20B—C21B—H21C 110.00
C19—C20B—C21B 112.2 (5) H21C—C21B—H21D 108.00
C20A—C21A—C22A 110.0 (6) C22B—C21B—H21C 110.00
C20B—C21B—C22B 110.3 (5) C22B—C21B—H21D 110.00
C21A—C22A—C23 113.4 (7) C23—C22A—H22B 109.00
C21B—C22B—C23 111.6 (5) H22A—C22A—H22B 108.00
C18—C23—C22A 118.6 (4) C21A—C22A—H22A 109.00
O4—C23—C22A 120.8 (4) C21A—C22A—H22B 109.00
C18—C23—C22B 120.6 (3) C23—C22A—H22A 109.00
O4—C23—C18 120.38 (14) C21B—C22B—H22C 109.00
O4—C23—C22B 118.8 (3) C21B—C22B—H22D 109.00
C2—C3—H3A 120.00 C23—C22B—H22C 109.00
C4—C3—H3A 119.00 C23—C22B—H22D 109.00
C3—C4—H4 119.00 H22C—C22B—H22D 108.00
C17—O1—C10—C1 −12.4 (2) C18—C11—C12—C13 −72.26 (16)
C17—O1—C10—C9 165.31 (14) C18—C11—C12—C17 110.02 (16)
C10—O1—C17—C12 11.4 (2) C1—C11—C18—C19 −120.34 (15)
C10—O1—C17—C16 −166.72 (13) C1—C11—C18—C23 58.68 (17)
C10—C1—C2—C3 −179.85 (14) C12—C11—C18—C19 115.59 (15)
C10—C1—C2—C7 −0.5 (2) C12—C11—C18—C23 −65.40 (17)
C11—C1—C2—C3 −0.6 (2) C11—C12—C13—O2 1.1 (2)
C11—C1—C2—C7 178.76 (14) C11—C12—C13—C14 −177.18 (14)
C2—C1—C10—O1 177.82 (14) C17—C12—C13—O2 178.93 (15)
C2—C1—C10—C9 0.4 (2) C17—C12—C13—C14 0.6 (2)
C11—C1—C10—O1 −1.5 (2) C11—C12—C17—O1 3.6 (2)
C11—C1—C10—C9 −178.93 (15) C11—C12—C17—C16 −178.61 (15)
C2—C1—C11—C12 −164.88 (14) C13—C12—C17—O1 −174.15 (14)
C2—C1—C11—C18 69.61 (17) C13—C12—C17—C16 3.7 (2)
C10—C1—C11—C12 14.38 (19) O2—C13—C14—C15 152.03 (16)
C10—C1—C11—C18 −111.14 (16) C12—C13—C14—C15 −29.7 (2)
C1—C2—C3—C4 179.23 (15) C13—C14—C15—C16 53.5 (2)
C7—C2—C3—C4 −0.1 (2) C14—C15—C16—C17 −48.5 (2)
C1—C2—C7—C6 −178.84 (15) C15—C16—C17—O1 −160.62 (14)
C1—C2—C7—C8 0.2 (2) C15—C16—C17—C12 21.3 (2)
C3—C2—C7—C6 0.5 (2) C11—C18—C19—O3 0.9 (2)
C3—C2—C7—C8 179.57 (15) C11—C18—C19—C20B 173.9 (4)
C2—C3—C4—C5 −0.2 (2) C23—C18—C19—O3 −178.09 (14)
C3—C4—C5—C6 0.0 (3) C23—C18—C19—C20B −5.1 (5)
C4—C5—C6—C7 0.4 (3) C11—C18—C23—O4 2.7 (2)
C5—C6—C7—C2 −0.7 (3) C11—C18—C23—C22B −172.0 (4)
C5—C6—C7—C8 −179.71 (17) C19—C18—C23—O4 −178.22 (14)
C2—C7—C8—C9 0.3 (3) C19—C18—C23—C22B 7.0 (4)
C6—C7—C8—C9 179.32 (17) O3—C19—C20B—C21B −159.1 (4)
C7—C8—C9—C10 −0.5 (3) C18—C19—C20B—C21B 27.9 (7)
C8—C9—C10—O1 −177.54 (15) C19—C20B—C21B—C22B −50.8 (7)
C8—C9—C10—C1 0.1 (3) C20B—C21B—C22B—C23 52.4 (6)
C1—C11—C12—C13 162.05 (13) C21B—C22B—C23—O4 153.7 (4)
C1—C11—C12—C17 −15.67 (19) C21B—C22B—C23—C18 −31.5 (7)

Hydrogen-bond geometry (Å, º)

Cg3 is the centroid of the C2–C7 benzene ring.

D—H···A D—H H···A D···A D—H···A
O3—H3···O4i 0.95 (2) 1.64 (2) 2.5793 (15) 170 (2)
C3—H3A···O3 0.95 2.43 3.367 (2) 168
C9—H9···O2ii 0.95 2.34 3.275 (2) 170
C11—H11···O3 1.00 2.34 2.8228 (17) 108
C14—H14B···Cg3iii 0.99 2.85 3.750 (2) 152

Symmetry codes: (i) −x+1/2, y−1/2, z; (ii) −x, y+1/2, −z+1/2; (iii) x−1/2, y, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ5351).

References

  1. Abdelhamid, A. A., Mohamed, S. K., Allahverdiyev, M. A., Gurbanov, A. V. & Ng, S. W. (2011). Acta Cryst. E67, o785. [DOI] [PMC free article] [PubMed]
  2. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  3. Çelik, Í., Akkurt, M., Jarrahpour, A., Ebrahimi, E. & Büyükgüngör, O. (2009). Acta Cryst. E65, o2522–o2523. [DOI] [PMC free article] [PubMed]
  4. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  5. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  6. Li, Y.-L., Wang, X.-S., Shi, D.-Q., Tu, S.-J. & Zhang, Y. (2004). Acta Cryst. E60, o1439–o1441.
  7. Menchen, S. M., Benson, S. C., Lam, J. Y. L., Zhen, W., Sun, D., Rosenblum, B. B., Khan, S. H. & Taing, M. (2003a). US Patent, US 6583168.
  8. Menchen, S. M., Benson, S. C., Lam, J. Y. L., Zhen, W., Sun, D., Rosenblum, B. B., Khan, S. H. & Taing, M. (2003b). Chem Abstr 139, 54287f.
  9. Mohamed, S. K., Abdelhamid, A. A., Khalilov, A. N., Gurbanov, A. V. & Ng, S. W. (2011). Acta Cryst. E67, o850–o851. [DOI] [PMC free article] [PubMed]
  10. Mohamed, S. K., Akkurt, M., Abdelhamid, A. A., Fanwick, P. E. & Potgeiter, H. (2012). Acta Cryst. E68, o1710. [DOI] [PMC free article] [PubMed]
  11. Oxford Diffraction (2010). CrysAlis PRO Oxford Diffraction Ltd, Yarnton, England.
  12. Reddy, B. P., Vijayakumar, V., Narasimhamurthy, T., Suresh, J. & Lakshman, P. L. N. (2009). Acta Cryst. E65, o916. [DOI] [PMC free article] [PubMed]
  13. Sarma, R. J. & Baruah, J. B. (2005). Dyes Pigm 64, 91–92.
  14. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  15. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  16. Zare, A., Mokhlesi, M., Hasaninejad, A. & Hekmat-Zadehk, T. (2012). E-J. Chem. 9, 1854–1863.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S1600536813025324/sj5351sup1.cif

e-69-o1558-sup1.cif (32.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813025324/sj5351Isup2.hkl

e-69-o1558-Isup2.hkl (222.6KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813025324/sj5351Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES