Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Sep 28;69(Pt 10):o1594–o1595. doi: 10.1107/S160053681302638X

2-Benzyl-5-meth­oxy­isoindoline-1,3-dione

Noemi Vila a, María Carmen Costas-Lago a, Pedro Besada a, Carmen Terán a,*
PMCID: PMC3790449  PMID: 24098268

Abstract

The title N-benzyl­phthalimide derivative, C16H13NO3, consists of two planar moieties, viz. the phthalimide system (r.m.s. deviation = 0.007 Å) and the phenyl ring, which make a dihedral angle of 84.7 (6)°. The meth­oxy group is almost coplanar with the phathalimide ring, as shown by the C—C—O—C torsion angle of −171.5 (2)°. In the crystal, the mol­ecules are self-assembled via non-classical C—H⋯O hydrogen bonds, forming a tape motif along [110].

Related literature  

For background to the applications of phthalimide derivatives, see: Luzzio (2005); Barooah & Baruah (2007); Sharma et al. (2010); Warzecha et al. (2006). For different approaches to synthesize N-benzyl­phthalimides, see: Luzzio (2005); Cao & Alper (2010); Vidal et al. (2000). For the synthesis of the title compound, see: Favor et al. (2008); Haj-Yehia & Khan (2004). For related structures, see: Warzecha et al. (2006a ,b ,c ); Jiang et al. (2008). graphic file with name e-69-o1594-scheme1.jpg

Experimental  

Crystal data  

  • C16H13NO3

  • M r = 267.27

  • Monoclinic, Inline graphic

  • a = 8.476 (4) Å

  • b = 5.264 (3) Å

  • c = 28.295 (13) Å

  • β = 93.589 (9)°

  • V = 1260.0 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 100 K

  • 0.49 × 0.13 × 0.07 mm

Data collection  

  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.954, T max = 0.993

  • 5768 measured reflections

  • 2204 independent reflections

  • 1433 reflections with I > 2σ(I)

  • R int = 0.083

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.053

  • wR(F 2) = 0.137

  • S = 1.00

  • 2204 reflections

  • 183 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.27 e Å−3

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Supplementary Material

Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S160053681302638X/fy2100sup1.cif

e-69-o1594-sup1.cif (23.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681302638X/fy2100Isup2.hkl

e-69-o1594-Isup2.hkl (108.4KB, hkl)

Supplementary material file. DOI: 10.1107/S160053681302638X/fy2100Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯O5i 0.95 2.57 3.505 (3) 168
C7—H7⋯O1ii 0.95 2.40 3.247 (3) 149
C8—H8B⋯O3i 0.98 2.59 3.432 (4) 144

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

This work was supported financially by the Xunta de Galicia (CN 2012/184). The authors gratefully acknowledge Dr Berta Covelo, X-ray service of the University of Vigo, for her valuable assistance. NV thanks the University of Vigo for a PhD fellowship.

supplementary crystallographic information

1. Comment

Phthalimide derivatives represent a significant family of organic compounds because of their numerous applications in different fields of chemistry. They are not only useful intermediates for synthesis (Luzzio, 2005), but are also important scaffolds for new materials (Barooah & Baruah, 2007) and drug design (Sharma et al., 2010). Among the phthalimide analogues, there are very well known N-benzyl substituted derivatives, some of them prepared for mechanistic studies on photoreactions (Warzecha, Görner et al., 2006). Reaction of phthalic acid derivatives with benzylamines at high temperature or in the presence of a Lewis acid are the classical methods for obtaining N-benzylphthalimides (Favor et al., 2008; Haj-Yehia & Khan, 2004; Luzzio, 2005). In addition, unconventional approaches were also developed, such as carbonylative cyclizations of arenes with amines catalyzed by transition metals (Cao & Alper, 2010) or microwave-assisted synthesis (Vidal et al., 2000).

The title compound (I) is a N-benzylphthalimide substituted at C5 with a methoxy group. It was obtained by the reaction of dimethyl phthalimide with benzyl hydrazine under microwave irradiation.

The molecular structure of (I) is illustrated in Figure 1. There are some similar structures reported before (Warzecha et al., 2006a; Warzecha et al., 2006b; Warzecha et al., 2006c; Jiang et al., 2008). The molecule consists of two planar moieties, the phthalimide system and the phenyl ring, linked by the methylene group C9 (N2—C9—C10 bond angle of 114.4°), resulting in a non-planar structure. The two planar subunits make a dihedral angle of 84.7 (6)°, which is similar to the value reported for the same angle in the crystal structure of the monoclinic form of the parent N-benzylphthalimide (Jiang et al., 2008). Furthermore, the methoxy group at C5 is almost coplanar with the phathalimide ring [torsion angle C4—C5—O5—C8 of -171.5 (2)°].

In addition, the C1—N2—C9—C10 and C3—N2—C9—C10 torsion angles of 93.1 (3)° and -86.0 (3)°, respectively, are also very similar to those of N-benzylphthalimide (Jiang et al., 2008) and they corroborate that the phenyl group is virtually orthogonal to the phthalimide benzene ring. In the crystal structure, the molecules are self-assembled via non-classical C—H···O hydrogen bonds, involving CH and CH3 groups as donors and oxygen atoms as acceptors, to form a one-dimensional supramolecular organization (Table 1, Figure 2).

2. Experimental

The synthesis of 2-benzyl-5-methoxyisoindoline-1,3-dione was carried out in a microwave oven (CEM discover system 908010, monomode) according to the following protocol: a solution of dimethyl 4-methoxyphthalate (50 mg, 0.22 mmol), benzylhydrazine dihydrochloride (174 mg, 0.89 mmol) and triethylamine (0.37 ml, 2.65 mmol), in ethanol (5 ml) was introduced in a Pyrex flask and submitted to microwave irradiation (280 W, 185 °C) for 30 min. The solvent was evaporated under reduced pressure and the residue was purified by column chromatography on silica gel (hexane/ethyl acetate 40:1 → 20:1) to afford a white solid (9.3 mg, 15%). The product was dissolved in ethyl acetate (3 ml) and the solution was kept at room temperature for 1 d. Natural evaporation gave colourless block-like crystals of the title compound (m.p. 448–449 K) suitable for X-ray diffraction analysis.

3. Refinement

All H-atoms were positioned and refined using a riding model with d(C—H)= 0.95 Å, Uiso = 1.2Ueq(C) for aromatic CH, d(C—H)= 0.99 Å, Uiso = 1.2Ueq(C) for CH2 group and d(C—H)= 0.98 Å, Uiso = 1.5Ueq(C) for CH3 group.

Figures

Fig. 1.

Fig. 1.

Molecular structure of (I) showing the atom-numbering scheme. Displacement ellipsoids are shown at the 50% probability level.

Fig. 2.

Fig. 2.

View of the supramolecular tape motif in the crystal structure of the title compound.

Fig. 3.

Fig. 3.

View of the unit-cell contents of (I).

Crystal data

C16H13NO3 F(000) = 560
Mr = 267.27 Dx = 1.409 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
a = 8.476 (4) Å Cell parameters from 1091 reflections
b = 5.264 (3) Å θ = 2.6–24.8°
c = 28.295 (13) Å µ = 0.10 mm1
β = 93.589 (9)° T = 100 K
V = 1260.0 (11) Å3 Prism, colourless
Z = 4 0.49 × 0.13 × 0.07 mm

Data collection

Bruker SMART 1000 CCD diffractometer 2204 independent reflections
Radiation source: fine-focus sealed tube 1433 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.083
φ and ω scans θmax = 25.1°, θmin = 1.4°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −10→9
Tmin = 0.954, Tmax = 0.993 k = −5→6
5768 measured reflections l = −33→31

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.053 H-atom parameters constrained
wR(F2) = 0.137 w = 1/[σ2(Fo2) + (0.0548P)2] where P = (Fo2 + 2Fc2)/3
S = 1.00 (Δ/σ)max < 0.001
2204 reflections Δρmax = 0.30 e Å3
183 parameters Δρmin = −0.27 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.022 (4)

Special details

Experimental. 1H NMR (400 MHz, CDCl3) δ p.p.m.: 7.77 (d, J = 8.3 Hz, 1H, H7), 7.44 (m, 2H, H—Ph), 7.31 (m, 4H, H4, 3xH-Ph), 7.16 (dd, J = 8.3 Hz, 2.3 Hz, 1H, H6), 4.85 (s, 2H, CH2), 3.95 (s, 3H, OCH3). 13C MNR (100 MHz, CDCl3) δ p.p.m.: 167.9 (2xCO), 164.7 (C5), 136.5 (C), 134.7 (C), 128.7 (CH—Ar), 128.6 (CH—Ar), 127.8 (CH—Ar), 125.1 (C7), 124.0 (C), 119.7 (C6), 108.2 (C4), 56.1 (CH3), 41.6 (CH2). EMAR (ESI) calcld. for: [C16H14NO3]+ 268.09682; Found: 268.09697
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.3240 (3) 0.6996 (5) 0.92388 (10) 0.0213 (6)
O1 0.4087 (2) 0.5180 (4) 0.91838 (6) 0.0267 (5)
N2 0.2352 (3) 0.8192 (4) 0.88663 (7) 0.0211 (6)
C3 0.1503 (3) 1.0257 (5) 0.90228 (10) 0.0215 (7)
O3 0.0646 (2) 1.1594 (4) 0.87683 (7) 0.0288 (5)
C3A 0.1874 (3) 1.0402 (5) 0.95430 (9) 0.0195 (6)
C4 0.1349 (3) 1.2090 (5) 0.98669 (10) 0.0231 (7)
H4 0.0649 1.3435 0.9774 0.028*
C5 0.1887 (3) 1.1749 (5) 1.03403 (9) 0.0217 (6)
O5 0.1292 (2) 1.3429 (4) 1.06478 (6) 0.0270 (5)
C6 0.2935 (3) 0.9800 (5) 1.04724 (10) 0.0230 (7)
H6 0.3303 0.9626 1.0795 0.028*
C7 0.3447 (3) 0.8103 (5) 1.01369 (10) 0.0241 (7)
H7 0.4147 0.6754 1.0227 0.029*
C7A 0.2915 (3) 0.8428 (5) 0.96708 (9) 0.0197 (6)
C8 0.1941 (3) 1.3450 (6) 1.11298 (10) 0.0310 (8)
H8A 0.1716 1.1825 1.1281 0.047*
H8B 0.1462 1.4834 1.1303 0.047*
H8C 0.3087 1.3704 1.1134 0.047*
C9 0.2351 (3) 0.7371 (5) 0.83788 (9) 0.0232 (7)
H9A 0.1327 0.7845 0.8215 0.028*
H9B 0.2432 0.5495 0.8372 0.028*
C10 0.3673 (3) 0.8478 (5) 0.81074 (9) 0.0195 (6)
C11 0.3994 (3) 0.7401 (5) 0.76729 (9) 0.0232 (7)
H11 0.3424 0.5937 0.7565 0.028*
C12 0.5122 (3) 0.8419 (6) 0.73974 (10) 0.0253 (7)
H12 0.5313 0.7673 0.7101 0.030*
C13 0.5972 (3) 1.0524 (6) 0.75539 (10) 0.0281 (7)
H13 0.6753 1.1231 0.7366 0.034*
C14 0.5679 (3) 1.1605 (5) 0.79876 (10) 0.0277 (7)
H14 0.6267 1.3050 0.8096 0.033*
C15 0.4534 (3) 1.0593 (5) 0.82639 (10) 0.0226 (7)
H15 0.4340 1.1348 0.8560 0.027*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0199 (14) 0.0202 (15) 0.0238 (16) −0.0009 (12) 0.0017 (12) 0.0003 (12)
O1 0.0280 (11) 0.0264 (11) 0.0255 (11) 0.0068 (10) 0.0011 (9) −0.0021 (9)
N2 0.0249 (13) 0.0229 (13) 0.0156 (12) 0.0022 (10) 0.0021 (10) −0.0003 (10)
C3 0.0205 (14) 0.0225 (15) 0.0219 (15) 0.0000 (13) 0.0047 (12) 0.0022 (12)
O3 0.0307 (11) 0.0333 (12) 0.0222 (11) 0.0097 (9) −0.0004 (9) 0.0040 (9)
C3A 0.0157 (13) 0.0227 (15) 0.0201 (15) −0.0023 (11) 0.0027 (11) 0.0035 (12)
C4 0.0216 (14) 0.0237 (15) 0.0245 (16) 0.0014 (12) 0.0058 (12) 0.0017 (12)
C5 0.0202 (14) 0.0248 (15) 0.0207 (15) −0.0026 (13) 0.0059 (12) −0.0024 (13)
O5 0.0278 (11) 0.0317 (11) 0.0213 (11) 0.0052 (9) 0.0000 (9) −0.0049 (9)
C6 0.0237 (15) 0.0268 (16) 0.0182 (15) −0.0041 (13) −0.0001 (12) 0.0008 (13)
C7 0.0224 (15) 0.0241 (15) 0.0257 (16) −0.0017 (12) 0.0001 (12) 0.0039 (13)
C7A 0.0205 (14) 0.0192 (14) 0.0197 (15) −0.0022 (12) 0.0043 (12) 0.0020 (12)
C8 0.0300 (17) 0.0402 (19) 0.0231 (16) 0.0028 (14) 0.0029 (13) −0.0070 (14)
C9 0.0256 (16) 0.0252 (16) 0.0190 (15) 0.0025 (12) 0.0017 (12) −0.0026 (12)
C10 0.0193 (14) 0.0223 (15) 0.0167 (14) 0.0054 (12) −0.0008 (11) 0.0005 (12)
C11 0.0213 (15) 0.0257 (16) 0.0223 (16) 0.0008 (12) −0.0014 (13) −0.0036 (12)
C12 0.0244 (15) 0.0313 (17) 0.0202 (15) 0.0030 (13) 0.0019 (12) −0.0031 (13)
C13 0.0240 (15) 0.0374 (18) 0.0232 (16) −0.0008 (14) 0.0044 (13) 0.0011 (14)
C14 0.0279 (16) 0.0269 (16) 0.0279 (17) −0.0027 (13) −0.0026 (13) 0.0001 (14)
C15 0.0247 (15) 0.0254 (16) 0.0177 (15) 0.0034 (13) 0.0015 (12) −0.0017 (12)

Geometric parameters (Å, º)

C1—O1 1.211 (3) C8—H8A 0.9800
C1—N2 1.405 (3) C8—H8B 0.9800
C1—C7A 1.476 (4) C8—H8C 0.9800
N2—C3 1.391 (3) C9—C10 1.514 (4)
N2—C9 1.445 (3) C9—H9A 0.9900
C3—O3 1.215 (3) C9—H9B 0.9900
C3—C3A 1.488 (4) C10—C15 1.388 (4)
C3A—C4 1.371 (4) C10—C11 1.396 (4)
C3A—C7A 1.396 (4) C11—C12 1.379 (4)
C4—C5 1.399 (4) C11—H11 0.9500
C4—H4 0.9500 C12—C13 1.379 (4)
C5—O5 1.359 (3) C12—H12 0.9500
C5—C6 1.393 (4) C13—C14 1.389 (4)
O5—C8 1.438 (3) C13—H13 0.9500
C6—C7 1.393 (4) C14—C15 1.390 (4)
C6—H6 0.9500 C14—H14 0.9500
C7—C7A 1.378 (4) C15—H15 0.9500
C7—H7 0.9500
O1—C1—N2 123.4 (2) O5—C8—H8B 109.5
O1—C1—C7A 130.7 (2) H8A—C8—H8B 109.5
N2—C1—C7A 105.9 (2) O5—C8—H8C 109.5
C3—N2—C1 112.0 (2) H8A—C8—H8C 109.5
C3—N2—C9 124.6 (2) H8B—C8—H8C 109.5
C1—N2—C9 123.4 (2) N2—C9—C10 114.4 (2)
O3—C3—N2 124.5 (3) N2—C9—H9A 108.7
O3—C3—C3A 129.7 (3) C10—C9—H9A 108.7
N2—C3—C3A 105.9 (2) N2—C9—H9B 108.7
C4—C3A—C7A 122.4 (2) C10—C9—H9B 108.7
C4—C3A—C3 129.6 (2) H9A—C9—H9B 107.6
C7A—C3A—C3 108.0 (2) C15—C10—C11 118.6 (3)
C3A—C4—C5 117.2 (2) C15—C10—C9 122.5 (2)
C3A—C4—H4 121.4 C11—C10—C9 118.8 (2)
C5—C4—H4 121.4 C12—C11—C10 121.3 (3)
O5—C5—C6 124.3 (2) C12—C11—H11 119.3
O5—C5—C4 114.7 (2) C10—C11—H11 119.3
C6—C5—C4 121.0 (3) C11—C12—C13 119.8 (3)
C5—O5—C8 118.5 (2) C11—C12—H12 120.1
C5—C6—C7 120.7 (2) C13—C12—H12 120.1
C5—C6—H6 119.6 C12—C13—C14 119.6 (3)
C7—C6—H6 119.6 C12—C13—H13 120.2
C7A—C7—C6 118.4 (3) C14—C13—H13 120.2
C7A—C7—H7 120.8 C13—C14—C15 120.6 (3)
C6—C7—H7 120.8 C13—C14—H14 119.7
C7—C7A—C3A 120.3 (3) C15—C14—H14 119.7
C7—C7A—C1 131.5 (2) C10—C15—C14 120.0 (3)
C3A—C7A—C1 108.3 (2) C10—C15—H15 120.0
O5—C8—H8A 109.5 C14—C15—H15 120.0
O1—C1—N2—C3 −178.9 (3) C6—C7—C7A—C1 179.5 (3)
C7A—C1—N2—C3 0.3 (3) C4—C3A—C7A—C7 0.5 (4)
O1—C1—N2—C9 0.3 (4) C3—C3A—C7A—C7 −179.5 (2)
C7A—C1—N2—C9 179.5 (2) C4—C3A—C7A—C1 −179.7 (2)
C1—N2—C3—O3 −179.9 (3) C3—C3A—C7A—C1 0.3 (3)
C9—N2—C3—O3 0.9 (4) O1—C1—C7A—C7 −1.4 (5)
C1—N2—C3—C3A −0.1 (3) N2—C1—C7A—C7 179.4 (3)
C9—N2—C3—C3A −179.3 (2) O1—C1—C7A—C3A 178.7 (3)
O3—C3—C3A—C4 −0.3 (5) N2—C1—C7A—C3A −0.4 (3)
N2—C3—C3A—C4 179.9 (3) C3—N2—C9—C10 93.1 (3)
O3—C3—C3A—C7A 179.6 (3) C1—N2—C9—C10 −86.0 (3)
N2—C3—C3A—C7A −0.1 (3) N2—C9—C10—C15 −16.9 (3)
C7A—C3A—C4—C5 −0.7 (4) N2—C9—C10—C11 166.0 (2)
C3—C3A—C4—C5 179.3 (3) C15—C10—C11—C12 −1.0 (4)
C3A—C4—C5—O5 −178.1 (2) C9—C10—C11—C12 176.2 (2)
C3A—C4—C5—C6 1.1 (4) C10—C11—C12—C13 0.9 (4)
C6—C5—O5—C8 9.2 (4) C11—C12—C13—C14 −0.2 (4)
C4—C5—O5—C8 −171.5 (2) C12—C13—C14—C15 −0.3 (4)
O5—C5—C6—C7 177.8 (2) C11—C10—C15—C14 0.5 (4)
C4—C5—C6—C7 −1.4 (4) C9—C10—C15—C14 −176.6 (2)
C5—C6—C7—C7A 1.1 (4) C13—C14—C15—C10 0.1 (4)
C6—C7—C7A—C3A −0.7 (4)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C4—H4···O5i 0.95 2.57 3.505 (3) 168
C7—H7···O1ii 0.95 2.40 3.247 (3) 149
C8—H8B···O3i 0.98 2.59 3.432 (4) 144
C15—H15···N2 0.95 2.56 2.884 (4) 100

Symmetry codes: (i) −x, −y+3, −z+2; (ii) −x+1, −y+1, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FY2100).

References

  1. Barooah, N. & Baruah, J. B. (2007). Mini-Rev. Org. Chem. 4, 292–309.
  2. Bruker (1998). SMART and SAINT Bruker AXS Inc., Madinson, Wisconsin, USA.
  3. Cao, H. & Alper, H. (2010). Org. Lett. 12, 4126–4129. [DOI] [PubMed]
  4. Favor, D., Powers, J. J., Repine, J. T. & White, A. D. (2008). PCT Int. Appl. WO 020306.
  5. Haj-Yehia, A. I. & Khan, M. A. (2004). PCT Int. Appl. WO 047837.
  6. Jiang, Z., Wang, J.-D., Chen, N.-S. & Huang, J.-L. (2008). Acta Cryst. E64, o324. [DOI] [PMC free article] [PubMed]
  7. Luzzio, F. A. (2005). Science of Synthesis, Vol. 21, edited by S. Veinreb, pp. 259–324. Stuttgart: Thieme Chemistry.
  8. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
  9. Sharma, U., Kumar, P., Kumar, N. & Singh, B. (2010). Mini Rev. Med. Chem. 10, 678–704. [DOI] [PubMed]
  10. Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  13. Vidal, T., Petit, A., Loupy, A. & Gedye, R. N. (2000). Tetrahedron, 56, 5473–5478.
  14. Warzecha, K.-D., Görner, H. & Griesbeck, A. G. (2006). J. Phys. Chem A, 110, 3356–3363. [DOI] [PubMed]
  15. Warzecha, K.-D., Lex, J. & Griesbeck, A. G. (2006a). Acta Cryst. E62, o2367–o2368.
  16. Warzecha, K.-D., Lex, J. & Griesbeck, A. G. (2006b). Acta Cryst. E62, o5271–o5273.
  17. Warzecha, K.-D., Lex, J. & Griesbeck, A. G. (2006c). Acta Cryst. E62, o5450–o5452.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S160053681302638X/fy2100sup1.cif

e-69-o1594-sup1.cif (23.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681302638X/fy2100Isup2.hkl

e-69-o1594-Isup2.hkl (108.4KB, hkl)

Supplementary material file. DOI: 10.1107/S160053681302638X/fy2100Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES