Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Jul 24;69(Pt 8):m469–m470. doi: 10.1107/S1600536813019739

Diammonium tetra­kis­(iso­thio­cyanato)­zincate–1,4,10,13,16-hexa­oxa­cyclo­octa­deca­ne–water (1/2/1)

K Showrilu a, K Rajarajan b,*, M NizamMohideen c,*
PMCID: PMC3793699  PMID: 24109286

Abstract

The title compound, (NH4)2[Zn(NCS)4]·2C12H24O6·H2O, the result of the reaction of ammonium thio­cyanate, 18-crown-6 and zinc(II) chloride in aqueous solution, exhibits an unusual supra­molecular structure. The Zn atom, two of the thio­cyanate chains and a water mol­ecule, disordered over two positions, lie on a mirror plane. The macrocycle adopts a conformation with approximate D 3d symmetry. The ammonium mol­ecules are contained within the bowl of the macrocycle via extensive N—H⋯O hydrogen bonds and the complex mol­ecules are linked via N—H⋯S hydrogen bonds, forming chains along the c-axis direction. The macrocycle is disordered over two positions [refined occupancy ratio = 0.666 (8):0.334 (8)]. The S atoms of two iso­thio­cyanate ligands are disordered within and about the mirror plane.

Related literature  

For background to crown ether/ammonium ion complexes, see: Fender et al. (2002); Kryatova et al. (2004); Akutagawa et al. (2002); Ramesh et al. (2012).graphic file with name e-69-0m469-scheme1.jpg

Experimental  

Crystal data  

  • (NH4)2[Zn(NCS)4]·2C12H24O6·H2O

  • M r = 880.41

  • Orthorhombic, Inline graphic

  • a = 22.7875 (12) Å

  • b = 23.6254 (12) Å

  • c = 8.5593 (5) Å

  • V = 4608.0 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.77 mm−1

  • T = 293 K

  • 0.30 × 0.25 × 0.20 mm

Data collection  

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004) T min = 0.802, T max = 0.861

  • 24101 measured reflections

  • 4641 independent reflections

  • 2467 reflections with I > 2σ(I)

  • R int = 0.058

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.052

  • wR(F 2) = 0.175

  • S = 1.00

  • 4641 reflections

  • 454 parameters

  • 276 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.72 e Å−3

  • Δρmin = −0.24 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536813019739/su2617sup1.cif

e-69-0m469-sup1.cif (43.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813019739/su2617Isup2.hkl

e-69-0m469-Isup2.hkl (222.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4H⋯O1 0.88 (1) 2.44 (4) 3.069 (8) 129 (4)
N4—H4E⋯O2 0.87 (1) 2.06 (1) 2.934 (8) 176 (5)
N4—H4G⋯O4 0.88 (1) 1.97 (2) 2.829 (7) 166 (4)
N4—H4G⋯O5 0.88 (1) 2.53 (4) 3.010 (8) 115 (3)
N4—H4H⋯O6 0.88 (1) 2.05 (3) 2.850 (8) 150 (5)
N4—H4F⋯S1i 0.87 (1) 2.63 (2) 3.441 (4) 156 (4)

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors are thankful to the SAIF, IIT Madras, for the data collection. KR thanks the University Grants Commission, Government of India, for financial support granted under a Major Research Project [F. No.41–1008/2012 (SR)].

supplementary crystallographic information

Comment

There is currently significant interest in crown ethers because of their ability to form non-covalent, hydrogen bonding complexes with ammonium cations both in the solid state and in solution (Fender et al., 2002; Kryatova et al., 2004; Akutagawa et al., 2002). Recently, the crystal structure of catena-Poly[ammonium(cadmium-tri-lthiocyanato κ4S:N; κ2N:S) -1,4,10,13,16- hexaoxacyclooctadecane (1/1)] (I), obtained in our laboratory, has been reported (Ramesh et al., 2012). In continuation of our studies of compounds containing 18-crown-6 macrocycles and ammonium cations NH4+, we describe herein the crystal structure of the title compound (II), which is isostructural with (I).

The reaction of ammonium thiocyanate, 18-crown-6 and Zinc (II) chloride in aqueous solution yields the title compound, Fig. 1. All bond lengths and angles are normal and correspond to those reported for (I) (Ramesh et al., 2012). The C—S [average value of 1.658 (2) Å] and C—N [average value of 1.116 (2) Å] bond lengths indicate the presence of double-bond character. The zinc atom, Zn1, two of the thiocyanate chains [N2—C2—S2 and N3—C3—S3; symmetry code: x, -y + 1/2, z] and the water molecule lie in a mirror plane, except one of the disordered component sulfur atoms, which is inclined at quite an angle to the ac plane. The thiocyanate (N1—C1—S1 = 178.2 (4) °) ligands are almost linear.

The macrocycle adopts a conformation with approximate D3d symmetry, with all O—C—C—O torsion angles being gauche and alternating in sign, and all C—O—C—C torsion angles being anti.

The sulfur atoms (S2 and S3) of the thiocyanate chains are disordered with large displacement parameters for the S atoms and short C—S bond lengths. The disorder over two positions was modelled and the site occupancies refined to 0.39 (9) and 0.61 (9) for atom S2 and 0.376 (9) and 0.248 (18) for atom S3. The entire crown either molecule is disordered, as detectable from the large displacement parameters for C and O atoms and short C—C and C—O bond lengths. The disorder over two positions was modelled and the site occupancies refined to 0.666 (9) and 0.334 (9) for carbon and oxygen atoms. The water molecule is disordered, as detectable from the large displacement parameters for the O atoms. The disorder over two positions was modelled and the site occupancies refined to 0.425 (15) and 0.575 (15). for carbon and oxygen atoms. The geometry was regularized by soft restraints.

The ammonium cations are contained within the bowl of the macrocycle via extensive N—H···O hydrogen bonding. The N—H···O [2.830 (7) to 3.074 (7) Å] and N—H···S [3.442 (4) Å] hydrogen bond lengths are within the usual range (Table 1 and Fig. 2).

In the crystal, the complex molecules are linked via N—H···S hydrogen bonds forming chains along the c axis (Table 1 and Fig. 2).

Experimental

A mixture of 18-crown-6, ammonium thiocyanate and Zinc (II) chloride were dissolved in an aqueous solution in the molar ratio 2:4:1 and thoroughly mixed for two hours to obtain a homogeneous mixture. The solution was allowed to evaporate slowly at ambient temperature. Colourless single crystals suitable for single-crystal X-ray diffraction analysis were obtained in a week.

Refinement

The sulfur atoms (S2 and S3) of the thiocyanate chain are disordered over two positions with refined occupancies of 0.39 (9) and 0.61 (9) for atom S2, and 0.376 (9) and 0.248 (18) for atom S3. The entire crown either molecule is disordered over two positions with refined occupancies of 0.666 (9) and 0.334 (9). The water molecule is disordered over two positions with refined occupancies of 0.425 (15) and 0.575 (15). The corresponding bond distances involving the disordered atoms were restrained to be equal.

The N-bound H (N—H = 0.87 Å) atoms was located in difference map and refined in the riding mode approximation. C-bound H-atoms were placed in calculated positions [C—H 0.97 Å, Uiso(H) 1.2Ueq(C)] and were included in the refinement in the riding model approximation. The water H-atom, whose O atom lies on a mirror plane, was similar treated [O—H 0.61–0.90 Å].

Figures

Fig. 1.

Fig. 1.

Crystal structure of the title compound with atom labelling. Displacement ellipsoids are drawn at the 30% probability level [symmetry code: (a) x, -y+1/2, z; the disordered fraction is shown with dashed bonds and atom labels with prefix '].

Fig. 2.

Fig. 2.

A view along the c axis of the crystal packing of the title compound. Hydrogen bonds are shown as dashed lines (see Table 1 for details).

Crystal data

(NH4)2[Zn(NCS)4]·2C12H24O6·H2O F(000) = 1864
Mr = 880.41 Dx = 1.269 Mg m3
Orthorhombic, Pnma Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2n Cell parameters from 5119 reflections
a = 22.7875 (12) Å θ = 2.6–26.7°
b = 23.6254 (12) Å µ = 0.77 mm1
c = 8.5593 (5) Å T = 293 K
V = 4608.0 (4) Å3 Block, colourless
Z = 4 0.30 × 0.25 × 0.20 mm

Data collection

Bruker Kappa APEXII CCD diffractometer 4641 independent reflections
Radiation source: fine-focus sealed tube 2467 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.058
ω and φ scan θmax = 26.0°, θmin = 2.5°
Absorption correction: multi-scan (SADABS; Sheldrick, 2004) h = −24→28
Tmin = 0.802, Tmax = 0.861 k = −19→29
24101 measured reflections l = −10→9

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.175 H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0932P)2 + 0.2607P] where P = (Fo2 + 2Fc2)/3
4641 reflections (Δ/σ)max = 0.001
454 parameters Δρmax = 0.72 e Å3
276 restraints Δρmin = −0.24 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
C1 0.51074 (15) 0.13492 (16) 0.9699 (5) 0.0534 (10)
C2 0.6728 (3) 0.2500 0.7518 (7) 0.0668 (16)
C3 0.4978 (4) 0.2500 0.4932 (11) 0.094 (2)
O1 0.6093 (3) 0.0412 (3) 0.5640 (8) 0.086 (2) 0.666 (8)
O2 0.6025 (4) −0.0710 (3) 0.4650 (8) 0.082 (2) 0.666 (8)
O3 0.6681 (3) −0.1007 (3) 0.1940 (9) 0.079 (2) 0.666 (8)
O4 0.6950 (3) −0.0163 (3) −0.0249 (8) 0.0798 (19) 0.666 (8)
O5 0.6998 (3) 0.0974 (4) 0.0798 (7) 0.083 (2) 0.666 (8)
O6 0.6318 (3) 0.1232 (3) 0.3415 (9) 0.092 (2) 0.666 (8)
C4 0.6209 (4) 0.1375 (4) 0.4993 (11) 0.103 (3) 0.666 (8)
H4A 0.6025 0.1744 0.5053 0.124* 0.666 (8)
H4B 0.6576 0.1388 0.5567 0.124* 0.666 (8)
C5 0.5811 (4) 0.0935 (4) 0.5696 (12) 0.106 (3) 0.666 (8)
H5A 0.5721 0.1034 0.6770 0.127* 0.666 (8)
H5B 0.5446 0.0918 0.5115 0.127* 0.666 (8)
C6 0.5761 (5) 0.0013 (5) 0.6449 (14) 0.097 (4) 0.666 (8)
H6A 0.5363 0.0007 0.6046 0.116* 0.666 (8)
H6B 0.5745 0.0110 0.7549 0.116* 0.666 (8)
C7 0.6040 (4) −0.0556 (5) 0.6243 (9) 0.102 (3) 0.666 (8)
H7A 0.6443 −0.0544 0.6603 0.122* 0.666 (8)
H7B 0.5831 −0.0835 0.6859 0.122* 0.666 (8)
C8 0.6256 (5) −0.1260 (4) 0.4391 (12) 0.103 (3) 0.666 (8)
H8A 0.6009 −0.1539 0.4898 0.123* 0.666 (8)
H8B 0.6646 −0.1286 0.4840 0.123* 0.666 (8)
C9 0.6284 (4) −0.1378 (4) 0.2670 (12) 0.094 (3) 0.666 (8)
H9A 0.6407 −0.1766 0.2500 0.113* 0.666 (8)
H9B 0.5897 −0.1331 0.2214 0.113* 0.666 (8)
C10 0.6751 (5) −0.1127 (5) 0.0337 (12) 0.093 (4) 0.666 (8)
H10A 0.6377 −0.1093 −0.0199 0.111* 0.666 (8)
H10B 0.6895 −0.1510 0.0198 0.111* 0.666 (8)
C11 0.7185 (4) −0.0709 (4) −0.0321 (10) 0.091 (3) 0.666 (8)
H11A 0.7547 −0.0724 0.0273 0.109* 0.666 (8)
H11B 0.7273 −0.0805 −0.1397 0.109* 0.666 (8)
C12 0.7343 (5) 0.0238 (5) −0.0886 (15) 0.094 (4) 0.666 (8)
H12A 0.7426 0.0148 −0.1969 0.113* 0.666 (8)
H12B 0.7709 0.0237 −0.0308 0.113* 0.666 (8)
C13 0.7052 (4) 0.0806 (5) −0.0767 (10) 0.098 (3) 0.666 (8)
H13A 0.7282 0.1084 −0.1333 0.118* 0.666 (8)
H13B 0.6666 0.0788 −0.1241 0.118* 0.666 (8)
C14 0.6687 (5) 0.1489 (5) 0.0924 (14) 0.107 (4) 0.666 (8)
H14A 0.6296 0.1447 0.0488 0.129* 0.666 (8)
H14B 0.6889 0.1785 0.0351 0.129* 0.666 (8)
C15 0.6647 (5) 0.1645 (4) 0.2617 (13) 0.107 (3) 0.666 (8)
H15A 0.7038 0.1669 0.3062 0.128* 0.666 (8)
H15B 0.6460 0.2012 0.2726 0.128* 0.666 (8)
O1' 0.6101 (6) 0.0748 (7) 0.5055 (18) 0.095 (4) 0.334 (8)
O2' 0.5880 (8) −0.0418 (7) 0.489 (2) 0.094 (4) 0.334 (8)
O3' 0.6481 (6) −0.1061 (6) 0.2641 (16) 0.073 (4) 0.334 (8)
O4' 0.6913 (5) −0.0500 (6) 0.0013 (14) 0.062 (3) 0.334 (8)
O5' 0.7128 (6) 0.0659 (6) 0.0284 (19) 0.082 (4) 0.334 (8)
O6' 0.6437 (7) 0.1284 (6) 0.2342 (19) 0.103 (5) 0.334 (8)
C4' 0.6350 (10) 0.1591 (9) 0.373 (2) 0.115 (6) 0.334 (8)
H4'1 0.6223 0.1974 0.3495 0.138* 0.334 (8)
H4'2 0.6714 0.1613 0.4319 0.138* 0.334 (8)
C5' 0.5891 (10) 0.1293 (8) 0.468 (3) 0.118 (7) 0.334 (8)
H5'1 0.5809 0.1504 0.5623 0.142* 0.334 (8)
H5'2 0.5531 0.1263 0.4079 0.142* 0.334 (8)
C6' 0.5720 (9) 0.0449 (9) 0.604 (2) 0.103 (6) 0.334 (8)
H6'1 0.5334 0.0432 0.5563 0.124* 0.334 (8)
H6'2 0.5683 0.0649 0.7024 0.124* 0.334 (8)
C7' 0.5935 (12) −0.0141 (10) 0.634 (2) 0.098 (7) 0.334 (8)
H7'1 0.6340 −0.0137 0.6686 0.118* 0.334 (8)
H7'2 0.5697 −0.0326 0.7132 0.118* 0.334 (8)
C8' 0.6053 (10) −0.0980 (7) 0.513 (2) 0.094 (6) 0.334 (8)
H8'1 0.5787 −0.1159 0.5865 0.113* 0.334 (8)
H8'2 0.6444 −0.0987 0.5586 0.113* 0.334 (8)
C9' 0.6055 (9) −0.1305 (8) 0.363 (2) 0.093 (6) 0.334 (8)
H9'1 0.6148 −0.1699 0.3822 0.112* 0.334 (8)
H9'2 0.5671 −0.1285 0.3139 0.112* 0.334 (8)
C10' 0.6499 (6) −0.1330 (6) 0.1179 (19) 0.071 (4) 0.334 (8)
H10C 0.6134 −0.1267 0.0621 0.085* 0.334 (8)
H10D 0.6553 −0.1735 0.1312 0.085* 0.334 (8)
C11' 0.7003 (6) −0.1085 (6) 0.028 (3) 0.058 (4) 0.334 (8)
H11C 0.7365 −0.1139 0.0858 0.070* 0.334 (8)
H11D 0.7041 −0.1279 −0.0716 0.070* 0.334 (8)
C12' 0.7390 (6) −0.0224 (7) −0.0687 (18) 0.080 (4) 0.334 (8)
H12C 0.7514 −0.0431 −0.1608 0.096* 0.334 (8)
H12D 0.7717 −0.0209 0.0038 0.096* 0.334 (8)
C13' 0.7211 (12) 0.0367 (9) −0.114 (2) 0.082 (6) 0.334 (8)
H13C 0.7515 0.0547 −0.1755 0.098* 0.334 (8)
H13D 0.6850 0.0362 −0.1738 0.098* 0.334 (8)
C14' 0.6902 (10) 0.1195 (6) −0.007 (3) 0.105 (6) 0.334 (8)
H14C 0.6521 0.1152 −0.0563 0.125* 0.334 (8)
H14D 0.7160 0.1382 −0.0809 0.125* 0.334 (8)
C15' 0.6838 (11) 0.1560 (10) 0.135 (3) 0.105 (7) 0.334 (8)
H15C 0.7213 0.1605 0.1871 0.127* 0.334 (8)
H15D 0.6692 0.1932 0.1067 0.127* 0.334 (8)
N1 0.52011 (15) 0.18067 (14) 0.9297 (4) 0.0703 (10)
N2 0.6247 (3) 0.2500 0.7865 (7) 0.0768 (16)
N3 0.5010 (3) 0.2500 0.6166 (7) 0.0796 (16)
N4 0.61488 (17) 0.01292 (18) 0.2144 (5) 0.0594 (9)
S1 0.49673 (5) 0.07035 (4) 1.02060 (15) 0.0704 (4)
S2 0.7443 (4) 0.2500 0.740 (7) 0.100 (6) 0.39 (9)
S2A 0.7397 (6) 0.2500 0.684 (5) 0.098 (5) 0.61 (9)
S3 0.5017 (4) 0.2703 (4) 0.3036 (5) 0.138 (3) 0.376 (9)
S3A 0.4660 (14) 0.2500 0.3119 (17) 0.161 (7) 0.248 (18)
Zn1 0.54016 (3) 0.2500 0.82110 (8) 0.0587 (3)
O1W 0.3179 (18) 0.2500 0.361 (5) 0.328 (15) 0.425 (15)
O2W 0.3443 (14) 0.2500 0.199 (3) 0.328 (15) 0.575 (15)
H1W 0.31 (2) 0.2500 0.258 (11) 0.492* 0.425 (15)
H2W 0.289 (15) 0.2500 0.43 (4) 0.492* 0.425 (15)
H3W 0.327 (15) 0.2500 0.29 (2) 0.492* 0.575 (15)
H4W 0.384 (3) 0.2500 0.19 (5) 0.492* 0.575 (15)
H4E 0.609 (2) −0.0122 (17) 0.288 (4) 0.11 (2)*
H4F 0.5826 (12) 0.016 (2) 0.160 (5) 0.099 (18)*
H4G 0.6438 (14) 0.0081 (19) 0.148 (4) 0.097 (17)*
H4H 0.624 (2) 0.0393 (16) 0.282 (5) 0.11 (2)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.048 (2) 0.053 (2) 0.059 (3) 0.0033 (18) 0.0027 (18) 0.004 (2)
C2 0.089 (5) 0.043 (3) 0.069 (4) 0.000 0.003 (4) 0.000
C3 0.110 (6) 0.090 (5) 0.083 (6) 0.000 −0.001 (5) 0.000
O1 0.080 (4) 0.112 (5) 0.067 (4) 0.007 (4) 0.016 (3) −0.017 (4)
O2 0.097 (5) 0.083 (5) 0.065 (4) −0.013 (4) −0.009 (3) 0.026 (4)
O3 0.085 (5) 0.073 (4) 0.081 (5) 0.002 (3) −0.018 (4) −0.011 (4)
O4 0.061 (4) 0.113 (5) 0.065 (4) 0.007 (4) 0.013 (3) −0.003 (4)
O5 0.082 (4) 0.087 (5) 0.080 (5) −0.003 (4) −0.014 (3) 0.031 (4)
O6 0.110 (4) 0.070 (4) 0.097 (6) 0.012 (3) −0.008 (4) −0.008 (4)
C4 0.108 (7) 0.098 (7) 0.102 (7) 0.038 (6) −0.010 (6) −0.047 (6)
C5 0.094 (6) 0.137 (8) 0.086 (7) 0.031 (7) 0.011 (5) −0.042 (7)
C6 0.096 (8) 0.139 (10) 0.056 (6) −0.014 (7) 0.023 (5) −0.013 (6)
C7 0.114 (6) 0.133 (8) 0.059 (6) −0.031 (6) 0.004 (5) 0.023 (6)
C8 0.120 (8) 0.084 (6) 0.105 (8) −0.019 (6) −0.026 (6) 0.030 (6)
C9 0.105 (7) 0.057 (5) 0.119 (9) 0.002 (5) −0.032 (6) −0.006 (6)
C10 0.092 (9) 0.089 (7) 0.097 (7) 0.030 (6) −0.022 (7) −0.033 (6)
C11 0.078 (6) 0.131 (9) 0.063 (5) 0.038 (7) 0.002 (5) −0.034 (6)
C12 0.061 (6) 0.155 (10) 0.068 (7) −0.007 (6) 0.017 (5) 0.000 (8)
C13 0.085 (6) 0.138 (9) 0.072 (6) −0.023 (6) 0.007 (5) 0.022 (7)
C14 0.122 (7) 0.075 (7) 0.124 (9) −0.010 (6) −0.040 (7) 0.036 (7)
C15 0.129 (7) 0.058 (5) 0.133 (9) 0.009 (5) −0.017 (7) 0.012 (6)
O1' 0.087 (7) 0.101 (10) 0.097 (10) 0.023 (8) 0.017 (7) −0.039 (8)
O2' 0.098 (9) 0.108 (11) 0.075 (8) −0.022 (8) −0.004 (7) 0.019 (8)
O3' 0.072 (8) 0.053 (6) 0.094 (10) −0.012 (6) −0.007 (6) 0.004 (7)
O4' 0.047 (6) 0.076 (8) 0.063 (7) 0.009 (6) 0.018 (5) −0.014 (7)
O5' 0.086 (8) 0.095 (9) 0.066 (8) −0.023 (7) −0.022 (7) 0.027 (8)
O6' 0.123 (10) 0.056 (7) 0.129 (14) 0.007 (6) −0.046 (9) −0.009 (8)
C4' 0.141 (13) 0.061 (10) 0.143 (16) 0.026 (10) −0.024 (12) −0.034 (11)
C5' 0.112 (12) 0.095 (11) 0.147 (15) 0.034 (11) −0.015 (12) −0.051 (11)
C6' 0.106 (12) 0.123 (14) 0.081 (11) −0.001 (12) 0.026 (10) −0.014 (11)
C7' 0.102 (13) 0.123 (14) 0.070 (12) −0.014 (12) 0.020 (10) 0.002 (12)
C8' 0.104 (11) 0.094 (12) 0.084 (12) −0.036 (10) 0.006 (10) 0.031 (10)
C9' 0.113 (12) 0.075 (10) 0.091 (13) −0.040 (9) −0.017 (10) 0.024 (10)
C10' 0.063 (8) 0.051 (7) 0.099 (11) 0.007 (6) −0.011 (8) −0.016 (8)
C11' 0.044 (9) 0.058 (8) 0.074 (9) 0.003 (7) −0.007 (7) −0.024 (7)
C12' 0.087 (10) 0.102 (11) 0.052 (9) −0.019 (9) 0.017 (7) −0.023 (9)
C13' 0.083 (12) 0.114 (13) 0.049 (10) −0.023 (11) 0.004 (9) 0.022 (9)
C14' 0.124 (12) 0.084 (11) 0.106 (13) −0.024 (10) −0.035 (11) 0.035 (11)
C15' 0.140 (13) 0.057 (9) 0.120 (16) −0.020 (10) −0.046 (12) 0.011 (10)
N1 0.087 (2) 0.0477 (19) 0.076 (3) −0.0038 (17) 0.0057 (19) 0.0091 (19)
N2 0.069 (3) 0.063 (3) 0.099 (5) 0.000 0.015 (3) 0.000
N3 0.110 (5) 0.068 (3) 0.060 (4) 0.000 0.009 (4) 0.000
N4 0.061 (3) 0.067 (2) 0.051 (3) 0.007 (2) −0.001 (2) −0.002 (2)
S1 0.0688 (7) 0.0521 (6) 0.0903 (9) −0.0072 (5) −0.0075 (6) 0.0253 (6)
S2 0.080 (5) 0.099 (5) 0.121 (17) 0.000 0.029 (5) 0.000
S2A 0.070 (3) 0.104 (3) 0.121 (12) 0.000 0.025 (4) 0.000
S3 0.149 (6) 0.198 (9) 0.067 (3) −0.007 (4) −0.005 (3) 0.016 (3)
S3A 0.234 (17) 0.175 (14) 0.076 (7) 0.000 0.019 (11) 0.000
Zn1 0.0725 (5) 0.0362 (3) 0.0674 (5) 0.000 0.0085 (4) 0.000
O1W 0.39 (3) 0.34 (2) 0.25 (3) 0.000 −0.20 (3) 0.000
O2W 0.39 (3) 0.34 (2) 0.25 (3) 0.000 −0.20 (3) 0.000

Geometric parameters (Å, º)

C1—N1 1.154 (4) O2'—C7' 1.410 (10)
C1—S1 1.618 (4) O3'—C10' 1.405 (10)
C2—N2 1.136 (7) O3'—C9' 1.410 (10)
C2—S2A 1.631 (9) O4'—C12' 1.403 (9)
C2—S2 1.632 (10) O4'—C11' 1.414 (10)
C3—N3 1.058 (8) O5'—C14' 1.403 (10)
C3—S3i 1.695 (10) O5'—C13' 1.409 (10)
C3—S3 1.695 (10) O6'—C15' 1.406 (10)
C3—S3A 1.714 (12) O6'—C4' 1.409 (10)
O1—C6 1.393 (9) C4'—C5' 1.497 (10)
O1—C5 1.394 (8) C4'—H4'1 0.9700
O2—C7 1.411 (8) C4'—H4'2 0.9700
O2—C8 1.420 (8) C5'—H5'1 0.9700
O3—C9 1.406 (8) C5'—H5'2 0.9700
O3—C10 1.410 (8) C6'—C7' 1.501 (10)
O4—C11 1.398 (7) C6'—H6'1 0.9700
O4—C12 1.411 (9) C6'—H6'2 0.9700
O5—C13 1.402 (8) C7'—H7'1 0.9700
O5—C14 1.413 (9) C7'—H7'2 0.9700
O6—C15 1.407 (8) C8'—C9' 1.500 (10)
O6—C4 1.414 (8) C8'—H8'1 0.9700
C4—C5 1.504 (8) C8'—H8'2 0.9700
C4—H4A 0.9700 C9'—H9'1 0.9700
C4—H4B 0.9700 C9'—H9'2 0.9700
C5—H5A 0.9700 C10'—C11' 1.500 (10)
C5—H5B 0.9700 C10'—H10C 0.9700
C6—C7 1.499 (9) C10'—H10D 0.9700
C6—H6A 0.9700 C11'—H11C 0.9700
C6—H6B 0.9700 C11'—H11D 0.9700
C7—H7A 0.9700 C12'—C13' 1.506 (10)
C7—H7B 0.9700 C12'—H12C 0.9700
C8—C9 1.501 (8) C12'—H12D 0.9700
C8—H8A 0.9700 C13'—H13C 0.9700
C8—H8B 0.9700 C13'—H13D 0.9700
C9—H9A 0.9700 C14'—C15' 1.499 (10)
C9—H9B 0.9700 C14'—H14C 0.9700
C10—C11 1.507 (8) C14'—H14D 0.9700
C10—H10A 0.9700 C15'—H15C 0.9700
C10—H10B 0.9700 C15'—H15D 0.9700
C11—H11A 0.9700 N1—Zn1 1.938 (3)
C11—H11B 0.9700 N2—Zn1 1.948 (6)
C12—C13 1.501 (8) N3—Zn1 1.964 (7)
C12—H12A 0.9700 N4—H4E 0.873 (10)
C12—H12B 0.9700 N4—H4F 0.874 (10)
C13—H13A 0.9700 N4—H4G 0.878 (10)
C13—H13B 0.9700 N4—H4H 0.878 (10)
C14—C15 1.497 (9) S3—S3i 0.957 (17)
C14—H14A 0.9700 Zn1—N1i 1.938 (3)
C14—H14B 0.9700 O1W—H1W 0.900 (11)
C15—H15A 0.9700 O1W—H2W 0.899 (10)
C15—H15B 0.9700 O1W—H3W 0.61 (7)
O1'—C6' 1.401 (10) O2W—H1W 0.9 (5)
O1'—C5' 1.411 (10) O2W—H3W 0.900 (10)
O2'—C8' 1.401 (10) O2W—H4W 0.898 (11)
N1—C1—S1 178.1 (4) O6'—C4'—H4'1 110.1
N2—C2—S2A 174.3 (16) C5'—C4'—H4'1 110.1
N2—C2—S2 168 (2) O6'—C4'—H4'2 110.1
N3—C3—S3i 162.2 (5) C5'—C4'—H4'2 110.1
N3—C3—S3 162.2 (5) H4'1—C4'—H4'2 108.4
N3—C3—S3A 158.9 (13) O1'—C5'—C4' 108.5 (17)
C6—O1—C5 109.4 (8) O1'—C5'—H5'1 110.0
C7—O2—C8 112.2 (8) C4'—C5'—H5'1 110.0
C9—O3—C10 112.3 (7) O1'—C5'—H5'2 110.0
C11—O4—C12 111.0 (8) C4'—C5'—H5'2 110.0
C13—O5—C14 111.2 (9) H5'1—C5'—H5'2 108.4
C15—O6—C4 113.1 (9) O1'—C6'—C7' 112 (2)
O6—C4—C5 108.9 (7) O1'—C6'—H6'1 109.3
O6—C4—H4A 109.9 C7'—C6'—H6'1 109.3
C5—C4—H4A 109.9 O1'—C6'—H6'2 109.3
O6—C4—H4B 109.9 C7'—C6'—H6'2 109.3
C5—C4—H4B 109.9 H6'1—C6'—H6'2 108.0
H4A—C4—H4B 108.3 O2'—C7'—C6' 104.5 (18)
O1—C5—C4 108.7 (9) O2'—C7'—H7'1 110.8
O1—C5—H5A 110.0 C6'—C7'—H7'1 110.8
C4—C5—H5A 110.0 O2'—C7'—H7'2 110.8
O1—C5—H5B 110.0 C6'—C7'—H7'2 110.8
C4—C5—H5B 110.0 H7'1—C7'—H7'2 108.9
H5A—C5—H5B 108.3 O2'—C8'—C9' 110.9 (17)
O1—C6—C7 108.6 (8) O2'—C8'—H8'1 109.5
O1—C6—H6A 110.0 C9'—C8'—H8'1 109.5
C7—C6—H6A 110.0 O2'—C8'—H8'2 109.5
O1—C6—H6B 110.0 C9'—C8'—H8'2 109.5
C7—C6—H6B 110.0 H8'1—C8'—H8'2 108.0
H6A—C6—H6B 108.4 O3'—C9'—C8' 107.9 (14)
O2—C7—C6 109.5 (9) O3'—C9'—H9'1 110.1
O2—C7—H7A 109.8 C8'—C9'—H9'1 110.1
C6—C7—H7A 109.8 O3'—C9'—H9'2 110.1
O2—C7—H7B 109.8 C8'—C9'—H9'2 110.1
C6—C7—H7B 109.8 H9'1—C9'—H9'2 108.4
H7A—C7—H7B 108.2 O3'—C10'—C11' 107.8 (15)
O2—C8—C9 109.8 (7) O3'—C10'—H10C 110.1
O2—C8—H8A 109.7 C11'—C10'—H10C 110.1
C9—C8—H8A 109.7 O3'—C10'—H10D 110.1
O2—C8—H8B 109.7 C11'—C10'—H10D 110.1
C9—C8—H8B 109.7 H10C—C10'—H10D 108.5
H8A—C8—H8B 108.2 O4'—C11'—C10' 110.3 (12)
O3—C9—C8 110.4 (8) O4'—C11'—H11C 109.6
O3—C9—H9A 109.6 C10'—C11'—H11C 109.6
C8—C9—H9A 109.6 O4'—C11'—H11D 109.6
O3—C9—H9B 109.6 C10'—C11'—H11D 109.6
C8—C9—H9B 109.6 H11C—C11'—H11D 108.1
H9A—C9—H9B 108.1 O4'—C12'—C13' 109.3 (18)
O3—C10—C11 107.8 (8) O4'—C12'—H12C 109.8
O3—C10—H10A 110.2 C13'—C12'—H12C 109.8
C11—C10—H10A 110.2 O4'—C12'—H12D 109.8
O3—C10—H10B 110.2 C13'—C12'—H12D 109.8
C11—C10—H10B 110.2 H12C—C12'—H12D 108.3
H10A—C10—H10B 108.5 O5'—C13'—C12' 105.6 (15)
O4—C11—C10 109.8 (9) O5'—C13'—H13C 110.6
O4—C11—H11A 109.7 C12'—C13'—H13C 110.6
C10—C11—H11A 109.7 O5'—C13'—H13D 110.6
O4—C11—H11B 109.7 C12'—C13'—H13D 110.6
C10—C11—H11B 109.7 H13C—C13'—H13D 108.8
H11A—C11—H11B 108.2 O5'—C14'—C15' 112 (2)
O4—C12—C13 107.1 (9) O5'—C14'—H14C 109.1
O4—C12—H12A 110.3 C15'—C14'—H14C 109.1
C13—C12—H12A 110.3 O5'—C14'—H14D 109.1
O4—C12—H12B 110.3 C15'—C14'—H14D 109.1
C13—C12—H12B 110.3 H14C—C14'—H14D 107.9
H12A—C12—H12B 108.6 O6'—C15'—C14' 106.6 (19)
O5—C13—C12 110.9 (11) O6'—C15'—H15C 110.4
O5—C13—H13A 109.5 C14'—C15'—H15C 110.4
C12—C13—H13A 109.5 O6'—C15'—H15D 110.4
O5—C13—H13B 109.5 C14'—C15'—H15D 110.4
C12—C13—H13B 109.5 H15C—C15'—H15D 108.6
H13A—C13—H13B 108.0 C1—N1—Zn1 168.0 (4)
O5—C14—C15 108.4 (9) C2—N2—Zn1 173.6 (6)
O5—C14—H14A 110.0 C3—N3—Zn1 157.0 (7)
C15—C14—H14A 110.0 H4E—N4—H4F 109 (5)
O5—C14—H14B 110.0 H4E—N4—H4G 119 (5)
C15—C14—H14B 110.0 H4F—N4—H4G 107 (5)
H14A—C14—H14B 108.4 H4E—N4—H4H 92 (5)
O6—C15—C14 109.4 (11) H4F—N4—H4H 120 (5)
O6—C15—H15A 109.8 H4G—N4—H4H 110 (5)
C14—C15—H15A 109.8 S3i—S3—C3 73.6 (3)
O6—C15—H15B 109.8 N1—Zn1—N1i 115.4 (2)
C14—C15—H15B 109.8 N1—Zn1—N2 107.82 (13)
H15A—C15—H15B 108.2 N1i—Zn1—N2 107.82 (13)
C6'—O1'—C5' 112.8 (17) N1—Zn1—N3 108.70 (13)
C8'—O2'—C7' 106.5 (15) N1i—Zn1—N3 108.70 (13)
C10'—O3'—C9' 111.7 (14) N2—Zn1—N3 108.2 (2)
C12'—O4'—C11' 114.2 (14) H1W—O1W—H2W 120 (2)
C14'—O5'—C13' 107.7 (17) H2W—O1W—H3W 152 (10)
C15'—O6'—C4' 111.2 (18) H1W—O2W—H4W 152 (10)
O6'—C4'—C5' 108 (2) H3W—O2W—H4W 121 (2)
C15—O6—C4—C5 174.9 (8) O1'—C6'—C7'—O2' −68 (3)
C6—O1—C5—C4 173.1 (8) C7'—O2'—C8'—C9' −175.8 (18)
O6—C4—C5—O1 61.5 (10) C10'—O3'—C9'—C8' −178.1 (15)
C5—O1—C6—C7 174.5 (8) O2'—C8'—C9'—O3' 64 (2)
C8—O2—C7—C6 −176.9 (8) C9'—O3'—C10'—C11' −174.2 (15)
O1—C6—C7—O2 −63.5 (11) C12'—O4'—C11'—C10' 174.0 (14)
C7—O2—C8—C9 −174.4 (8) O3'—C10'—C11'—O4' −62.7 (18)
C10—O3—C9—C8 176.1 (8) C11'—O4'—C12'—C13' 171.2 (15)
O2—C8—C9—O3 64.5 (10) C14'—O5'—C13'—C12' −174.0 (16)
C9—O3—C10—C11 −179.8 (8) O4'—C12'—C13'—O5' 68 (2)
C12—O4—C11—C10 −178.8 (9) C13'—O5'—C14'—C15' −175.8 (19)
O3—C10—C11—O4 −65.3 (10) C4'—O6'—C15'—C14' 179.3 (18)
C11—O4—C12—C13 179.6 (8) O5'—C14'—C15'—O6' −62 (2)
C14—O5—C13—C12 −175.7 (9) S3i—C3—N3—Zn1 67 (3)
O4—C12—C13—O5 67.7 (11) S3—C3—N3—Zn1 −67 (3)
C13—O5—C14—C15 −179.8 (8) S3A—C3—N3—Zn1 180.0
C4—O6—C15—C14 −174.1 (8) N3—C3—S3—S3i 156 (3)
O5—C14—C15—O6 −63.7 (11) S3A—C3—S3—S3i −62.2 (12)
C15'—O6'—C4'—C5' 176.4 (18) C1—N1—Zn1—N1i 170.5 (15)
C6'—O1'—C5'—C4' 175.5 (17) C1—N1—Zn1—N2 −69.0 (17)
O6'—C4'—C5'—O1' 62 (2) C1—N1—Zn1—N3 48.1 (17)
C5'—O1'—C6'—C7' 176.4 (18) C3—N3—Zn1—N1 −116.85 (12)
C8'—O2'—C7'—C6' −177.5 (18) C3—N3—Zn1—N1i 116.85 (12)

Symmetry code: (i) x, −y+1/2, z.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N4—H4H···O1 0.88 (1) 2.44 (4) 3.069 (8) 129 (4)
N4—H4E···O2 0.87 (1) 2.06 (1) 2.934 (8) 176 (5)
N4—H4G···O4 0.88 (1) 1.97 (2) 2.829 (7) 166 (4)
N4—H4G···O5 0.88 (1) 2.53 (4) 3.010 (8) 115 (3)
N4—H4H···O6 0.88 (1) 2.05 (3) 2.850 (8) 150 (5)
N4—H4F···S1ii 0.87 (1) 2.63 (2) 3.441 (4) 156 (4)

Symmetry code: (ii) x, y, z−1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2617).

References

  1. Akutagawa, T., Hashimoto, A., Nishihara, S., Hasegawa, T. & Nakamura, T. (2002). J. Supramol. Chem. 2, 175–186.
  2. Bruker (2004). APEX2, SAINT and XPREP Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  4. Fender, N. S., Kahwa, I. A. & Fronczek, F. R. (2002). J. Solid State Chem. 163, 286–293.
  5. Kryatova, O. P., Korendovych, I. V. & Rybak-Akimova, E. V. (2004). Tetrahedron, 60, 4579–4588.
  6. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  7. Ramesh, V., Rajarajan, K., Kumar, K. S., Subashini, A. & NizamMohideen, M. (2012). Acta Cryst. E68, m335–m336. [DOI] [PMC free article] [PubMed]
  8. Sheldrick, G. M. (2004). SADABS University of Göttingen, Germany.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536813019739/su2617sup1.cif

e-69-0m469-sup1.cif (43.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813019739/su2617Isup2.hkl

e-69-0m469-Isup2.hkl (222.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES