Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Jul 31;69(Pt 8):m477–m478. doi: 10.1107/S1600536813020631

catena-Poly[ammonium [aqua­bis­(μ-2,3,5,6-tetra­oxo-4-nitro­pyridin-4-ido)argentate(I)]]

Nguyen Dinh Do a,*, Olga Kovalchukova b, Adam Stash c, Svetlana Strashnova b
PMCID: PMC3793704  PMID: 24109291

Abstract

In the title compound, {(NH4)[Ag(C5HN2O6)2(H2O)]}n, the AgI cation is seven-coordinated and is surrounded by four oxo O atoms of the 2,3,5,6-tetra­oxo-4-nitro­pyridin-4-ide species [Ag—O = 2.3848 (19), 2.4931 (18), 2.5361 (18) and 2.573 (2) Å], two nitro O atoms [Ag—O = 2.644 (2) and 2.661 (2) Å], and one water mol­ecule [Ag—O = 2.3133 (19) Å]. The pyridin-4-ide mono-anions act as polydentate bridging ligands and form a three-dimensional network that is stabilized through O—H⋯O and N—H⋯O hydrogen bonds involving the coordinating water mol­ecule and the imide function as donator groups. The ammonium cations are located in the cavities of the framework and are also involved in hydrogen bonding to O atoms of the ligand.

Related literature  

For reviews of 1,2-dicarbonyl compounds, see: Aldoshin (2008); Ohba & Okawa (2000). The synthesis and crystal structures of ammonium and sodium 2,3,5,6-tetra­oxo-4-nitro­pyridinates have been reported previously (Palkina et al., 2000; Kuzmina et al., 2004). The structure of the organic anion in its hexa­aqua metal salts is described by Kovalchukova et al. (2003 and 2013). For references to related structures of metal complexes with cyclic polyoxo compounds, see: Coronado et al. (2007); Kitagawa & Kawata (2002).graphic file with name e-69-0m477-scheme1.jpg

Experimental  

Crystal data  

  • (NH4)[Ag(C5HN2O6)2(H2O)]

  • M r = 514.08

  • Monoclinic, Inline graphic

  • a = 8.784 (2) Å

  • b = 18.551 (4) Å

  • c = 9.195 (2) Å

  • β = 90.70 (3)°

  • V = 1498.2 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.44 mm−1

  • T = 293 K

  • 0.35 × 0.31 × 0.08 mm

Data collection  

  • Enraf Nonius CAD-4 diffractometer

  • Absorption correction: part of the refinement model (ΔF) (Walker & Stuart, 1983) T min = 0.406, T max = 0.798

  • 2952 measured reflections

  • 2768 independent reflections

  • 2094 reflections with I > 2σ(I)

  • R int = 0.014

  • 3 standard reflections every 60 min intensity decay: none

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.021

  • wR(F 2) = 0.066

  • S = 1.09

  • 2768 reflections

  • 283 parameters

  • 11 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.58 e Å−3

Data collection: CAD-4-PC (Enraf–Nonius, 1993); cell refinement: CAD-4-PC; data reduction: CAD-4-PC; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: CIFTAB97 and SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536813020631/pj2004sup1.cif

e-69-0m477-sup1.cif (18.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813020631/pj2004Isup2.hkl

e-69-0m477-Isup2.hkl (135.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4⋯O11i 0.86 2.18 2.979 (3) 155
N10—H10⋯O2 0.86 2.26 2.945 (3) 137
N10—H10⋯O3 0.86 2.29 3.030 (3) 144
O1—H11⋯O131ii 0.80 (3) 2.06 (3) 2.851 (3) 177 (5)
O1—H12⋯O8iii 0.80 (3) 2.02 (3) 2.781 (2) 160 (3)
N2—H21⋯O6iv 0.83 (2) 2.16 (2) 2.962 (3) 163 (3)
N2—H22⋯O72v 0.83 (2) 2.20 (2) 2.998 (3) 160 (3)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic.

Acknowledgments

This research was supported by the Russian Foundation for Basic Research (grant 13–03–00079).

supplementary crystallographic information

Comment

1,2-dicarbonyl compounds attract great interest because of the features of their structure and high reactivity. One of the simplest representatives of them is oxalic acid. As described by S. Aldoshin (Aldoshin, 2008), bimetallic coordination polymers based on oxalate and thiooxalate bridging ligands possess different types of magnetic activity and can intercalate complex organic molecules and ions. These have been extensively used as building units in supramolecular coordination systems (Ohba & Okawa, 2000). The replacement of oxalate anions by other 1,2-dicarbonyl cyclic compounds may be of interest from the synthetic and practical point of view. As an example (Coronado et al. 2007), the paramagnetic and chiral anion [Fe(C5O5)3]3- has been combined with the organic donor BEDT-TTF DET (bis(ethylenedithio)tetrathiafulvalene) to synthesize a novel paramagnetic semiconductor with the first chirality-induced α-phase, α-(BEDT-TTF)5[Fe(C5O5)3].5H2O, and one of the few known paramagnetic molecular metals, β-(BEDT-TTF)5[Fe(C5O5)3].C6H5CN. The variety of coordination modes, some geometric characteristics as well as electrical, magnetic and other properties of coordinate compounds of dibenzoquinone-1,4 derivatives of a general formula H2C6O4X2 are summarised by S. Kitagawa and S. Kawata (Kitagawa & Kawata, 2002). The present paper deals with the crystal structure determination of ammonium-silver 2,3,5,6-tetraoxo-4-nitropyridinate monohydrate (NH4)[Ag(C5HN2O6)2(H2O)]. The molecular structure of the above substance consists of Ag(I) and ammonium cations, two crystallographically unequivalent 2,3,5,6-tetraoxo-4-nitropyridinate mono anions, and one coordinated water molecule. Each of the Ag(I) cation displays sevenfold coordination by O2, O5, O8, and O11 of the keto-groups of the organic species. The Ag—O distances are 2.3848 (19); 2.4931 (18); 2.5361 (18); and 2.573 (2) Å. Two coordinate bonds involve the O atoms of the nitro-group of the organic anion (2.644 (2) and 2.661 (2) Å). The shortest distance in the coordination sphere of Ag(I) involves the coordinated water molecule (2.3133 (19) Å). The 2,3,5,6-tetraoxo-4-nitropyridinate anions act as polydentate bridging ligands. This coordination mode leads to formation of polymer chains. The coordination does not change significantly the C—O distances of the ligand comparing with its ammonium and sodium salts (Palkina et al., 2000; Kuzmina et al., 2004). The corresponding bond lengths are in the range 1.224 (3) to 1.220 (3) Å for the nitro-diketone fragment, and 1.210 (4) to 1.215 (4) Å for the amide fragment. These two fragments of the organic mono anion are connected by an almost single C—C bonds (C2—C3 length is 1.531 (4), and C5—C6 length is 1.544 (4) Å). The ammonium cation has the outer sphere character, and forms bridging H-bonds with the O atoms of the organic anions linking the polymer chains into three-dimensional structure. The H atoms of the coordinated water molecules are also involved into the H-bonding.

Experimental

Single crystals of C10H8AgN5O13 were grown by the slow evaporation of the ethanol solution of the 1-to-1 molar mixture of silver nitrate and ammonium 2,3,5,6-tetraoxo-4-nitropyridinate.

Refinement

The structure of of (NH4)[Ag(C5HN2O6)2(H2O)] was solved by direct method and all non-hydrogen atoms were located and refined in anisotropically. All the hydrogen atoms were located in difference electron density syntheses and their positions refined subject to chemically reasonable restraints.

Figures

Fig. 1.

Fig. 1.

ORTEP view of (NH4)[Ag(C5HN2O6)2(H2O)] with atom labeling scheme (displacement ellipsoids are drawn at the 50% probability level for non-hydrogen atoms).

Fig. 2.

Fig. 2.

Structure of the coordination sphere of Ag(I).

Fig. 3.

Fig. 3.

Molecular packing in the crystal of the complex along the crystallographic axis c.

Crystal data

(NH4)[Ag(C5HN2O6)2(H2O)] F(000) = 1016
Mr = 514.08 Dx = 2.279 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 25 reflections
a = 8.784 (2) Å θ = 9.3–11.8°
b = 18.551 (4) Å µ = 1.44 mm1
c = 9.195 (2) Å T = 293 K
β = 90.70 (3)° Plate, dark yellow
V = 1498.2 (5) Å3 0.35 × 0.31 × 0.08 mm
Z = 4

Data collection

Enraf Nonius CAD-4 diffractometer 2094 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.014
β-filter monochromator θmax = 25.5°, θmin = 2.2°
ω/2θ scans h = 0→10
Absorption correction: part of the refinement model (ΔF) Walker & Stuart (1983) k = 0→22
Tmin = 0.406, Tmax = 0.798 l = −11→11
2952 measured reflections 3 standard reflections every 60 min
2768 independent reflections intensity decay: none

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.021 Hydrogen site location: difference Fourier map
wR(F2) = 0.066 H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.0451P)2 + 0.0506P] where P = (Fo2 + 2Fc2)/3
2768 reflections (Δ/σ)max = 0.001
283 parameters Δρmax = 0.42 e Å3
11 restraints Δρmin = −0.58 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Ag1 0.68914 (2) 0.518350 (10) 0.16959 (2) 0.03092 (9)
O1 0.6981 (2) 0.43383 (10) −0.0151 (2) 0.0367 (4)
O2 0.49428 (18) 0.55092 (10) 0.3355 (2) 0.0337 (4)
O3 0.2721 (2) 0.64390 (10) 0.3252 (3) 0.0437 (5)
O5 −0.0852 (2) 0.46912 (11) 0.3204 (2) 0.0430 (5)
O6 0.1206 (2) 0.36677 (10) 0.3468 (2) 0.0380 (4)
O71 0.4081 (2) 0.33294 (10) 0.3308 (2) 0.0374 (4)
O72 0.5781 (2) 0.41601 (11) 0.3380 (3) 0.0434 (5)
O8 0.59699 (19) 0.87943 (10) 0.5161 (2) 0.0346 (4)
O9 0.40503 (19) 0.77524 (10) 0.4454 (2) 0.0371 (4)
O11 0.7861 (2) 0.62851 (10) 0.3053 (2) 0.0335 (4)
O12 0.99467 (19) 0.72206 (10) 0.3830 (2) 0.0361 (4)
O131 1.0495 (2) 0.83839 (10) 0.5427 (3) 0.0440 (5)
O132 0.8913 (2) 0.92310 (9) 0.4915 (2) 0.0337 (4)
N2 1.1853 (2) 0.79954 (14) 0.1619 (3) 0.0356 (5)
N4 0.0902 (2) 0.55773 (12) 0.3224 (2) 0.0277 (4)
H4 0.0200 0.5900 0.3174 0.033*
N7 0.4426 (2) 0.39746 (11) 0.3354 (2) 0.0255 (4)
N10 0.5921 (2) 0.70207 (10) 0.3659 (2) 0.0234 (4)
H10 0.5263 0.6718 0.3324 0.028*
N13 0.9224 (2) 0.85893 (11) 0.5015 (2) 0.0250 (4)
C1 0.3262 (2) 0.45034 (14) 0.3364 (2) 0.0232 (5)
C2 0.3668 (3) 0.52426 (12) 0.3337 (2) 0.0230 (4)
C3 0.2389 (3) 0.58051 (13) 0.3276 (3) 0.0267 (5)
C5 0.0468 (3) 0.48715 (13) 0.3246 (3) 0.0264 (5)
C6 0.1700 (3) 0.42790 (13) 0.3368 (2) 0.0243 (5)
C7 0.8114 (2) 0.80583 (12) 0.4653 (2) 0.0219 (4)
C8 0.6544 (2) 0.82305 (12) 0.4741 (2) 0.0212 (4)
C9 0.5389 (3) 0.76440 (13) 0.4277 (2) 0.0236 (5)
C11 0.7427 (3) 0.68490 (12) 0.3543 (2) 0.0222 (4)
C12 0.8630 (3) 0.74009 (12) 0.4048 (2) 0.0222 (4)
H11 0.768 (3) 0.4067 (17) −0.019 (5) 0.074 (6)*
H12 0.624 (3) 0.4089 (17) −0.015 (5) 0.074 (6)*
H21 1.109 (3) 0.8260 (14) 0.166 (4) 0.074 (6)*
H22 1.263 (3) 0.8246 (14) 0.176 (4) 0.074 (6)*
H23 1.182 (4) 0.7675 (14) 0.225 (3) 0.074 (6)*
H24 1.190 (4) 0.7813 (16) 0.080 (2) 0.074 (6)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ag1 0.03248 (13) 0.03008 (13) 0.03023 (13) −0.00021 (7) 0.00124 (8) −0.00114 (8)
O1 0.0281 (9) 0.0371 (10) 0.0449 (11) −0.0023 (8) 0.0016 (8) −0.0077 (8)
O2 0.0202 (8) 0.0337 (9) 0.0471 (11) −0.0027 (7) 0.0010 (7) −0.0058 (8)
O3 0.0299 (9) 0.0264 (9) 0.0747 (15) 0.0000 (8) −0.0052 (9) −0.0102 (9)
O5 0.0197 (9) 0.0485 (11) 0.0607 (13) −0.0068 (8) −0.0051 (8) 0.0142 (10)
O6 0.0330 (9) 0.0325 (10) 0.0485 (11) −0.0067 (7) −0.0014 (8) 0.0053 (8)
O71 0.0462 (11) 0.0284 (9) 0.0374 (10) 0.0044 (8) −0.0032 (8) 0.0019 (8)
O72 0.0233 (9) 0.0408 (10) 0.0662 (14) 0.0076 (8) 0.0017 (9) 0.0079 (10)
O8 0.0241 (8) 0.0340 (9) 0.0455 (11) 0.0061 (7) −0.0065 (8) −0.0150 (8)
O9 0.0189 (9) 0.0374 (10) 0.0551 (12) −0.0008 (7) 0.0040 (8) −0.0096 (9)
O11 0.0280 (9) 0.0327 (10) 0.0398 (10) 0.0029 (7) −0.0013 (7) −0.0140 (8)
O12 0.0204 (9) 0.0394 (10) 0.0484 (11) 0.0035 (7) 0.0034 (8) −0.0105 (8)
O131 0.0251 (9) 0.0359 (10) 0.0707 (14) −0.0020 (8) −0.0166 (9) −0.0045 (9)
O132 0.0338 (9) 0.0223 (9) 0.0451 (11) −0.0026 (7) 0.0010 (8) −0.0044 (7)
N2 0.0285 (11) 0.0406 (13) 0.0376 (13) −0.0039 (9) −0.0015 (9) −0.0011 (10)
N4 0.0200 (9) 0.0316 (10) 0.0313 (11) 0.0040 (8) −0.0017 (8) 0.0003 (9)
N7 0.0291 (10) 0.0305 (11) 0.0168 (9) 0.0042 (8) −0.0014 (7) 0.0022 (8)
N10 0.0193 (9) 0.0257 (10) 0.0253 (10) −0.0024 (7) −0.0025 (7) −0.0033 (8)
N13 0.0232 (9) 0.0284 (10) 0.0234 (10) −0.0014 (8) −0.0005 (7) −0.0030 (8)
C1 0.0214 (11) 0.0304 (12) 0.0178 (11) 0.0023 (9) −0.0015 (8) −0.0002 (9)
C2 0.0195 (10) 0.0311 (12) 0.0183 (10) −0.0002 (9) 0.0004 (8) −0.0034 (9)
C3 0.0244 (11) 0.0291 (13) 0.0266 (12) −0.0007 (10) −0.0020 (9) −0.0059 (9)
C5 0.0234 (11) 0.0356 (13) 0.0202 (11) −0.0018 (10) −0.0018 (8) 0.0029 (10)
C6 0.0245 (11) 0.0300 (12) 0.0184 (11) −0.0022 (9) −0.0013 (9) 0.0011 (9)
C7 0.0211 (11) 0.0239 (10) 0.0204 (11) −0.0023 (9) −0.0028 (8) 0.0001 (9)
C8 0.0197 (10) 0.0250 (11) 0.0187 (10) 0.0006 (8) −0.0022 (8) −0.0022 (9)
C9 0.0221 (11) 0.0269 (11) 0.0218 (11) −0.0003 (9) −0.0013 (9) −0.0024 (9)
C11 0.0250 (11) 0.0257 (11) 0.0157 (10) 0.0020 (9) −0.0015 (8) −0.0002 (9)
C12 0.0202 (11) 0.0257 (11) 0.0207 (10) 0.0020 (9) 0.0001 (8) 0.0005 (9)

Geometric parameters (Å, º)

Ag1—O1 2.3133 (19) O132—N13 1.225 (3)
Ag1—O2 2.3848 (19) O132—Ag1iv 2.661 (2)
Ag1—O8i 2.4931 (18) N2—H21 0.832 (19)
Ag1—O11 2.5361 (18) N2—H22 0.83 (2)
Ag1—O5ii 2.573 (2) N2—H23 0.830 (19)
Ag1—O72 2.644 (2) N2—H24 0.827 (19)
Ag1—O132i 2.661 (2) N4—C5 1.364 (3)
O1—H11 0.80 (3) N4—C3 1.373 (3)
O1—H12 0.80 (3) N4—H4 0.8600
O2—C2 1.224 (3) N7—C1 1.417 (3)
O3—C3 1.212 (3) N10—C11 1.366 (3)
O5—C5 1.206 (3) N10—C9 1.373 (3)
O5—Ag1iii 2.573 (2) N10—H10 0.8600
O6—C6 1.218 (3) N13—C7 1.423 (3)
O71—N7 1.235 (3) C1—C2 1.417 (3)
O72—N7 1.239 (3) C1—C6 1.434 (3)
O8—C8 1.225 (3) C2—C3 1.534 (3)
O8—Ag1iv 2.4931 (18) C5—C6 1.546 (3)
O9—C9 1.206 (3) C7—C12 1.417 (3)
O11—C11 1.203 (3) C7—C8 1.419 (3)
O12—C12 1.223 (3) C8—C9 1.544 (3)
O131—N13 1.235 (3) C11—C12 1.539 (3)
O1—Ag1—O2 132.26 (6) C5—N4—H4 117.9
O1—Ag1—O2 132.26 (6) C3—N4—H4 117.9
O2—Ag1—O2 0.00 (5) O71—N7—O72 120.3 (2)
O1—Ag1—O8i 96.52 (7) O71—N7—C1 119.6 (2)
O2—Ag1—O8i 86.50 (7) O72—N7—C1 120.0 (2)
O2—Ag1—O8i 86.50 (7) C11—N10—C9 124.3 (2)
O1—Ag1—O11 153.27 (7) C11—N10—H10 117.8
O2—Ag1—O11 73.76 (6) C9—N10—H10 117.8
O2—Ag1—O11 73.76 (6) O132—N13—O131 121.6 (2)
O8i—Ag1—O11 76.73 (7) O132—N13—C7 120.24 (19)
O1—Ag1—O5ii 97.02 (7) O131—N13—C7 118.21 (19)
O2—Ag1—O5ii 107.42 (7) N7—C1—C2 119.23 (19)
O2—Ag1—O5ii 107.42 (7) N7—C1—C6 119.3 (2)
O8i—Ag1—O5ii 144.87 (6) C2—C1—C6 121.5 (2)
O11—Ag1—O5ii 76.64 (7) O2—C2—O2 0.00 (16)
O1—Ag1—O72 87.67 (7) O2—C2—C1 128.4 (2)
O2—Ag1—O72 62.25 (7) O2—C2—C1 128.4 (2)
O2—Ag1—O72 62.25 (7) O2—C2—C3 113.3 (2)
O8i—Ag1—O72 139.31 (6) O2—C2—C3 113.3 (2)
O11—Ag1—O72 114.48 (7) C1—C2—C3 118.3 (2)
O5ii—Ag1—O72 73.55 (6) O3—C3—O3 0.0 (2)
O1—Ag1—O132i 78.24 (6) O3—C3—N4 121.8 (2)
O2—Ag1—O132i 141.23 (6) O3—C3—N4 121.8 (2)
O2—Ag1—O132i 141.23 (6) O3—C3—C2 119.0 (2)
O8i—Ag1—O132i 63.63 (6) O3—C3—C2 119.0 (2)
O11—Ag1—O132i 75.60 (6) N4—C3—C2 119.2 (2)
O5ii—Ag1—O132i 87.76 (6) O5—C5—N4 122.3 (2)
O72—Ag1—O132i 155.09 (5) O5—C5—C6 118.5 (2)
Ag1—O1—H11 120 (3) N4—C5—C6 119.2 (2)
Ag1—O1—H12 111 (3) O6—C6—C1 127.8 (2)
H11—O1—H12 105.3 (9) O6—C6—C5 114.7 (2)
O2—O2—C2 0 (10) C1—C6—C5 117.6 (2)
O2—O2—Ag1 0 (6) C12—C7—C8 122.1 (2)
C2—O2—Ag1 123.54 (16) C12—C7—N13 117.8 (2)
O3—O3—C3 0 (10) C8—C7—N13 119.65 (19)
C5—O5—Ag1iii 130.73 (17) O8—C8—C7 127.9 (2)
N7—O72—Ag1 123.30 (16) O8—C8—C9 114.66 (19)
C8—O8—Ag1iv 134.07 (15) C7—C8—C9 117.45 (19)
C11—O11—Ag1 141.17 (16) O9—C9—N10 122.3 (2)
N13—O132—Ag1iv 120.06 (15) O9—C9—C8 118.9 (2)
H21—N2—H22 108.8 (9) N10—C9—C8 118.83 (19)
H21—N2—H23 111 (3) O11—C11—N10 122.9 (2)
H22—N2—H23 109.0 (9) O11—C11—C12 118.2 (2)
H21—N2—H24 109.7 (9) N10—C11—C12 118.9 (2)
H22—N2—H24 108 (3) O12—C12—C7 127.4 (2)
H23—N2—H24 110.0 (9) O12—C12—C11 114.6 (2)
C5—N4—C3 124.1 (2) C7—C12—C11 118.00 (19)

Symmetry codes: (i) x, −y+3/2, z−1/2; (ii) x+1, y, z; (iii) x−1, y, z; (iv) x, −y+3/2, z+1/2.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N4—H4···O11iii 0.86 2.18 2.979 (3) 155
N10—H10···O2 0.86 2.26 2.945 (3) 137
N10—H10···O3 0.86 2.29 3.030 (3) 144
O1—H11···O131v 0.80 (3) 2.06 (3) 2.851 (3) 177 (5)
O1—H12···O8vi 0.80 (3) 2.02 (3) 2.781 (2) 160 (3)
N2—H21···O6vii 0.83 (2) 2.16 (2) 2.962 (3) 163 (3)
N2—H22···O72viii 0.83 (2) 2.20 (2) 2.998 (3) 160 (3)

Symmetry codes: (iii) x−1, y, z; (v) −x+2, y−1/2, −z+1/2; (vi) −x+1, y−1/2, −z+1/2; (vii) −x+1, y+1/2, −z+1/2; (viii) −x+2, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PJ2004).

References

  1. Aldoshin, S. M. (2008). Russ. Chem. Bull., 4, 718–735.
  2. Coronado, E., Curreli, S., Giménez-Saiz, C., Gómez-García, C. J., Deplano, P., Mercuri, M. L., Serpe, A., Pilia, L., Faulmann, C. & Canadell, E. (2007). Inorg. Chem. 46, 4446–4457. [DOI] [PubMed]
  3. Enraf–Nonius (1993). CAD-4-PC Software Enraf–Nonius, Delft, The Netherlands.
  4. Kitagawa, S. & Kawata, S. (2002). Coord. Chem. Rev. 224, 11–34.
  5. Kovalchukova, O. V., Kuzmina, N. E., Palkina, K. K., Strashnova, S. B. & Zaitsev, B. E. (2003). Russ. J. Inorg. Chem. 2, 194–198.
  6. Kovalchukova, O. V., Stash, A. I., Dinh Do, N., Strashnova, S. B. & Belskii, V. K. (2013). Russ. J. Coord. Chem. 39, 234–238.
  7. Kuzmina, N. E., Palkina, K. K., Kovalchukova, O. V., Zaitsev, B. E., Strashnova, S. B. & Isaeva, N. Yu. (2004). Crystallogr. Rep. 49, 758–762.
  8. Ohba, M. & Okawa, H. (2000). Coord. Chem. Rev. 198, 313–328.
  9. Palkina, K. K., Kuzmina, N. E., Kovalchukova, O. V., Strashnova, S. B. & Zaitsev, B. E. (2000). Dokl. Russ. Akad. Nauk, 370, 361–365.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Walker, N. & Stuart, D. (1983). Acta Cryst. A39, 158–166.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536813020631/pj2004sup1.cif

e-69-0m477-sup1.cif (18.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813020631/pj2004Isup2.hkl

e-69-0m477-Isup2.hkl (135.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES