Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Jul 3;69(Pt 8):o1192–o1193. doi: 10.1107/S1600536813017674

2-[1′-(Benz­yloxy)spiro­[indane-1,2′-pyrrolidine]-5′-yl]aceto­nitrile

Rodolfo Moreno-Fuquen a,*, Diana M Soto a, Luz M Jaramillo-Gómez a, Javier Ellena b, Juan C Tenorio b
PMCID: PMC3793706  PMID: 24109293

Abstract

In the title compound, C21H22N2O, the planes of the two six-membered rings make a dihedral angle of 89.51 (7)°. The pyrrolidine ring has a puckering amplitude q 2 = 0.418 (3) and a pseudo-rotation phase angle ϕ2 = −166.8 (5), adopting a twist conformation (T). The other five-membered ring has a puckering amplitude q 2 = 0.247 (2) and a pseudo-rotation phase angle ϕ2 = −173.7 (5), adopting an envelope conformation with the CH2 atom adjacent to the C atom common with the pyrrolidine ring as the flap. In the crystal, mol­ecules are linked via C—H⋯N, enclosing R 2 2(20) rings, forming chains propagating along [100]. The aceto­nitrile group is disordered over two positions and was refined with a fixed occupancy ratio of 0.56:0.44.

Related literature  

For radical cyclization of 1-aza­spiro compounds, see: El Bialy et al. (2004); Dake (2006). For cephalotaxine synthesis, see: Paudler et al. (1963); Planas et al. (2004). For esters with anti­leukemic activity, see: Benderra et al. (1998); Kantarjian et al. (2001); Lévy et al. (2006). For pyrrolidine properties, see: Chen et al. (2012); Boyd et al. (1999). For tandem reactions under radical conditions, see: Jaramillo-Gómez et al. (2006). For bond-length data, see: Allen et al. (1987). For hydrogen bonding, see: Nardelli (1995) and for hydrogen-bond motifs, see: Etter (1990). For ring torsion angles, see: Cremer & Pople (1975).graphic file with name e-69-o1192-scheme1.jpg

Experimental  

Crystal data  

  • C21H22N2O

  • M r = 318.41

  • Triclinic, Inline graphic

  • a = 9.1688 (4) Å

  • b = 10.0800 (4) Å

  • c = 11.4141 (6) Å

  • α = 98.826 (2)°

  • β = 108.777 (2)°

  • γ = 110.403 (4)°

  • V = 893.17 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 295 K

  • 0.29 × 0.25 × 0.15 mm

Data collection  

  • Nonius KappaCCD diffractometer

  • 6429 measured reflections

  • 3617 independent reflections

  • 2307 reflections with I > 2σ(I)

  • R int = 0.063

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.059

  • wR(F 2) = 0.191

  • S = 1.05

  • 3617 reflections

  • 249 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.11 e Å−3

  • Δρmin = −0.13 e Å−3

Data collection: COLLECT (Nonius, 2000); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO (Otwinowski & Minor, 1997) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 2012).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536813017674/hg5325sup1.cif

e-69-o1192-sup1.cif (22.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813017674/hg5325Isup2.hkl

e-69-o1192-Isup2.hkl (177.3KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813017674/hg5325Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C21—H21⋯N2B i 0.93 2.61 3.511 (15) 164
C21—H21⋯N2A i 0.93 2.48 3.390 (18) 168

Symmetry codes: (i) Inline graphic.

Acknowledgments

RMF and LMJG are grateful to the Universidad del Valle, Colombia, for partial financial support.

supplementary crystallographic information

Comment

The title compound, 1'-(benzyloxy)-5'-cyanomethyl-2,3-dihydrospiro [inden-1,2'-pyrrolidine], (trans-IIIa), belongs to the family of spirocyclic compounds. It is worthwhile to stand out the natural occurring and synthetic cyclic alkaloids which contain a nitrogen atom adjacent to the spiro carbon. Of special interest are the structures exhibiting the 1-azaspiro[4.4]nonane (I) system (El Bialy et al., 2004) which represents the central core of the cephalotaxine, a natural occurring product isolated from evergreen plum yews of the genus Cephalotaxus (Paudler et al., 1963; Planas et al., 2004), whose ester derivatives as homoharringtonine exhibited a pronounced antileukemic activity (Benderra et al., 1998; Kantarjian et al., 2001; Lévy et al., 2006). Pyrrolidine is a heterocyclic amine used as building block or base in pharmaceutical and fine chemical manufacturing (Boyd et al., 1999; Chen et al., 2012). Therefore, considerable attention has been focused toward the synthesis of molecules with the embedded 1-azaspiro [4.4]nonane (I) system in their structures, using mainly ionic strategy and only scarce examples via radical cyclisation to form out them (El Bialy et al., 2004; Dake, 2006).

Continuing with our current interest in applying tandem reactions under radical conditions, with the participation of aryl and neutral alkyl oxyaminyl radicals (Jaramillo-Gómez et al. 2006), we are reporting here, the synthesis of the azaspirocyclic 1'-(benzyloxy)-5'-cyanomethyl-2,3-dihydrospiro [inden-1,2'-pyrrolidine] (III), as a mixture of the diastereomers cis and trans, being able to crystallize in the pure form, the isomer trans IIIa. The interesting azaspiro [4.4] nonano (I) framework embedded in (III) was obtained in one single synthetic step, from the oxime ether 6-(benzyloxy-imino)-8-(2-iodophenyl)oct-2-enenitrile (II), through a sequential process of two closures 5-exo under standard radical conditions, (scheme 2). The molecular structure of (trans IIIa) is shown in Fig. 1.

The title compound crystallizes in the monoclinic space group P21/c. The two phenyl rings are oriented to each other with a dihedral angle of 89.51 (7)°. Analysis of torsion angles, and least-square plane calculation, indicate that pyrrolidine ring shows a puckering amplitude q2= 0.418 (3) and pseudo-rotation phase angle φ2= -166.8 (5) adopting a twist conformation T with the N atom above the mean plane of the ring. In the same way the other five member ring shows a puckering amplitude q2= 0.247 (2) and pseudo-rotation phase angle φ2= -173.7 (5) adopting an envelope conformation E with the atom C9 below the mean plane of the ring (Cremer & Pople, 1975). The N-O bond length is close to the mean value [1.463 (12) Å] reported in the literature (Allen et al., 1987) and the torsion angle formed by the atoms [N1-O1-C15-C16] which links the pyrrolidine and phenyl rings is 179.41 (13)°. The crystal packing reveals that the molecules are linked through a network of weak C—H···N and C—H···O intermolecular interactions (see Table 1, Nardelli, 1995). The C21 atom in the molecule at (x,y,z) donates a proton to N2a y N2b atoms in the molecule at (-x+2,-y+2,-z+1), forming as a result of these interactions R22(20) rings (Etter, 1990). These rings are in turn linked by a weak C-H···O interaction. Indeed, the C23 atom in the molecule at (x,y,z) donates a proton to O1 atom of the molecule at (-x+1,-y+2,-z+1) forming layers parallel to (001) as shown in Fig. 2.

Experimental

The reagents and solvents for the synthesis were obtained from the Aldrich Chemical Co., and were used without additional purification. A solution of 6-(benzyloxyimino)-8-(2-iodophenyl)oct-2-enenitrile (II) (129 mg, 0.29 mmol), 2,2'-azobisisobutyronitrile (AIBN, 14 mg, 0.09 mmol) and tributyltin hydride (n-Bu3SnH, 0.09 ml, 0.35 mmol) in cyclohexane (Cy, 13 mL) was degassed for 1 h by bubbling dry argon, and subsequently stirred at 353 K for 7 h. After cooling to room temperature the solvent was removed under reduced pressure and the crude product treated with a mixture of 20% KF aqueous solution (2 mL) and ethyl acetate (2 mL), stirring overnight. The organic layer was separated, dried with anhydrous Na2SO4 and filtered over silica gel. The purification was carried out by flash column chromatography with 60-95% benzene/hexane (gradient 5%) to afford a mixture of two diastereomers IIIa and IIIb (59 mg, 65%) as yellow oil. By addition of hexane to this oil, white crystals suitable for X-ray diffraction, fell down [20 mg, 21%, m.p. 372 (1) K] of the diastereomeric spirocycle trans-IIIa suitable for X-ray analysis. Elemental Analysis: Calculated: C 79.20, H 6.98, N 8.80; Found: C 79.25, H 6.73, N 8.85.

Refinement

The H-atoms were positioned geometrically [C—H= 0.93 Å for aromatic and C—H= 0.97 Å for methylene, and with Uiso(H) (1.2 and 1.5 times Ueq of the parent atom respectively]. The H12 atom was found in difference Fourier maps an its coordinates were refined freely.

Figures

Fig. 1.

Fig. 1.

Molecular conformation and atom numbering scheme for the title compound with displacement ellipsoids drawn at the 50% probability level. H atoms were omitted for more clarity.

Fig. 2.

Fig. 2.

Part of the crystal structure of (IIIa), forming layers in the ab plane. Symmetry code: (i) -x+2,-y+2,-z+1; (ii) -x+1,-y+2,-z+1.

Fig. 3.

Fig. 3.

Reaction scheme.

Crystal data

C21H22N2O Z = 2
Mr = 318.41 F(000) = 340
Triclinic, P1 Dx = 1.184 Mg m3
Hall symbol: -P 1 Melting point: 372(1) K
a = 9.1688 (4) Å Mo Kα radiation, λ = 0.71073 Å
b = 10.0800 (4) Å Cell parameters from 5157 reflections
c = 11.4141 (6) Å θ = 2.9–25.7°
α = 98.826 (2)° µ = 0.07 mm1
β = 108.777 (2)° T = 295 K
γ = 110.403 (4)° Block, white
V = 893.17 (7) Å3 0.29 × 0.25 × 0.15 mm

Data collection

Nonius KappaCCD diffractometer 2307 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.063
Graphite monochromator θmax = 26.4°, θmin = 3.0°
CCD rotation images, thick slices scans h = −11→10
6429 measured reflections k = −12→12
3617 independent reflections l = −14→14

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.191 H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0894P)2 + 0.0489P] where P = (Fo2 + 2Fc2)/3
3617 reflections (Δ/σ)max < 0.001
249 parameters Δρmax = 0.11 e Å3
3 restraints Δρmin = −0.13 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
O1 0.48268 (14) 0.93003 (12) 0.30050 (11) 0.0770 (4)
N1 0.46487 (19) 0.78319 (16) 0.30577 (14) 0.0779 (4)
C1 0.2926 (2) 0.66924 (19) 0.20916 (18) 0.0789 (5)
C2 0.1560 (2) 0.72661 (18) 0.18692 (19) 0.0784 (5)
C3 0.0707 (3) 0.7469 (2) 0.2642 (2) 0.1021 (7)
H3 0.0910 0.7198 0.3401 0.123*
C4 −0.0441 (3) 0.8075 (3) 0.2276 (3) 0.1190 (8)
H4 −0.1011 0.8212 0.2794 0.143*
C5 −0.0749 (3) 0.8472 (3) 0.1174 (3) 0.1224 (9)
H5 −0.1503 0.8905 0.0955 0.147*
C6 0.0039 (3) 0.8241 (3) 0.0373 (2) 0.1114 (8)
H6 −0.0198 0.8491 −0.0396 0.134*
C7 0.1202 (2) 0.7625 (2) 0.07324 (19) 0.0878 (5)
C8 0.2196 (3) 0.7262 (3) 0.0030 (2) 0.1071 (7)
H8A 0.3110 0.8155 0.0083 0.128*
H8B 0.1470 0.6717 −0.0876 0.128*
C9 0.2901 (3) 0.6305 (2) 0.07358 (19) 0.0958 (6)
H9A 0.2181 0.5260 0.0281 0.115*
H9B 0.4041 0.6519 0.0789 0.115*
C10 0.2684 (4) 0.5431 (3) 0.2722 (3) 0.1171 (8)
H10A 0.1538 0.5014 0.2686 0.141*
H10B 0.2867 0.4648 0.2269 0.141*
C11 0.3975 (4) 0.6097 (3) 0.4117 (3) 0.1284 (10)
H11A 0.3433 0.5835 0.4703 0.154*
H11B 0.4862 0.5751 0.4251 0.154*
C12 0.4700 (4) 0.7747 (3) 0.4335 (2) 0.1040 (7)
C15 0.6189 (2) 0.9965 (2) 0.2623 (2) 0.0990 (7)
H15A 0.5962 0.9367 0.1778 0.119*
H15B 0.7253 1.0050 0.3246 0.119*
C16 0.6290 (2) 1.1473 (2) 0.2575 (2) 0.0853 (5)
C17 0.4913 (2) 1.1636 (2) 0.1765 (2) 0.1015 (7)
H17 0.3909 1.0799 0.1244 0.122*
C18 0.5008 (3) 1.3020 (2) 0.1720 (2) 0.1035 (7)
H18 0.4072 1.3108 0.1167 0.124*
C19 0.6473 (3) 1.4269 (2) 0.2482 (2) 0.0987 (6)
H19 0.6535 1.5203 0.2450 0.118*
C20 0.7837 (3) 1.4125 (2) 0.3289 (2) 0.0985 (7)
H20 0.8833 1.4968 0.3811 0.118*
C21 0.7759 (2) 1.2749 (2) 0.3340 (2) 0.0913 (6)
H21 0.8704 1.2674 0.3896 0.110*
N2A 0.8984 (16) 0.801 (2) 0.4992 (18) 0.115 (3) 0.44
C13A 0.6184 (11) 0.8347 (10) 0.5469 (9) 0.097 (2) 0.44
H131 0.5934 0.8012 0.6163 0.116* 0.44
H132 0.6644 0.9421 0.5727 0.116* 0.44
C14A 0.7383 (11) 0.7889 (10) 0.5243 (10) 0.088 (2) 0.44
N2B 0.8463 (15) 0.7591 (16) 0.5103 (16) 0.131 (3) 0.56
C13B 0.6718 (10) 0.8878 (9) 0.5325 (7) 0.1077 (18) 0.56
H133 0.6979 0.9843 0.5184 0.129* 0.56
H134 0.6827 0.9002 0.6214 0.129* 0.56
C14B 0.7995 (10) 0.8369 (8) 0.5167 (8) 0.0904 (18) 0.56
H12 0.400 (3) 0.821 (2) 0.454 (2) 0.109 (6)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0734 (7) 0.0694 (7) 0.0904 (8) 0.0416 (6) 0.0252 (6) 0.0203 (6)
N1 0.0945 (10) 0.0754 (9) 0.0749 (9) 0.0552 (8) 0.0267 (8) 0.0232 (7)
C1 0.0921 (12) 0.0670 (10) 0.0862 (12) 0.0423 (9) 0.0369 (10) 0.0232 (8)
C2 0.0791 (10) 0.0624 (9) 0.0939 (13) 0.0315 (8) 0.0337 (9) 0.0232 (8)
C3 0.1121 (15) 0.0891 (13) 0.1370 (18) 0.0530 (12) 0.0723 (14) 0.0453 (13)
C4 0.1025 (16) 0.1018 (17) 0.175 (3) 0.0558 (14) 0.0705 (17) 0.0389 (17)
C5 0.0930 (15) 0.1002 (16) 0.161 (3) 0.0525 (13) 0.0300 (16) 0.0244 (17)
C6 0.1009 (15) 0.0993 (16) 0.1069 (16) 0.0462 (13) 0.0078 (13) 0.0261 (13)
C7 0.0812 (11) 0.0782 (11) 0.0837 (12) 0.0311 (9) 0.0157 (9) 0.0162 (9)
C8 0.1162 (15) 0.1236 (18) 0.0698 (12) 0.0529 (13) 0.0265 (10) 0.0182 (11)
C9 0.1021 (13) 0.0907 (13) 0.0840 (13) 0.0428 (11) 0.0335 (11) 0.0031 (10)
C10 0.157 (2) 0.0902 (15) 0.156 (2) 0.0813 (15) 0.084 (2) 0.0627 (15)
C11 0.203 (3) 0.153 (2) 0.135 (2) 0.135 (2) 0.107 (2) 0.0954 (19)
C12 0.1553 (19) 0.1313 (18) 0.0756 (12) 0.1116 (16) 0.0472 (12) 0.0407 (11)
C15 0.0703 (11) 0.0884 (14) 0.1379 (18) 0.0410 (10) 0.0376 (11) 0.0254 (12)
C16 0.0615 (9) 0.0775 (11) 0.1134 (15) 0.0298 (8) 0.0346 (9) 0.0204 (10)
C17 0.0653 (10) 0.0742 (12) 0.1411 (18) 0.0269 (9) 0.0232 (11) 0.0170 (11)
C18 0.0837 (12) 0.0872 (14) 0.1346 (18) 0.0407 (11) 0.0354 (12) 0.0290 (12)
C19 0.1060 (15) 0.0746 (12) 0.1174 (16) 0.0322 (11) 0.0545 (14) 0.0286 (11)
C20 0.0870 (13) 0.0801 (13) 0.1029 (15) 0.0109 (10) 0.0380 (12) 0.0208 (11)
C21 0.0659 (10) 0.0980 (14) 0.0982 (14) 0.0245 (10) 0.0316 (10) 0.0269 (11)
N2A 0.096 (7) 0.119 (8) 0.122 (5) 0.060 (6) 0.022 (5) 0.029 (5)
C13A 0.146 (5) 0.111 (6) 0.080 (3) 0.097 (4) 0.048 (2) 0.041 (3)
C14A 0.086 (5) 0.081 (5) 0.090 (4) 0.042 (4) 0.020 (4) 0.024 (4)
N2B 0.109 (7) 0.124 (8) 0.146 (6) 0.070 (6) 0.026 (5) 0.011 (5)
C13B 0.171 (3) 0.120 (5) 0.060 (2) 0.103 (3) 0.032 (3) 0.031 (3)
C14B 0.090 (5) 0.080 (4) 0.089 (3) 0.046 (3) 0.013 (3) 0.017 (3)

Geometric parameters (Å, º)

O1—C15 1.434 (2) C11—H11A 0.9700
O1—N1 1.4444 (17) C11—H11B 0.9700
N1—C12 1.460 (3) C12—C13A 1.395 (9)
N1—C1 1.502 (2) C12—C13B 1.670 (8)
C1—C2 1.520 (2) C12—H12 0.97 (2)
C1—C9 1.528 (3) C15—C16 1.501 (3)
C1—C10 1.540 (3) C15—H15A 0.9700
C2—C7 1.369 (3) C15—H15B 0.9700
C2—C3 1.390 (3) C16—C17 1.384 (3)
C3—C4 1.378 (3) C16—C21 1.387 (3)
C3—H3 0.9300 C17—C18 1.377 (3)
C4—C5 1.351 (4) C17—H17 0.9300
C4—H4 0.9300 C18—C19 1.371 (3)
C5—C6 1.375 (4) C18—H18 0.9300
C5—H5 0.9300 C19—C20 1.364 (3)
C6—C7 1.396 (3) C19—H19 0.9300
C6—H6 0.9300 C20—C21 1.374 (3)
C7—C8 1.491 (3) C20—H20 0.9300
C8—C9 1.529 (3) C21—H21 0.9300
C8—H8A 0.9700 N2A—C14A 1.553 (17)
C8—H8B 0.9700 C13A—C14A 1.410 (16)
C9—H9A 0.9700 C13A—H131 0.9700
C9—H9B 0.9700 C13A—H132 0.9700
C10—C11 1.514 (4) N2B—C14B 1.021 (17)
C10—H10A 0.9700 C13B—C14B 1.481 (13)
C10—H10B 0.9700 C13B—H133 0.9700
C11—C12 1.505 (4) C13B—H134 0.9700
C15—O1—N1 109.50 (12) C10—C11—H11B 110.7
O1—N1—C12 107.46 (13) H11A—C11—H11B 108.8
O1—N1—C1 110.06 (12) C13A—C12—N1 124.5 (4)
C12—N1—C1 106.19 (16) C13A—C12—C11 105.6 (4)
N1—C1—C2 112.94 (14) N1—C12—C11 101.52 (17)
N1—C1—C9 111.30 (15) N1—C12—C13B 103.0 (3)
C2—C1—C9 101.77 (16) C11—C12—C13B 122.4 (3)
N1—C1—C10 100.66 (17) C13A—C12—H12 103.9 (13)
C2—C1—C10 115.07 (17) N1—C12—H12 107.9 (12)
C9—C1—C10 115.58 (17) C11—C12—H12 113.9 (13)
C7—C2—C3 119.32 (19) C13B—C12—H12 106.6 (13)
C7—C2—C1 111.24 (17) O1—C15—C16 106.64 (14)
C3—C2—C1 129.44 (18) O1—C15—H15A 110.4
C4—C3—C2 119.6 (2) C16—C15—H15A 110.4
C4—C3—H3 120.2 O1—C15—H15B 110.4
C2—C3—H3 120.2 C16—C15—H15B 110.4
C5—C4—C3 120.8 (3) H15A—C15—H15B 108.6
C5—C4—H4 119.6 C17—C16—C21 117.70 (19)
C3—C4—H4 119.6 C17—C16—C15 121.00 (17)
C4—C5—C6 120.7 (2) C21—C16—C15 121.30 (18)
C4—C5—H5 119.6 C18—C17—C16 120.93 (19)
C6—C5—H5 119.6 C18—C17—H17 119.5
C5—C6—C7 118.9 (2) C16—C17—H17 119.5
C5—C6—H6 120.5 C19—C18—C17 120.5 (2)
C7—C6—H6 120.5 C19—C18—H18 119.7
C2—C7—C6 120.5 (2) C17—C18—H18 119.7
C2—C7—C8 110.62 (18) C20—C19—C18 119.1 (2)
C6—C7—C8 128.8 (2) C20—C19—H19 120.4
C7—C8—C9 103.76 (17) C18—C19—H19 120.4
C7—C8—H8A 111.0 C19—C20—C21 120.88 (19)
C9—C8—H8A 111.0 C19—C20—H20 119.6
C7—C8—H8B 111.0 C21—C20—H20 119.6
C9—C8—H8B 111.0 C20—C21—C16 120.8 (2)
H8A—C8—H8B 109.0 C20—C21—H21 119.6
C1—C9—C8 106.36 (16) C16—C21—H21 119.6
C1—C9—H9A 110.5 C12—C13A—C14A 109.0 (8)
C8—C9—H9A 110.5 C12—C13A—H131 109.9
C1—C9—H9B 110.5 C14A—C13A—H131 109.9
C8—C9—H9B 110.5 C12—C13A—H132 109.9
H9A—C9—H9B 108.6 C14A—C13A—H132 109.9
C11—C10—C1 106.99 (19) H131—C13A—H132 108.3
C11—C10—H10A 110.3 C13A—C14A—N2A 158.1 (9)
C1—C10—H10A 110.3 C14B—C13B—C12 115.0 (6)
C11—C10—H10B 110.3 C14B—C13B—H133 108.5
C1—C10—H10B 110.3 C12—C13B—H133 108.5
H10A—C10—H10B 108.6 C14B—C13B—H134 108.5
C12—C11—C10 105.04 (17) C12—C13B—H134 108.5
C12—C11—H11A 110.7 H133—C13B—H134 107.5
C10—C11—H11A 110.7 N2B—C14B—C13B 152.4 (10)
C12—C11—H11B 110.7
C15—O1—N1—C12 127.02 (18) C2—C1—C10—C11 −105.6 (2)
C15—O1—N1—C1 −117.76 (16) C9—C1—C10—C11 136.2 (2)
O1—N1—C1—C2 −31.15 (19) C1—C10—C11—C12 10.2 (3)
C12—N1—C1—C2 84.87 (17) O1—N1—C12—C13A −78.5 (5)
O1—N1—C1—C9 82.60 (17) C1—N1—C12—C13A 163.7 (5)
C12—N1—C1—C9 −161.38 (16) O1—N1—C12—C11 163.27 (17)
O1—N1—C1—C10 −154.38 (14) C1—N1—C12—C11 45.5 (2)
C12—N1—C1—C10 −38.36 (19) O1—N1—C12—C13B −69.3 (3)
N1—C1—C2—C7 102.02 (18) C1—N1—C12—C13B 173.0 (3)
C9—C1—C2—C7 −17.40 (19) C10—C11—C12—C13A −164.3 (5)
C10—C1—C2—C7 −143.16 (19) C10—C11—C12—N1 −33.3 (2)
N1—C1—C2—C3 −77.2 (2) C10—C11—C12—C13B −146.9 (4)
C9—C1—C2—C3 163.37 (19) N1—O1—C15—C16 179.41 (14)
C10—C1—C2—C3 37.6 (3) O1—C15—C16—C17 −59.3 (3)
C7—C2—C3—C4 −2.2 (3) O1—C15—C16—C21 120.56 (19)
C1—C2—C3—C4 176.98 (19) C21—C16—C17—C18 0.3 (3)
C2—C3—C4—C5 0.1 (4) C15—C16—C17—C18 −179.8 (2)
C3—C4—C5—C6 1.9 (4) C16—C17—C18—C19 −0.3 (4)
C4—C5—C6—C7 −1.7 (4) C17—C18—C19—C20 0.0 (4)
C3—C2—C7—C6 2.4 (3) C18—C19—C20—C21 0.2 (3)
C1—C2—C7—C6 −176.96 (17) C19—C20—C21—C16 −0.1 (3)
C3—C2—C7—C8 −177.52 (18) C17—C16—C21—C20 −0.2 (3)
C1—C2—C7—C8 3.2 (2) C15—C16—C21—C20 −179.98 (18)
C5—C6—C7—C2 −0.4 (3) N1—C12—C13A—C14A −49.7 (7)
C5—C6—C7—C8 179.4 (2) C11—C12—C13A—C14A 66.6 (6)
C2—C7—C8—C9 12.6 (2) C13B—C12—C13A—C14A −73.4 (17)
C6—C7—C8—C9 −167.3 (2) C12—C13A—C14A—N2A 105 (3)
N1—C1—C9—C8 −96.19 (19) C13A—C12—C13B—C14B 93.7 (19)
C2—C1—C9—C8 24.4 (2) N1—C12—C13B—C14B −66.5 (5)
C10—C1—C9—C8 149.8 (2) C11—C12—C13B—C14B 46.4 (6)
C7—C8—C9—C1 −23.2 (2) C12—C13B—C14B—N2B −51 (3)
N1—C1—C10—C11 16.2 (2)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C21—H21···N2Bi 0.93 2.61 3.511 (15) 164
C21—H21···N2Ai 0.93 2.48 3.390 (18) 168
C13B—H134···O1ii 0.97 2.87 3.389 (9) 115

Symmetry codes: (i) −x+2, −y+2, −z+1; (ii) −x+1, −y+2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG5325).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Benderra, Z., Morjani, H., Trussardi, A. & Manfait, M. (1998). Leukemia, 12, 1539–1544. [DOI] [PubMed]
  3. Boyd, S. A., Mantei, R. A., Tasker, A. S., Liu, G., Sorensen, B. K., Henry, K. J. Jr, von Geldern, T. W., Winn, M., Wu-Wong, J. R., Chiou, W. J., Dixon, D. B., Hutchins, C. W., Marsh, K. C., Nguyen, B. & Opgenorth, T. J. (1999). Bioorg. Med. Chem. 7, 991–1002. [DOI] [PubMed]
  4. Chen, J., Zhou, L. & Yeung, Y.-Y. (2012). Org. Biomol. Chem. 10, 3808–3811. [DOI] [PubMed]
  5. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  6. Dake, G. (2006). Tetrahedron, 62, 3467–3492.
  7. El Bialy, S. A. A., Braun, H. & Tietze, L. F. (2004). Synthesis, pp. 2249–2262.
  8. Etter, M. (1990). Acc. Chem. Res. 23, 120–126.
  9. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  10. Jaramillo-Gómez, L. M., Loaiza, A. E., Martin, J., Ríos, L. A. & Wang, P. G. (2006). Tetrahedron Lett. 47, 3909–3912.
  11. Kantarjian, H. M., Talpaz, M., Santini, V., Murgo, A., Cheson, B. & O’Brien, S. M. (2001). Cancer, 92, 1591–1605. [DOI] [PubMed]
  12. Lévy, V., Zohar, S., Bardin, C., Vekhoff, A., Chaoui, D., Rio, B., Legrand, O., Sentenac, S., Rousselot, P., Raffoux, E., Chast, F., Chevret, S. & Marie, J. P. (2006). Br. J. Cancer, 95, 253–259. [DOI] [PMC free article] [PubMed]
  13. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
  14. Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
  15. Nonius (2000). COLLECT Nonius BV, Delft, The Netherlands.
  16. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.
  17. Paudler, W. W., Kerley, G. I. & McKay, J. (1963). J. Org. Chem. 28, 2194–2197.
  18. Planas, L., Pérard-Viret, J. & Royer, J. (2004). J. Org. Chem. 69, 3087–3092. [DOI] [PubMed]
  19. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536813017674/hg5325sup1.cif

e-69-o1192-sup1.cif (22.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813017674/hg5325Isup2.hkl

e-69-o1192-Isup2.hkl (177.3KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813017674/hg5325Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES