Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Jul 3;69(Pt 8):o1197. doi: 10.1107/S1600536813017698

(2S,3R)-3-(2-Bromo­phen­yl)-2-nitro-2,3,6,7-tetra­hydro-1-benzo­furan-4(5H)-one

Yifeng Wang a, Liuliu Lou a, Kun Dong a, Danqian Xu a,*
PMCID: PMC3793709  PMID: 24109296

Abstract

The title compound, C14H12BrNO4, has two chiral C atoms. The C atom next to the O atom in the di­hydro­furan ring has an S configuration, while the adjacent chiral C atom has an R configuration. The cyclo­hex-2-enone and di­hydro­furan rings both adopt envelope conformations, with the flap atoms (middle CH2 in cyclo­hex-2-enone and NO2-substituted C in di­hydro­furan) lying 0.612 (3) and 0.295 (2) Å, respectively, from the mean plane of the remaining atoms. The dihedral angle between the mean planes of the furan and benzene rings is 80.0 (3)°. In the crystal, the mol­ecules are linked by C—H⋯O inter­actions, generating a three-dimensional network.

Related literature  

For global background on functionalized 2,3-di­hydro­furans, see: Fan et al. (2010); Rueping et al. (2010). The absolute configuration was assigned by the method of Flack (1983).graphic file with name e-69-o1197-scheme1.jpg

Experimental  

Crystal data  

  • C14H12BrNO4

  • M r = 338.16

  • Orthorhombic, Inline graphic

  • a = 7.2162 (8) Å

  • b = 7.3372 (8) Å

  • c = 25.9727 (13) Å

  • V = 1375.2 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.00 mm−1

  • T = 296 K

  • 0.54 × 0.31 × 0.23 mm

Data collection  

  • Rigaku R-AXIS RAPID/ZJUG diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995) T min = 0.334, T max = 0.505

  • 10897 measured reflections

  • 2548 independent reflections

  • 1456 reflections with I > 2σ(I)

  • R int = 0.068

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.059

  • wR(F 2) = 0.125

  • S = 1.00

  • 2548 reflections

  • 182 parameters

  • H-atom parameters constrained

  • Δρmax = 0.51 e Å−3

  • Δρmin = −0.57 e Å−3

  • Absolute structure: Flack (1983), 1041 Friedel pairs

  • Flack parameter: 0.03 (2)

Data collection: PROCESS-AUTO (Rigaku, 2006); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku,2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536813017698/pk2489sup1.cif

e-69-o1197-sup1.cif (23KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813017698/pk2489Isup2.hkl

e-69-o1197-Isup2.hkl (122.6KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813017698/pk2489Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯O1i 0.98 2.51 3.486 (12) 171
C7—H7A⋯O3ii 0.97 2.66 3.403 (12) 134
C7—H7B⋯O3iii 0.97 2.52 3.480 (13) 172

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

This work was supported by the Zhejiang Provincial Natural Science Foundation of China (No. Y4110373). We are also grateful for the help of Professor Jian-Ming Gu of Zhejiang University.

supplementary crystallographic information

Comment

The highly functionalized 2,3-dihydrofurans are very important compounds that may serve as precursors for the construction of pharmacologically important chemicals. Organocatalytic asymmetric reactions have been used as efficient tools for the synthesis of chiral compounds under mild conditions. The title compound, which was readily synthesized by the organocatalytic Michael-SN2 reaction of cyclohexane-1,3-dione to (E)-1-bromo-2-(2-bromo-2-nitrovinyl)benzene, could act as an intermediate in organic and natural product synthesis. In this article, the crystal structure of the title compound (2S,3R)-3-(2-bromophenyl)-2-nitro-2,3,6,7- tetrahydrobenzofuran-4(5H)-one is described (Fig. 1). The structure has two chiral centers. The carbon next to the oxygen atom in the dihydrofuran ring has S configuration, while the adjacent chiral carbon atom has R configuration. Both the cyclohex-2-enone ring and dihydrofurane ring adopt envelope conformations, with the flap carbon atom lying 0.612 (3) Å and 0.295 (2) Å respectively on either side of the mean plane of the remaining fused-ring atoms. The dihedral angle between the mean plane of the furan ring and the benzene ring is 80.0 (3)°.

Experimental

To a solution of cyclohexane-1,3-dione (1.2 mmol) and (E)-1-bromo-2-(2-bromo-2-nitrovinyl)benzene (1 mmol) in CHCl3 (3 ml) was added (0.025 mmol) 1-(3,5-bis(trifluoromethyl)phenyl)-3-((S) -(6-methoxyquinolin-4-yl)((2S,4S,8R)-8-vinylquinuclidin-2 -yl)methyl)thiourea as catalyst and DIPEA (0.3 mmol) as the base. The mixture was stirred at room temperature for 12 h (monitored by TLC). Then the solvent was evaporated under vacuum, and the residue was purified by flash column chromatography (silica gel, Hex/AcOEt, v/v, 3:1) giving the title compound. Single crystals were obtained by slow evaporation of a CH2Cl2 and iPrOH solution (v/v, 1:1).

Refinement

H atoms were placed in calculated positions with C—H = 0.98 Å (R3CH), C—H = 0.97 Å (R2CH2), C—H = 0.93 Å (aromatic). All H atoms included in the final cycles of refinement using a riding model, with Uiso(H) = 1.2Ueq of the carrier atoms.

Figures

Fig. 1.

Fig. 1.

The asymmetric unit of the structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

The molecular packing of the title compounds.

Crystal data

C14H12BrNO4 F(000) = 680
Mr = 338.16 Dx = 1.633 Mg m3
Orthorhombic, P212121 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2ab Cell parameters from 6447 reflections
a = 7.2162 (8) Å θ = 3.1–27.4°
b = 7.3372 (8) Å µ = 3.00 mm1
c = 25.9727 (13) Å T = 296 K
V = 1375.2 (2) Å3 Needle, colorless
Z = 4 0.54 × 0.31 × 0.23 mm

Data collection

Rigaku R-AXIS RAPID/ZJUG diffractometer 2548 independent reflections
Radiation source: rotating anode 1456 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.068
Detector resolution: 10.00 pixels mm-1 θmax = 25.5°, θmin = 3.1°
ω scans h = −8→8
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) k = −8→7
Tmin = 0.334, Tmax = 0.505 l = −31→31
10897 measured reflections

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.059 w = 1/[σ2(Fo2) + (0.0081P)2 + 2.5658P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.125 (Δ/σ)max < 0.001
S = 1.00 Δρmax = 0.51 e Å3
2548 reflections Δρmin = −0.57 e Å3
182 parameters Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraints Extinction coefficient: 0.0117 (17)
Primary atom site location: structure-invariant direct methods Absolute structure: Flack (1983), 1041 Friedel pairs
Secondary atom site location: difference Fourier map Flack parameter: 0.03 (2)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.7398 (10) 0.3494 (8) 0.5784 (2) 0.0619 (16)
H1 0.8610 0.3377 0.5952 0.074*
C2 0.5793 (7) 0.3053 (8) 0.6169 (2) 0.0516 (15)
H2 0.5270 0.1847 0.6098 0.062*
C3 0.4449 (7) 0.4531 (9) 0.6016 (2) 0.0492 (14)
C4 0.2478 (9) 0.4690 (8) 0.6141 (2) 0.0569 (14)
C5 0.1536 (9) 0.6322 (9) 0.5902 (2) 0.0660 (19)
H5A 0.0550 0.6715 0.6131 0.079*
H5B 0.0968 0.5944 0.5581 0.079*
C6 0.2792 (9) 0.7952 (8) 0.5794 (2) 0.0677 (18)
H6A 0.3187 0.8488 0.6117 0.081*
H6B 0.2102 0.8867 0.5604 0.081*
C7 0.4499 (9) 0.7389 (9) 0.5482 (2) 0.0660 (18)
H7A 0.4154 0.7167 0.5126 0.079*
H7B 0.5416 0.8355 0.5489 0.079*
C8 0.5265 (8) 0.5737 (9) 0.5708 (2) 0.0506 (15)
C9 0.6438 (8) 0.3183 (8) 0.6723 (2) 0.0532 (15)
C10 0.6320 (9) 0.4785 (10) 0.7000 (3) 0.0721 (19)
H10 0.5734 0.5781 0.6850 0.087*
C11 0.7034 (10) 0.4972 (12) 0.7491 (3) 0.085 (2)
H11 0.6976 0.6076 0.7666 0.102*
C12 0.7845 (11) 0.3438 (16) 0.7712 (3) 0.098 (3)
H12 0.8302 0.3514 0.8046 0.118*
C13 0.7987 (11) 0.1840 (14) 0.7455 (4) 0.096 (3)
H13 0.8524 0.0836 0.7615 0.116*
C14 0.7336 (10) 0.1696 (8) 0.6957 (3) 0.0698 (18)
N1 0.7257 (12) 0.2243 (10) 0.5319 (3) 0.091 (2)
O1 0.1679 (6) 0.3594 (7) 0.64055 (19) 0.0816 (14)
O2 0.7098 (5) 0.5307 (6) 0.56089 (15) 0.0623 (12)
O3 0.7909 (12) 0.0725 (9) 0.5383 (3) 0.147 (3)
O4 0.6648 (14) 0.2703 (15) 0.4940 (3) 0.211 (5)
Br1 0.75326 (16) −0.05596 (11) 0.66299 (5) 0.1322 (6)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.042 (3) 0.072 (4) 0.073 (4) −0.007 (4) 0.004 (4) −0.006 (3)
C2 0.046 (3) 0.053 (3) 0.057 (4) −0.010 (3) 0.002 (3) −0.004 (3)
C3 0.046 (3) 0.064 (4) 0.037 (3) −0.008 (3) −0.001 (3) −0.002 (3)
C4 0.051 (3) 0.069 (4) 0.051 (3) −0.004 (4) −0.005 (3) −0.003 (3)
C5 0.057 (4) 0.090 (5) 0.051 (4) 0.003 (4) −0.007 (3) 0.000 (4)
C6 0.067 (5) 0.062 (4) 0.074 (4) 0.004 (4) −0.013 (4) 0.005 (3)
C7 0.072 (5) 0.068 (4) 0.058 (4) −0.008 (4) −0.014 (4) 0.012 (3)
C8 0.050 (3) 0.061 (4) 0.040 (3) −0.010 (3) −0.005 (3) −0.003 (3)
C9 0.045 (3) 0.059 (4) 0.056 (4) −0.006 (3) 0.001 (3) 0.006 (3)
C10 0.070 (4) 0.087 (5) 0.059 (4) 0.006 (4) −0.003 (4) −0.006 (4)
C11 0.082 (5) 0.112 (7) 0.061 (5) 0.004 (5) −0.009 (4) −0.012 (4)
C12 0.070 (6) 0.180 (9) 0.044 (4) −0.010 (6) −0.014 (4) 0.026 (6)
C13 0.071 (6) 0.123 (7) 0.095 (7) 0.000 (6) −0.016 (5) 0.036 (6)
C14 0.050 (4) 0.074 (4) 0.085 (5) 0.009 (4) −0.005 (4) 0.014 (4)
N1 0.098 (5) 0.091 (5) 0.082 (5) 0.002 (5) 0.033 (4) −0.027 (4)
O1 0.056 (3) 0.104 (4) 0.085 (3) −0.014 (3) 0.010 (2) 0.022 (3)
O2 0.047 (3) 0.071 (3) 0.068 (3) −0.009 (2) 0.012 (2) 0.001 (2)
O3 0.195 (8) 0.093 (4) 0.152 (6) −0.001 (6) 0.066 (6) −0.038 (4)
O4 0.293 (12) 0.231 (9) 0.108 (6) 0.139 (9) −0.073 (7) −0.096 (6)
Br1 0.1192 (8) 0.0727 (5) 0.2046 (12) 0.0255 (6) −0.0517 (9) 0.0010 (6)

Geometric parameters (Å, º)

C1—O2 1.423 (7) C7—C8 1.455 (8)
C1—N1 1.520 (8) C7—H7A 0.9700
C1—C2 1.563 (8) C7—H7B 0.9700
C1—H1 0.9800 C8—O2 1.384 (7)
C2—C3 1.507 (8) C9—C10 1.381 (9)
C2—C9 1.517 (8) C9—C14 1.407 (8)
C2—H2 0.9800 C10—C11 1.382 (9)
C3—C8 1.332 (8) C10—H10 0.9300
C3—C4 1.463 (8) C11—C12 1.393 (11)
C4—O1 1.205 (6) C11—H11 0.9300
C4—C5 1.510 (8) C12—C13 1.352 (11)
C5—C6 1.527 (8) C12—H12 0.9300
C5—H5A 0.9700 C13—C14 1.380 (10)
C5—H5B 0.9700 C13—H13 0.9300
C6—C7 1.531 (9) C14—Br1 1.866 (7)
C6—H6A 0.9700 N1—O4 1.130 (9)
C6—H6B 0.9700 N1—O3 1.221 (9)
O2—C1—N1 107.4 (5) C8—C7—H7A 110.0
O2—C1—C2 106.5 (5) C6—C7—H7A 110.0
N1—C1—C2 109.5 (5) C8—C7—H7B 110.0
O2—C1—H1 111.1 C6—C7—H7B 110.0
N1—C1—H1 111.1 H7A—C7—H7B 108.4
C2—C1—H1 111.1 C3—C8—O2 112.5 (6)
C3—C2—C9 113.7 (5) C3—C8—C7 129.0 (6)
C3—C2—C1 99.3 (5) O2—C8—C7 118.5 (5)
C9—C2—C1 111.5 (5) C10—C9—C14 117.6 (6)
C3—C2—H2 110.7 C10—C9—C2 121.9 (6)
C9—C2—H2 110.7 C14—C9—C2 120.2 (6)
C1—C2—H2 110.7 C9—C10—C11 122.8 (7)
C8—C3—C4 120.6 (6) C9—C10—H10 118.6
C8—C3—C2 110.6 (5) C11—C10—H10 118.6
C4—C3—C2 128.7 (5) C10—C11—C12 117.2 (7)
O1—C4—C3 122.5 (6) C10—C11—H11 121.4
O1—C4—C5 123.2 (6) C12—C11—H11 121.4
C3—C4—C5 114.3 (6) C13—C12—C11 121.9 (7)
C4—C5—C6 115.4 (5) C13—C12—H12 119.0
C4—C5—H5A 108.4 C11—C12—H12 119.0
C6—C5—H5A 108.4 C12—C13—C14 120.2 (8)
C4—C5—H5B 108.4 C12—C13—H13 119.9
C6—C5—H5B 108.4 C14—C13—H13 119.9
H5A—C5—H5B 107.5 C13—C14—C9 120.1 (7)
C5—C6—C7 111.4 (5) C13—C14—Br1 118.0 (6)
C5—C6—H6A 109.4 C9—C14—Br1 121.7 (5)
C7—C6—H6A 109.4 O4—N1—O3 122.7 (9)
C5—C6—H6B 109.4 O4—N1—C1 122.6 (8)
C7—C6—H6B 109.4 O3—N1—C1 114.7 (8)
H6A—C6—H6B 108.0 C8—O2—C1 107.4 (5)
C8—C7—C6 108.5 (5)
O2—C1—C2—C3 17.9 (6) C1—C2—C9—C10 90.7 (7)
N1—C1—C2—C3 −98.0 (6) C3—C2—C9—C14 165.2 (5)
O2—C1—C2—C9 −102.2 (6) C1—C2—C9—C14 −83.6 (7)
N1—C1—C2—C9 142.0 (6) C14—C9—C10—C11 −0.2 (10)
C9—C2—C3—C8 107.2 (6) C2—C9—C10—C11 −174.6 (6)
C1—C2—C3—C8 −11.3 (6) C9—C10—C11—C12 −2.2 (11)
C9—C2—C3—C4 −76.5 (7) C10—C11—C12—C13 2.0 (13)
C1—C2—C3—C4 165.1 (5) C11—C12—C13—C14 0.7 (14)
C8—C3—C4—O1 177.6 (6) C12—C13—C14—C9 −3.2 (12)
C2—C3—C4—O1 1.6 (9) C12—C13—C14—Br1 −178.8 (7)
C8—C3—C4—C5 −1.4 (8) C10—C9—C14—C13 3.0 (10)
C2—C3—C4—C5 −177.5 (5) C2—C9—C14—C13 177.5 (6)
O1—C4—C5—C6 153.7 (6) C10—C9—C14—Br1 178.4 (5)
C3—C4—C5—C6 −27.3 (7) C2—C9—C14—Br1 −7.1 (8)
C4—C5—C6—C7 52.2 (7) O2—C1—N1—O4 −14.4 (12)
C5—C6—C7—C8 −45.7 (7) C2—C1—N1—O4 101.0 (11)
C4—C3—C8—O2 −176.3 (5) O2—C1—N1—O3 163.3 (7)
C2—C3—C8—O2 0.4 (7) C2—C1—N1—O3 −81.4 (9)
C4—C3—C8—C7 4.9 (10) C3—C8—O2—C1 12.2 (6)
C2—C3—C8—C7 −178.4 (6) C7—C8—O2—C1 −168.9 (5)
C6—C7—C8—C3 19.8 (9) N1—C1—O2—C8 98.3 (6)
C6—C7—C8—O2 −158.9 (5) C2—C1—O2—C8 −19.0 (6)
C3—C2—C9—C10 −20.5 (8)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C1—H1···O1i 0.98 2.51 3.486 (12) 171
C7—H7A···O3ii 0.97 2.66 3.403 (12) 134
C7—H7B···O3iii 0.97 2.52 3.480 (13) 172

Symmetry codes: (i) x+1, y, z; (ii) x−1/2, −y+1/2, −z+1; (iii) x, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PK2489).

References

  1. Fan, L. P., Li, P., Li, X. S., Xu, D. C., Ge, M. M., Zhu, W. D. & Xie, J. W. (2010). J. Org. Chem. 75, 8716–8719. [DOI] [PubMed]
  2. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  3. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  4. Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  5. Rigaku (2006). PROCESS_AUTO. Rigaku Corporation, Tokyo, Japan.
  6. Rigaku (2007). CrystalStructure. Rigaku Americas, The Woodlands, Texas, USA.
  7. Rueping, M., Parra, A., Uria, U., Besselievre, F. & Merino, E. (2010). Org. Lett. 12, 5680–5683. [DOI] [PubMed]
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536813017698/pk2489sup1.cif

e-69-o1197-sup1.cif (23KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813017698/pk2489Isup2.hkl

e-69-o1197-Isup2.hkl (122.6KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813017698/pk2489Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES