Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Jul 6;69(Pt 8):o1213. doi: 10.1107/S1600536813018400

5-Chloro-2-(4-methyl­phen­yl)-3-methyl­sulfinyl-1-benzo­furan

Hong Dae Choi a, Pil Ja Seo a, Uk Lee b,*
PMCID: PMC3793721  PMID: 24109308

Abstract

In the title compound, C16H13ClO2S, the dihedral angle between the mean plane [r.m.s. deviation = 0.004 (2) Å] of the benzo­furan ring system and the 4-methyl­phenyl ring is 29.25 (8)°. In the crystal, inversion dimers linked by pairs of weak C—H⋯O interactions generate R 2 2(14) loops.

Related literature  

For the pharmacological activity of benzo­furan compounds, see: Aslam et al. (2009); Galal et al. (2009); Khan et al. (2005). For natural products with benzo­furan rings, see: Akgul & Anil (2003); Soekamto et al. (2003). For the crystal structures of related compounds, see: Choi et al. (2007, 2009).graphic file with name e-69-o1213-scheme1.jpg

Experimental  

Crystal data  

  • C16H13ClO2S

  • M r = 304.77

  • Triclinic, Inline graphic

  • a = 8.0694 (8) Å

  • b = 8.0763 (8) Å

  • c = 11.4208 (11) Å

  • α = 90.185 (6)°

  • β = 96.280 (6)°

  • γ = 111.701 (6)°

  • V = 686.63 (12) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.43 mm−1

  • T = 173 K

  • 0.35 × 0.34 × 0.10 mm

Data collection  

  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.865, T max = 0.958

  • 12808 measured reflections

  • 3423 independent reflections

  • 3021 reflections with I > 2σ(I)

  • R int = 0.048

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.038

  • wR(F 2) = 0.103

  • S = 1.05

  • 3423 reflections

  • 183 parameters

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.28 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536813018400/nk2211sup1.cif

e-69-o1213-sup1.cif (23.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813018400/nk2211Isup2.hkl

e-69-o1213-Isup2.hkl (167.9KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813018400/nk2211Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14⋯O2i 0.95 2.54 3.436 (2) 158

Symmetry code: (i) Inline graphic.

Acknowledgments

This work was supported by the Blue-Bio Industry Regional Innovation Center (RIC08-06-07) at Dongeui University as an RIC program under the Ministry of Knowledge Economy and Busan city.

supplementary crystallographic information

Comment

Many compounds having a benzofuran moiety have drawn much attention due to their valuable pharmacological properties such as antibacterial and antifungal, antitumor and antiviral, and antimicrobial activities (Aslam et al., 2009, Galal et al., 2009, Khan et al., 2005). These benzofuran derivatives occur in a wide range of natural products (Akgul & Anil, 2003; Soekamto et al., 2003).As a part of our continuing study of 5-chloro-3-methylsulfinyl-1-benzofuran derivatives containing phenyl (Choi et al., 2007) and 4-fluorophenyl (Choi et al., 2009) substituents in 2-position, we report herein the crystal structure of the title compound.

In the title molecule (Fig. 1), the benzofuran unit is essentially planar, with a mean deviation of 0.004 (2) Å from the least-squares plane defined by the nine constituent atoms. The dihedral angle between the mean plane of the benzofuran ring system and the 4-methylphenyl ring is 29.25 (8)°. In the crystal structure, molecules are connected by weak C—H···O hydrogen bonds (Table 1), resulting in a three-dimensional network.

Experimental

3-Chloroperoxybenzoic acid (77%, 269 mg, 1.2 mmol) was added in small portions to a stirred solution of 5-chloro-2-(4-methylphenyl)-3-methylsulfanyl-1-benzofuran (317 mg, 1.1 mmol) in dichloromethane (40 mL) at 273 K. After being stirred at room temperature for 4h, the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated at reduced pressure. The residue was purified by column chromatography (hexane–ethyl acetate, 1:1 v/v) to afford the title compound as a colorless solid [yield 70%, m.p. 459–460 K; Rf = 0.49 (hexane–ethyl acetate, 1:1 v/v)]. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound in acetone at room temperature.

Refinement

All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95 Å for aryl and 0.98Å for methyl H atoms. Uiso(H) = 1.2Ueq(C) for aryl and 1.5Ueq(C) for methyl H atoms. The positions of methyl hydrogens were optimized rotationally.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radius.

Crystal data

C16H13ClO2S Z = 2
Mr = 304.77 F(000) = 316
Triclinic, P1 Dx = 1.474 Mg m3
Hall symbol: -P 1 Melting point = 459–460 K
a = 8.0694 (8) Å Mo Kα radiation, λ = 0.71073 Å
b = 8.0763 (8) Å Cell parameters from 4424 reflections
c = 11.4208 (11) Å θ = 2.7–28.1°
α = 90.185 (6)° µ = 0.43 mm1
β = 96.280 (6)° T = 173 K
γ = 111.701 (6)° Block, colourless
V = 686.63 (12) Å3 0.35 × 0.34 × 0.10 mm

Data collection

Bruker SMART APEXII CCD diffractometer 3423 independent reflections
Radiation source: rotating anode 3021 reflections with I > 2σ(I)
Graphite multilayer monochromator Rint = 0.048
Detector resolution: 10.0 pixels mm-1 θmax = 28.4°, θmin = 1.8°
φ and ω scans h = −10→10
Absorption correction: multi-scan (SADABS; Bruker, 2009) k = −10→10
Tmin = 0.865, Tmax = 0.958 l = −15→15
12808 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038 Hydrogen site location: difference Fourier map
wR(F2) = 0.103 H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0432P)2 + 0.3137P] where P = (Fo2 + 2Fc2)/3
3423 reflections (Δ/σ)max < 0.001
183 parameters Δρmax = 0.32 e Å3
0 restraints Δρmin = −0.28 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.21613 (6) −0.06293 (6) 0.00434 (4) 0.03430 (13)
S1 0.79728 (5) 0.32171 (5) 0.40498 (4) 0.02612 (12)
O1 0.30621 (15) 0.15287 (15) 0.50057 (10) 0.0257 (2)
O2 0.82257 (18) 0.19866 (17) 0.31756 (13) 0.0401 (3)
C1 0.5655 (2) 0.2423 (2) 0.41897 (14) 0.0239 (3)
C2 0.4219 (2) 0.1456 (2) 0.32835 (14) 0.0236 (3)
C3 0.4092 (2) 0.0990 (2) 0.20888 (14) 0.0259 (3)
H3 0.5122 0.1328 0.1679 0.031*
C4 0.2396 (2) 0.0014 (2) 0.15325 (14) 0.0269 (3)
C5 0.0852 (2) −0.0505 (2) 0.21040 (15) 0.0291 (3)
H5 −0.0284 −0.1179 0.1680 0.035*
C6 0.0970 (2) −0.0040 (2) 0.32891 (15) 0.0282 (3)
H6 −0.0061 −0.0370 0.3698 0.034*
C7 0.2666 (2) 0.0929 (2) 0.38407 (14) 0.0241 (3)
C8 0.4897 (2) 0.2427 (2) 0.52001 (14) 0.0238 (3)
C9 0.5607 (2) 0.3179 (2) 0.63960 (14) 0.0238 (3)
C10 0.7141 (2) 0.4725 (2) 0.66158 (15) 0.0280 (3)
H10 0.7738 0.5314 0.5976 0.034*
C11 0.7804 (2) 0.5414 (2) 0.77602 (15) 0.0296 (4)
H11 0.8862 0.6458 0.7898 0.036*
C12 0.6930 (2) 0.4586 (2) 0.87084 (15) 0.0282 (3)
C13 0.5390 (2) 0.3061 (2) 0.84809 (15) 0.0281 (3)
H13 0.4780 0.2489 0.9121 0.034*
C14 0.4720 (2) 0.2353 (2) 0.73466 (14) 0.0256 (3)
H14 0.3661 0.1309 0.7213 0.031*
C15 0.7646 (3) 0.5323 (3) 0.99514 (16) 0.0390 (4)
H15A 0.6653 0.5005 1.0436 0.059*
H15B 0.8228 0.6624 0.9952 0.059*
H15C 0.8522 0.4818 1.0276 0.059*
C16 0.8112 (3) 0.5192 (2) 0.32875 (16) 0.0318 (4)
H16A 0.9311 0.5749 0.3036 0.048*
H16B 0.7896 0.6031 0.3815 0.048*
H16C 0.7206 0.4877 0.2595 0.048*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0365 (3) 0.0364 (2) 0.0259 (2) 0.01030 (19) −0.00156 (17) −0.00172 (16)
S1 0.0199 (2) 0.0253 (2) 0.0326 (2) 0.00772 (16) 0.00336 (15) 0.00359 (15)
O1 0.0207 (6) 0.0284 (6) 0.0265 (6) 0.0073 (5) 0.0031 (4) −0.0001 (4)
O2 0.0316 (7) 0.0302 (6) 0.0614 (9) 0.0115 (6) 0.0178 (6) −0.0034 (6)
C1 0.0214 (8) 0.0241 (7) 0.0262 (7) 0.0090 (6) 0.0017 (6) 0.0007 (6)
C2 0.0218 (8) 0.0215 (7) 0.0281 (8) 0.0091 (6) 0.0014 (6) 0.0021 (6)
C3 0.0257 (8) 0.0260 (7) 0.0269 (8) 0.0107 (6) 0.0035 (6) 0.0021 (6)
C4 0.0303 (9) 0.0243 (7) 0.0255 (7) 0.0106 (7) −0.0008 (6) 0.0001 (6)
C5 0.0252 (8) 0.0272 (8) 0.0315 (8) 0.0076 (7) −0.0026 (7) 0.0006 (6)
C6 0.0226 (8) 0.0287 (8) 0.0329 (8) 0.0089 (7) 0.0031 (6) 0.0024 (6)
C7 0.0238 (8) 0.0237 (7) 0.0256 (7) 0.0098 (6) 0.0021 (6) 0.0015 (6)
C8 0.0201 (8) 0.0218 (7) 0.0290 (8) 0.0073 (6) 0.0021 (6) 0.0021 (6)
C9 0.0241 (8) 0.0240 (7) 0.0258 (7) 0.0117 (6) 0.0034 (6) 0.0014 (6)
C10 0.0301 (9) 0.0248 (7) 0.0282 (8) 0.0081 (7) 0.0072 (7) 0.0031 (6)
C11 0.0297 (9) 0.0234 (7) 0.0329 (8) 0.0065 (7) 0.0046 (7) −0.0028 (6)
C12 0.0311 (9) 0.0278 (8) 0.0275 (8) 0.0132 (7) 0.0030 (7) −0.0024 (6)
C13 0.0298 (9) 0.0296 (8) 0.0270 (8) 0.0123 (7) 0.0075 (7) 0.0048 (6)
C14 0.0228 (8) 0.0236 (7) 0.0301 (8) 0.0081 (6) 0.0040 (6) 0.0027 (6)
C15 0.0417 (11) 0.0422 (10) 0.0295 (9) 0.0116 (9) 0.0035 (8) −0.0084 (7)
C16 0.0342 (10) 0.0272 (8) 0.0355 (9) 0.0118 (7) 0.0087 (7) 0.0073 (7)

Geometric parameters (Å, º)

Cl1—C4 1.7462 (16) C9—C10 1.393 (2)
S1—O2 1.4879 (13) C9—C14 1.399 (2)
S1—C1 1.7648 (17) C10—C11 1.388 (2)
S1—C16 1.7925 (17) C10—H10 0.9500
O1—C7 1.3768 (18) C11—C12 1.393 (2)
O1—C8 1.3790 (19) C11—H11 0.9500
C1—C8 1.364 (2) C12—C13 1.387 (2)
C1—C2 1.445 (2) C12—C15 1.505 (2)
C2—C7 1.393 (2) C13—C14 1.382 (2)
C2—C3 1.397 (2) C13—H13 0.9500
C3—C4 1.381 (2) C14—H14 0.9500
C3—H3 0.9500 C15—H15A 0.9800
C4—C5 1.396 (2) C15—H15B 0.9800
C5—C6 1.387 (2) C15—H15C 0.9800
C5—H5 0.9500 C16—H16A 0.9800
C6—C7 1.378 (2) C16—H16B 0.9800
C6—H6 0.9500 C16—H16C 0.9800
C8—C9 1.459 (2)
O2—S1—C1 106.64 (7) C10—C9—C8 121.45 (14)
O2—S1—C16 106.07 (8) C14—C9—C8 119.67 (15)
C1—S1—C16 97.73 (8) C11—C10—C9 120.65 (15)
C7—O1—C8 106.62 (12) C11—C10—H10 119.7
C8—C1—C2 107.24 (14) C9—C10—H10 119.7
C8—C1—S1 126.49 (13) C10—C11—C12 120.54 (16)
C2—C1—S1 125.89 (12) C10—C11—H11 119.7
C7—C2—C3 119.27 (15) C12—C11—H11 119.7
C7—C2—C1 105.00 (14) C13—C12—C11 118.46 (15)
C3—C2—C1 135.73 (15) C13—C12—C15 120.74 (16)
C4—C3—C2 116.75 (15) C11—C12—C15 120.80 (16)
C4—C3—H3 121.6 C14—C13—C12 121.65 (16)
C2—C3—H3 121.6 C14—C13—H13 119.2
C3—C4—C5 123.29 (15) C12—C13—H13 119.2
C3—C4—Cl1 118.71 (13) C13—C14—C9 119.81 (15)
C5—C4—Cl1 118.00 (13) C13—C14—H14 120.1
C6—C5—C4 120.20 (15) C9—C14—H14 120.1
C6—C5—H5 119.9 C12—C15—H15A 109.5
C4—C5—H5 119.9 C12—C15—H15B 109.5
C7—C6—C5 116.26 (15) H15A—C15—H15B 109.5
C7—C6—H6 121.9 C12—C15—H15C 109.5
C5—C6—H6 121.9 H15A—C15—H15C 109.5
O1—C7—C6 125.14 (14) H15B—C15—H15C 109.5
O1—C7—C2 110.63 (14) S1—C16—H16A 109.5
C6—C7—C2 124.23 (15) S1—C16—H16B 109.5
C1—C8—O1 110.51 (14) H16A—C16—H16B 109.5
C1—C8—C9 133.98 (15) S1—C16—H16C 109.5
O1—C8—C9 115.51 (13) H16A—C16—H16C 109.5
C10—C9—C14 118.87 (15) H16B—C16—H16C 109.5
O2—S1—C1—C8 142.96 (15) C1—C2—C7—C6 −179.96 (15)
C16—S1—C1—C8 −107.64 (15) C2—C1—C8—O1 −0.17 (17)
O2—S1—C1—C2 −29.09 (16) S1—C1—C8—O1 −173.43 (11)
C16—S1—C1—C2 80.31 (15) C2—C1—C8—C9 −179.34 (16)
C8—C1—C2—C7 −0.40 (17) S1—C1—C8—C9 7.4 (3)
S1—C1—C2—C7 172.92 (12) C7—O1—C8—C1 0.68 (17)
C8—C1—C2—C3 179.75 (17) C7—O1—C8—C9 −179.99 (12)
S1—C1—C2—C3 −6.9 (3) C1—C8—C9—C10 29.6 (3)
C7—C2—C3—C4 −0.1 (2) O1—C8—C9—C10 −149.54 (15)
C1—C2—C3—C4 179.69 (16) C1—C8—C9—C14 −151.36 (18)
C2—C3—C4—C5 0.1 (2) O1—C8—C9—C14 29.5 (2)
C2—C3—C4—Cl1 −179.18 (11) C14—C9—C10—C11 1.5 (2)
C3—C4—C5—C6 0.2 (3) C8—C9—C10—C11 −179.49 (15)
Cl1—C4—C5—C6 179.45 (12) C9—C10—C11—C12 −1.0 (3)
C4—C5—C6—C7 −0.4 (2) C10—C11—C12—C13 0.2 (2)
C8—O1—C7—C6 179.86 (15) C10—C11—C12—C15 179.82 (16)
C8—O1—C7—C2 −0.94 (16) C11—C12—C13—C14 0.3 (2)
C5—C6—C7—O1 179.43 (14) C15—C12—C13—C14 −179.38 (16)
C5—C6—C7—C2 0.3 (2) C12—C13—C14—C9 0.2 (2)
C3—C2—C7—O1 −179.29 (13) C10—C9—C14—C13 −1.0 (2)
C1—C2—C7—O1 0.83 (17) C8—C9—C14—C13 179.91 (14)
C3—C2—C7—C6 −0.1 (2)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C14—H14···O2i 0.95 2.54 3.436 (2) 158

Symmetry code: (i) −x+1, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NK2211).

References

  1. Akgul, Y. Y. & Anil, H. (2003). Phytochemistry, 63, 939–943. [DOI] [PubMed]
  2. Aslam, S. N., Stevenson, P. C., Kokubun, T. & Hall, D. R. (2009). Microbiol. Res. 164, 191–195. [DOI] [PubMed]
  3. Brandenburg, K. (1998). DIAMOND Crystal Impact GbR, Bonn, Germany.
  4. Bruker (2009). APEX2, SADABS and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2007). Acta Cryst. E63, o1291–o1292.
  6. Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2009). Acta Cryst. E65, o2649. [DOI] [PMC free article] [PubMed]
  7. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  8. Galal, S. A., Abd El-All, A. S., Abdallah, M. M. & El-Diwani, H. I. (2009). Bioorg. Med. Chem. Lett. 19, 2420–2428. [DOI] [PubMed]
  9. Khan, M. W., Alam, M. J., Rashid, M. A. & Chowdhury, R. (2005). Bioorg. Med. Chem. 13, 4796–4805. [DOI] [PubMed]
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Soekamto, N. H., Achmad, S. A., Ghisalberti, E. L., Hakim, E. H. & Syah, Y. M. (2003). Phytochemistry, 64, 831–834. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536813018400/nk2211sup1.cif

e-69-o1213-sup1.cif (23.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813018400/nk2211Isup2.hkl

e-69-o1213-Isup2.hkl (167.9KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813018400/nk2211Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES