Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Jul 10;69(Pt 8):o1229. doi: 10.1107/S1600536813018576

5-Fluoro-N-(2-methyl-3-oxo-1-thia-4-aza­spiro­[4.5]dec-4-yl)-3-phenyl-1H-indole-2-carboxamide

Sevim Türktekin Çelikesir a, Mehmet Akkurt a,*, Gökçe Cihan Üstündağ b, Orhan Büyükgüngör c
PMCID: PMC3793733  PMID: 24109320

Abstract

In the title compound, C24H24FN3O2S, the 1,3-thia­zolidine ring adopts an envelope conformation with the S atom as the flap, while the cyclo­hexane ring is in a chair conformation. In the crystal, mol­ecules are linked by N—H⋯O and C—H⋯F hydrogen bonds, forming a three-dimensional network. The unit cell contains six voids of 57 Å3, but the residual electron density (highest peak = 0.23 e Å−3 and deepest hole = −0.19 e Å−3) in the difference Fourier map suggests no solvent mol­ecule occupies this void.

Related literature  

For the anti­tubercular and anti­viral activity of variously substituted N-(1-thia-4-aza­spiro­[4.5]dec-4-yl)carboxamides, see: Cihan-Üstündağ & Çapan (2012); Göktas et al. (2012); Güzel et al. (2006); Ulusoy (2002); Vanderlinden et al. (2010). For puckering analysis, see: Cremer & Pople (1975).graphic file with name e-69-o1229-scheme1.jpg

Experimental  

Crystal data  

  • C24H24FN3O2S

  • M r = 437.53

  • Hexagonal, Inline graphic

  • a = 13.2082 (18) Å

  • c = 23.584 (4) Å

  • V = 3563.2 (13) Å3

  • Z = 6

  • Mo Kα radiation

  • μ = 0.17 mm−1

  • T = 296 K

  • 0.68 × 0.49 × 0.40 mm

Data collection  

  • Stoe IPDS 2 diffractometer

  • Absorption correction: integration (X-RED32; Stoe & Cie, 2002) T min = 0.905, T max = 0.935

  • 37961 measured reflections

  • 4922 independent reflections

  • 3348 reflections with I > 2σ(I)

  • R int = 0.059

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.042

  • wR(F 2) = 0.100

  • S = 0.96

  • 4922 reflections

  • 288 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.19 e Å−3

  • Absolute structure: Flack (1983), 2399 Freidel pairs

  • Flack parameter: −0.01 (8)

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536813018576/qm2099sup1.cif

e-69-o1229-sup1.cif (31.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813018576/qm2099Isup2.hkl

e-69-o1229-Isup2.hkl (269.9KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813018576/qm2099Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O2i 0.86 (3) 2.08 (3) 2.903 (4) 160 (2)
N2—H2A⋯O1ii 0.85 (2) 2.07 (2) 2.760 (3) 137 (2)
C10—H10A⋯F1iii 0.93 2.54 3.453 (5) 167

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS 2 diffractometer (purchased under grant F.279 of the University Research Fund). This work was supported by the Scientific Research Projects Coordination Unit of İstanbul University (project No. T-471/25062004).

supplementary crystallographic information

Comment

Despite remarkable advances, tuberculosis and viral diseases continue to be the leading causes of death worldwide. Recent research on variously substituted N-(1-thia-4-azaspiro[4.5]dec-4-yl)carboxamides has revealed encouraging antitubercular (Cihan-Üstündağ & Çapan, 2012; Güzel et al. 2006; Ulusoy, 2002) and antiviral (Göktas et al., 2012; Vanderlinden et al., 2010) activity. Full characterization of the active core may yield invaluable data for the design of relevant compounds with enhanced action. Thus, we herein report the X-ray diffraction analysis of the title compound (I).

In (I), (Fig. 1), the 1,3 thiazolidine ring (S1/N3/C16/C17/C19) adopts an envelope conformation [the puckering parameters (Cremer & Pople, 1975) are Q(2) = 0.228 (3) Å and φ(2) = 351.3 (8)°] with the S1 atom as the flap atom. The cyclohexane ring (C19–C24) exhibits a chair conformation with the puckering parameters of QT = 0.554 (4) Å, θ = 180.0° and φ = 180 (15)°. The indole ring system (N1/C1–C7/C14) is essentially planar, with the maximum deviations of 0.014 (2) Å for N1 and 0.012 (3) Å for C5. The phenyl (C8–C13) and 1,3-thiazolidine (S1/N3/C16/C17/C19) rings are inclined at the dihedral angles of 56.14 (15) and 57.03 (12) °, respectively, to the indole ring system. The torsion angle of the N3–N2–C15–C14 bridge between the indole ring and the thiazolidine ring system is -165.8 (2) °.

In the crystal structure, N—H···O and C—H···F hydrogen bonds connect the adjacent molecules to each other, forming a three dimensional network. In addtion, π-π and C—H···π interactions are not observed.

Experimental

A mixture of 5-fluoro-3-phenyl-1H-indole-2-carbohydrazide (0.0025 mol), cyclohexanone (0.003 mol) and 2-mercaptopropionic acid (0.01 mol) was refluxed in 20 ml dry benzene for 5 h using a Dean-Stark water separator. Excess benzene was evaporated in vacuo. The resulting residue was triturated with saturated NaHCO3 solution until CO2 evolution ceased and was refrigerated overnight. The solid thus obtained was washed with water, filtered, dried, and recrystallized from ethanol.

Yield: 77%, mp.: 507–509 K. IR(KBr): υmax 3227 (N—H), 1690 (C=O), 1662 (C=O) cm-1. 1H-NMR (DMSO-d6/500 MHz): δ 1.03–1.09 (m, 1H, CH2-sp.*), 1.32–1.45 (m, 5H, 2-CH3, CH2-sp.), 1.55–1.77 (m, 7H, CH2-sp.), 3.87 (br. d, 1H, J=6.3 Hz, C2—H -sp.), 7.15 (td, 1H, J=9.4, 2.4 Hz, H6-ind.), 7.23 (dd, 1H, J=9.7, 1.9 Hz, H4-ind.), 7.35 (t, 1H, J=7.3 Hz, 3-C6H5(H4)-ind.), 7.45 (t, 2H, J=7.3 Hz, 3-C6H5(H3,H5)-ind.), 7.50–7.57 (m, 3H, H7, 3-C6H5 (H2,H6)-ind.), 10.06 (s, 1H, CONH), 12.00 (s, 1H, NH) p.p.m.. MS (APCI+) m/z(%) 438 ((M+H)+, 43), (APCI–) m/z(%) 436 ((M—H)-, 100). Analysis calculated for C24H24FN3O2S: C 65.88, H 5.53, N 9.60, S 7.33%. Found: C 65.55, H 5.20, N 9.44, S 7.69%. (*sp.=spirodecane, br.=broad, ind.=indole).

Refinement

H atoms bonded to C atoms were positioned geometrically with C—H = 0.93 - 0.98 Å, and refined using a riding model with Uiso(H) = 1.2 or 1.5Ueq(C). The H atoms of the two amide groups were found in a difference Fourier map, restrained with N—H = 0.86 (2) Å and refined with Uiso = 1.2Ueq(N). The unit cell contains six voids of 57 Å3, but the residual electron density (highest peak = 0.23 e.Å-3 and deepest hole = -0.19 e.Å-3) in the difference Fourier map suggests no solvent molecule occupies this void.

Figures

Fig. 1.

Fig. 1.

The structure of the title molecule with the atom labelling scheme. Displacement ellipsoids for non-H atoms are drawn at the 30% probability level.

Fig. 2.

Fig. 2.

View of the packing and hydrogen bondings of the title compound, down the [110]-axis. H atoms not participating in hydrogen bonding have been omitted for clarity.

Crystal data

C24H24FN3O2S Dx = 1.223 Mg m3
Mr = 437.53 Mo Kα radiation, λ = 0.71073 Å
Hexagonal, P65 Cell parameters from 3314 reflections
Hall symbol: P 65 θ = 1.7–24.3°
a = 13.2082 (18) Å µ = 0.17 mm1
c = 23.584 (4) Å T = 296 K
V = 3563.2 (13) Å3 Prism, colourless
Z = 6 0.68 × 0.49 × 0.40 mm
F(000) = 1380

Data collection

Stoe IPDS 2 diffractometer 4922 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus 3348 reflections with I > 2σ(I)
Plane graphite monochromator Rint = 0.059
Detector resolution: 6.67 pixels mm-1 θmax = 26.5°, θmin = 1.8°
ω–scans h = −15→16
Absorption correction: integration (X-RED32; Stoe & Cie, 2002) k = −16→16
Tmin = 0.905, Tmax = 0.935 l = −29→29
37961 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.100 w = 1/[σ2(Fo2) + (0.0551P)2] where P = (Fo2 + 2Fc2)/3
S = 0.96 (Δ/σ)max < 0.001
4922 reflections Δρmax = 0.23 e Å3
288 parameters Δρmin = −0.19 e Å3
4 restraints Absolute structure: Flack (1983), 2399 Freidel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: −0.01 (8)

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 1.14962 (8) 0.40748 (8) 0.02744 (4) 0.0985 (3)
F1 0.46476 (17) −0.29139 (16) 0.34676 (8) 0.1106 (8)
O1 1.03682 (16) 0.23902 (16) 0.20319 (6) 0.0747 (6)
O2 1.05778 (17) 0.10407 (18) 0.08858 (8) 0.0808 (7)
N1 0.8840 (2) 0.04416 (18) 0.26571 (8) 0.0635 (7)
N2 0.91194 (19) 0.17601 (19) 0.12881 (7) 0.0608 (7)
N3 1.00273 (18) 0.24151 (18) 0.09113 (8) 0.0609 (7)
C1 0.7870 (2) −0.0441 (2) 0.29191 (9) 0.0617 (9)
C2 0.7796 (3) −0.1096 (3) 0.33995 (11) 0.0793 (10)
C3 0.6684 (3) −0.1925 (3) 0.35702 (13) 0.0895 (13)
C4 0.5723 (3) −0.2078 (2) 0.32737 (11) 0.0792 (10)
C5 0.5760 (2) −0.1454 (2) 0.28088 (11) 0.0690 (9)
C6 0.6880 (2) −0.0611 (2) 0.26178 (9) 0.0585 (8)
C7 0.7284 (2) 0.0200 (2) 0.21584 (9) 0.0565 (8)
C8 0.6543 (2) 0.0362 (2) 0.17393 (9) 0.0613 (8)
C9 0.5750 (3) −0.0575 (3) 0.14063 (11) 0.0862 (11)
C10 0.5091 (3) −0.0395 (5) 0.09960 (14) 0.1120 (16)
C11 0.5207 (4) 0.0666 (5) 0.09194 (16) 0.114 (2)
C12 0.5970 (3) 0.1599 (4) 0.12420 (16) 0.1037 (16)
C13 0.6620 (3) 0.1432 (3) 0.16482 (12) 0.0796 (11)
C14 0.8473 (2) 0.0809 (2) 0.21937 (9) 0.0575 (8)
C15 0.9402 (2) 0.1718 (2) 0.18413 (9) 0.0579 (8)
C16 1.0671 (2) 0.1961 (3) 0.07269 (10) 0.0715 (10)
C17 1.1532 (4) 0.2742 (3) 0.02812 (15) 0.1084 (16)
C18 1.2528 (5) 0.2705 (5) 0.0215 (3) 0.218 (4)
C19 1.0107 (3) 0.3462 (2) 0.06577 (10) 0.0685 (9)
C20 0.9079 (3) 0.3128 (3) 0.02508 (12) 0.0823 (10)
C21 0.9134 (4) 0.4214 (3) −0.00119 (14) 0.1053 (16)
C22 0.9213 (5) 0.5057 (4) 0.04366 (19) 0.1259 (19)
C23 1.0202 (4) 0.5387 (3) 0.08365 (16) 0.1170 (18)
C24 1.0156 (3) 0.4300 (3) 0.11059 (12) 0.0937 (13)
H1A 0.9546 (16) 0.058 (2) 0.2688 (11) 0.067 (8)*
H2 0.84590 −0.09790 0.35940 0.0950*
H2A 0.8520 (18) 0.1166 (18) 0.1151 (9) 0.063 (8)*
H3 0.65870 −0.23830 0.38880 0.1070*
H5 0.50840 −0.15760 0.26270 0.0830*
H9 0.56600 −0.13130 0.14570 0.1030*
H10A 0.45660 −0.10190 0.07730 0.1340*
H11A 0.47620 0.07680 0.06440 0.1370*
H12 0.60480 0.23320 0.11880 0.1240*
H13 0.71320 0.20640 0.18700 0.0950*
H17 1.11130 0.23700 −0.00690 0.1300*
H18A 1.30540 0.31180 0.05210 0.2610*
H18B 1.28880 0.30640 −0.01390 0.2610*
H18C 1.23510 0.19060 0.02160 0.2610*
H20A 0.90960 0.26330 −0.00480 0.0990*
H20B 0.83490 0.26870 0.04560 0.0990*
H21A 0.98100 0.45960 −0.02590 0.1270*
H21B 0.84410 0.39800 −0.02400 0.1270*
H22A 0.93070 0.57580 0.02550 0.1510*
H22B 0.84870 0.47080 0.06490 0.1510*
H23A 1.01730 0.58790 0.11340 0.1410*
H23B 1.09350 0.58330 0.06350 0.1410*
H24A 1.08430 0.45420 0.13400 0.1130*
H24B 0.94720 0.39070 0.13470 0.1130*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.1004 (6) 0.0842 (5) 0.1055 (5) 0.0421 (5) 0.0484 (5) 0.0345 (4)
F1 0.0989 (14) 0.0883 (12) 0.1143 (13) 0.0241 (11) 0.0351 (11) 0.0409 (10)
O1 0.0642 (11) 0.0767 (12) 0.0567 (9) 0.0154 (10) −0.0039 (8) 0.0082 (8)
O2 0.0818 (13) 0.0784 (13) 0.0904 (12) 0.0462 (11) 0.0147 (10) 0.0192 (11)
N1 0.0608 (14) 0.0695 (14) 0.0537 (10) 0.0276 (12) 0.0009 (10) 0.0105 (9)
N2 0.0578 (13) 0.0649 (14) 0.0453 (10) 0.0199 (11) 0.0062 (9) 0.0057 (9)
N3 0.0656 (13) 0.0643 (12) 0.0511 (9) 0.0311 (11) 0.0139 (9) 0.0098 (9)
C1 0.0725 (17) 0.0609 (15) 0.0513 (12) 0.0330 (14) 0.0071 (11) 0.0068 (11)
C2 0.088 (2) 0.0773 (19) 0.0683 (15) 0.0381 (17) 0.0029 (14) 0.0177 (13)
C3 0.104 (3) 0.083 (2) 0.0765 (16) 0.0429 (19) 0.0204 (18) 0.0353 (15)
C4 0.084 (2) 0.0590 (17) 0.0740 (16) 0.0203 (15) 0.0233 (16) 0.0131 (13)
C5 0.0689 (17) 0.0574 (15) 0.0720 (14) 0.0250 (14) 0.0138 (12) 0.0078 (12)
C6 0.0667 (16) 0.0547 (14) 0.0533 (11) 0.0297 (13) 0.0059 (11) 0.0003 (10)
C7 0.0622 (16) 0.0521 (14) 0.0495 (11) 0.0244 (12) 0.0046 (10) −0.0012 (10)
C8 0.0562 (14) 0.0718 (17) 0.0486 (11) 0.0266 (13) 0.0102 (10) 0.0048 (11)
C9 0.0690 (19) 0.096 (2) 0.0760 (17) 0.0281 (17) −0.0107 (14) −0.0130 (16)
C10 0.069 (2) 0.164 (4) 0.080 (2) 0.041 (3) −0.0156 (16) −0.026 (2)
C11 0.093 (3) 0.188 (5) 0.081 (2) 0.085 (3) 0.008 (2) 0.023 (3)
C12 0.093 (3) 0.141 (3) 0.099 (2) 0.075 (3) 0.016 (2) 0.036 (2)
C13 0.0762 (19) 0.089 (2) 0.0787 (16) 0.0451 (17) 0.0079 (14) 0.0121 (14)
C14 0.0609 (15) 0.0605 (14) 0.0473 (11) 0.0275 (13) 0.0029 (10) 0.0031 (10)
C15 0.0623 (16) 0.0579 (14) 0.0502 (12) 0.0275 (13) 0.0005 (11) 0.0027 (10)
C16 0.0710 (18) 0.0785 (19) 0.0609 (14) 0.0343 (16) 0.0118 (12) 0.0110 (13)
C17 0.124 (3) 0.112 (3) 0.112 (2) 0.076 (2) 0.062 (2) 0.048 (2)
C18 0.226 (6) 0.162 (5) 0.314 (8) 0.134 (5) 0.208 (6) 0.127 (5)
C19 0.0854 (19) 0.0647 (16) 0.0541 (12) 0.0366 (14) 0.0192 (12) 0.0118 (11)
C20 0.100 (2) 0.0845 (19) 0.0726 (15) 0.0537 (18) 0.0079 (15) 0.0168 (14)
C21 0.134 (3) 0.113 (3) 0.092 (2) 0.079 (2) 0.019 (2) 0.036 (2)
C22 0.178 (4) 0.115 (3) 0.127 (3) 0.105 (3) 0.058 (3) 0.046 (3)
C23 0.176 (4) 0.081 (2) 0.103 (3) 0.071 (3) 0.032 (3) 0.0072 (19)
C24 0.135 (3) 0.0724 (19) 0.0700 (16) 0.049 (2) 0.0241 (17) 0.0028 (13)

Geometric parameters (Å, º)

S1—C17 1.785 (4) C17—C18 1.350 (9)
S1—C19 1.831 (4) C19—C24 1.508 (4)
F1—C4 1.370 (4) C19—C20 1.536 (5)
O1—C15 1.219 (3) C20—C21 1.531 (5)
O2—C16 1.218 (4) C21—C22 1.501 (6)
N1—C1 1.374 (3) C22—C23 1.489 (8)
N1—C14 1.378 (3) C23—C24 1.543 (5)
N2—N3 1.392 (3) C2—H2 0.9300
N2—C15 1.366 (3) C3—H3 0.9300
N3—C16 1.335 (4) C5—H5 0.9300
N3—C19 1.461 (3) C9—H9 0.9300
N1—H1A 0.86 (3) C10—H10A 0.9300
N2—H2A 0.85 (2) C11—H11A 0.9300
C1—C6 1.404 (4) C12—H12 0.9300
C1—C2 1.399 (4) C13—H13 0.9300
C2—C3 1.382 (5) C17—H17 0.9800
C3—C4 1.373 (6) C18—H18A 0.9600
C4—C5 1.358 (4) C18—H18B 0.9600
C5—C6 1.409 (4) C18—H18C 0.9600
C6—C7 1.426 (3) C20—H20A 0.9700
C7—C14 1.363 (4) C20—H20B 0.9700
C7—C8 1.480 (4) C21—H21A 0.9700
C8—C13 1.382 (4) C21—H21B 0.9700
C8—C9 1.396 (4) C22—H22A 0.9700
C9—C10 1.399 (6) C22—H22B 0.9700
C10—C11 1.344 (8) C23—H23A 0.9700
C11—C12 1.368 (7) C23—H23B 0.9700
C12—C13 1.376 (6) C24—H24A 0.9700
C14—C15 1.471 (3) C24—H24B 0.9700
C16—C17 1.513 (5)
C17—S1—C19 94.27 (18) C21—C22—C23 112.9 (5)
C1—N1—C14 108.2 (2) C22—C23—C24 111.6 (3)
N3—N2—C15 117.8 (2) C19—C24—C23 111.2 (2)
N2—N3—C16 118.2 (2) C1—C2—H2 122.00
N2—N3—C19 118.8 (3) C3—C2—H2 122.00
C16—N3—C19 122.1 (2) C2—C3—H3 120.00
C1—N1—H1A 126.5 (16) C4—C3—H3 120.00
C14—N1—H1A 121.9 (17) C4—C5—H5 122.00
N3—N2—H2A 116.4 (15) C6—C5—H5 122.00
C15—N2—H2A 118.2 (15) C8—C9—H9 120.00
C2—C1—C6 122.6 (3) C10—C9—H9 120.00
N1—C1—C2 129.5 (3) C9—C10—H10A 119.00
N1—C1—C6 107.9 (2) C11—C10—H10A 120.00
C1—C2—C3 116.4 (3) C10—C11—H11A 120.00
C2—C3—C4 120.4 (3) C12—C11—H11A 119.00
F1—C4—C5 117.8 (3) C11—C12—H12 121.00
C3—C4—C5 124.9 (3) C13—C12—H12 121.00
F1—C4—C3 117.3 (2) C8—C13—H13 119.00
C4—C5—C6 116.3 (3) C12—C13—H13 119.00
C1—C6—C5 119.4 (2) S1—C17—H17 102.00
C1—C6—C7 107.2 (2) C16—C17—H17 102.00
C5—C6—C7 133.4 (3) C18—C17—H17 102.00
C6—C7—C14 106.6 (2) C17—C18—H18A 110.00
C8—C7—C14 127.3 (2) C17—C18—H18B 109.00
C6—C7—C8 126.1 (2) C17—C18—H18C 109.00
C9—C8—C13 117.3 (3) H18A—C18—H18B 110.00
C7—C8—C9 120.3 (2) H18A—C18—H18C 109.00
C7—C8—C13 122.4 (2) H18B—C18—H18C 109.00
C8—C9—C10 119.6 (4) C19—C20—H20A 109.00
C9—C10—C11 120.9 (4) C19—C20—H20B 109.00
C10—C11—C12 120.9 (5) C21—C20—H20A 109.00
C11—C12—C13 118.7 (4) C21—C20—H20B 109.00
C8—C13—C12 122.6 (3) H20A—C20—H20B 108.00
N1—C14—C7 110.2 (2) C20—C21—H21A 109.00
N1—C14—C15 116.0 (2) C20—C21—H21B 109.00
C7—C14—C15 133.8 (2) C22—C21—H21A 109.00
O1—C15—N2 122.0 (2) C22—C21—H21B 109.00
N2—C15—C14 116.1 (2) H21A—C21—H21B 108.00
O1—C15—C14 121.9 (2) C21—C22—H22A 109.00
O2—C16—N3 125.4 (3) C21—C22—H22B 109.00
O2—C16—C17 124.1 (3) C23—C22—H22A 109.00
N3—C16—C17 110.5 (3) C23—C22—H22B 109.00
C16—C17—C18 118.0 (4) H22A—C22—H22B 108.00
S1—C17—C16 107.3 (3) C22—C23—H23A 109.00
S1—C17—C18 122.8 (4) C22—C23—H23B 109.00
S1—C19—C20 111.40 (19) C24—C23—H23A 109.00
S1—C19—C24 110.8 (2) C24—C23—H23B 109.00
N3—C19—C20 110.4 (2) H23A—C23—H23B 108.00
S1—C19—N3 101.7 (2) C19—C24—H24A 109.00
N3—C19—C24 111.3 (2) C19—C24—H24B 109.00
C20—C19—C24 110.9 (3) C23—C24—H24A 109.00
C19—C20—C21 111.3 (3) C23—C24—H24B 109.00
C20—C21—C22 111.3 (3) H24A—C24—H24B 108.00
C19—S1—C17—C16 −16.7 (3) C5—C6—C7—C14 178.9 (3)
C19—S1—C17—C18 −158.5 (4) C5—C6—C7—C8 0.6 (4)
C17—S1—C19—N3 18.3 (2) C1—C6—C7—C14 0.5 (3)
C17—S1—C19—C20 −99.3 (2) C6—C7—C8—C9 −58.0 (4)
C17—S1—C19—C24 136.7 (3) C6—C7—C14—N1 −1.2 (3)
C1—N1—C14—C15 −177.1 (2) C6—C7—C14—C15 176.9 (3)
C1—N1—C14—C7 1.4 (3) C14—C7—C8—C9 124.0 (3)
C14—N1—C1—C6 −1.0 (3) C14—C7—C8—C13 −54.3 (4)
C14—N1—C1—C2 179.2 (3) C8—C7—C14—N1 177.1 (2)
N3—N2—C15—O1 13.9 (4) C8—C7—C14—C15 −4.8 (5)
C15—N2—N3—C16 76.9 (3) C6—C7—C8—C13 123.7 (3)
C15—N2—N3—C19 −113.8 (3) C7—C8—C13—C12 177.1 (3)
N3—N2—C15—C14 −165.8 (2) C9—C8—C13—C12 −1.2 (5)
C16—N3—C19—C24 −135.4 (3) C13—C8—C9—C10 1.0 (5)
N2—N3—C16—O2 −4.5 (4) C7—C8—C9—C10 −177.4 (3)
C16—N3—C19—S1 −17.3 (3) C8—C9—C10—C11 −0.3 (6)
N2—N3—C16—C17 174.6 (2) C9—C10—C11—C12 −0.2 (7)
C19—N3—C16—C17 5.7 (4) C10—C11—C12—C13 0.0 (7)
N2—N3—C19—C24 55.8 (4) C11—C12—C13—C8 0.8 (6)
C19—N3—C16—O2 −173.4 (3) C7—C14—C15—N2 −23.2 (4)
N2—N3—C19—S1 173.89 (16) C7—C14—C15—O1 157.1 (3)
C16—N3—C19—C20 101.1 (3) N1—C14—C15—O1 −24.9 (4)
N2—N3—C19—C20 −67.8 (3) N1—C14—C15—N2 154.8 (2)
C6—C1—C2—C3 −0.6 (4) O2—C16—C17—C18 −27.3 (6)
C2—C1—C6—C7 −179.9 (3) N3—C16—C17—S1 9.7 (3)
N1—C1—C2—C3 179.1 (3) N3—C16—C17—C18 153.6 (4)
N1—C1—C6—C5 −178.4 (2) O2—C16—C17—S1 −171.2 (3)
C2—C1—C6—C5 1.4 (4) S1—C19—C20—C21 −68.8 (3)
N1—C1—C6—C7 0.3 (3) N3—C19—C20—C21 179.0 (3)
C1—C2—C3—C4 0.2 (5) C24—C19—C20—C21 55.1 (4)
C2—C3—C4—C5 −0.8 (5) S1—C19—C24—C23 69.3 (4)
C2—C3—C4—F1 −179.9 (3) N3—C19—C24—C23 −178.3 (3)
F1—C4—C5—C6 −179.4 (2) C20—C19—C24—C23 −54.9 (4)
C3—C4—C5—C6 1.5 (4) C19—C20—C21—C22 −54.2 (5)
C4—C5—C6—C7 180.0 (3) C20—C21—C22—C23 54.4 (5)
C4—C5—C6—C1 −1.8 (4) C21—C22—C23—C24 −54.4 (5)
C1—C6—C7—C8 −177.8 (2) C22—C23—C24—C19 54.7 (5)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1A···O2i 0.86 (3) 2.08 (3) 2.903 (4) 160 (2)
N2—H2A···O1ii 0.85 (2) 2.07 (2) 2.760 (3) 137 (2)
C10—H10A···F1iii 0.93 2.54 3.453 (5) 167

Symmetry codes: (i) y+1, −x+y+1, z+1/6; (ii) xy, x−1, z−1/6; (iii) −y, xy−1, z−1/3.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: QM2099).

References

  1. Cihan-Üstündağ, G. & Çapan, G. (2012). Mol. Divers. 16, 525–539. [DOI] [PubMed]
  2. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  3. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  4. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  5. Göktas, F., Vanderlinden, E., Naesens, L., Cesur, N. & Cesur, Z. (2012). Bioorg. Med. Chem. 20, 7155–7159. [DOI] [PubMed]
  6. Güzel, Ö., İlhan, E. & Salman, A. (2006). Monatsh. Chem. 137, 795–801.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Stoe & Cie (2002). X-AREA and X-RED32 Stoe & Cie, Darmstadt, Germany.
  9. Ulusoy, N. (2002). Arzneim.-Forsch. Drug. Res. 52, 565–571.
  10. Vanderlinden, E., Göktas, F., Cesur, Z., Froeyen, M., Reed, M. L., Russell, C. J., Cesur, N. & Naesens, L. (2010). J. Virol. 84, 4277–4288. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536813018576/qm2099sup1.cif

e-69-o1229-sup1.cif (31.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813018576/qm2099Isup2.hkl

e-69-o1229-Isup2.hkl (269.9KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813018576/qm2099Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES