Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Jul 13;69(Pt 8):o1250. doi: 10.1107/S1600536813018977

(E)-1-[(2,4,6-Tri­bromo­phen­yl)diazen­yl]naphthalen-2-ol

Souheyla Chetioui a, Issam Boudraa a,*, Sofiane Bouacida a, Abdelkader Bouchoul a, Salah Eddine Bouaoud a
PMCID: PMC3793751  PMID: 24109338

Abstract

The title azo mol­ecule, C16H9Br3N2O, adopts a trans conformation with respect to the azo N=N double bond. An intra­molecular O—H⋯N hydrogen bond forms an S(6) ring motif. The dihedral angle between the naphthalene ring system and the benzene ring is 33.80 (16)°. In the crystal, mol­ecules are stacked in columns along the a axis by π–π inter­actions [centroid–centroid distances = 3.815 (3) and 3.990 (3) Å].

Related literature  

For applications of azo compounds, see: Gale et al. (1998). For the synthesis of similar compounds, see: Wang et al. (2003); Heinrich et al. (2007). For bond lengths and angles in related azo compounds, see: Deveci et al. (2005); El-Ghamry et al. (2008).graphic file with name e-69-o1250-scheme1.jpg

Experimental  

Crystal data  

  • C16H9Br3N2O

  • M r = 484.98

  • Orthorhombic, Inline graphic

  • a = 3.9904 (11) Å

  • b = 15.689 (4) Å

  • c = 24.580 (7) Å

  • V = 1538.8 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 7.87 mm−1

  • T = 293 K

  • 0.03 × 0.02 × 0.02 mm

Data collection  

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004) T min = 0.244, T max = 0.332

  • 13143 measured reflections

  • 3841 independent reflections

  • 2910 reflections with I > 2σ(I)

  • R int = 0.046

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.034

  • wR(F 2) = 0.066

  • S = 0.96

  • 3841 reflections

  • 199 parameters

  • H-atom parameters constrained

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.44 e Å−3

  • Absolute structure: Flack (1983), 1553 Friedel pairs

  • Flack parameter: 0.004 (13)

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536813018977/is5290sup1.cif

e-69-o1250-sup1.cif (24.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813018977/is5290Isup2.hkl

e-69-o1250-Isup2.hkl (184.5KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813018977/is5290Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.82 1.85 2.561 (4) 144

Acknowledgments

We thank all researchers of the CHEMS Research Unit, University of Constantine, Algeria, for their valuable assistance. Thanks are due to the MESRS (Ministère de l’Enseignement Supérieur et de la Recherche Scientifique – Algérie) for financial support. We also express our gratitude to Professor L. Ouahab, Director of Research at the Laboratory UMR LCSIM 6511, CNRS, Rennes I (France), for recording the diffraction data and help with the structure determination.

supplementary crystallographic information

Comment

It has been known for many years that the azo compounds are a widely used class of dyes due to their application in various fields such as the dyeing of textile fibers, the coloring of different materials, colored plastics and electrochemical sensors (Gale et al., 1998). Azo dyes are synthetic colours that contain an azo group, as part of the structure. They are characterized by the azo linkage (–N=N–). Azo groups do not occur naturally. Many azo compounds have been synthesized by the diazotization and diazo coupling reaction (Wang et al., 2003), which entails an electrophilic substitution reaction where an aryl diazonium-cation attacks another aryl ring, since diazonium salts are often unstable near room temperature; the azo coupling reactions are typically conducted near ice temperature.

The pH of solution is quite important; it must be mildly acidic or neutral, since no reaction takes place if the pH is too low (Heinrich et al., 2007). We report herein the crystal structure of the title compound (Fig. 1), obtained through the diazotization of 2,4,6-tribromoaniline followed by a coupling reaction with 2-naphthol. In the molecule of the title compound, all bond lengths are in good agreement with those reported for other azo compounds (Deveci et al., 2005; El-Ghamry et al., 2008). The bond lengths and angles are within normal ranges. The naphthalene ring system is oriented at a dihedral angle of 33.80 (16)° with respect to the benzene ring. In the crystal, molecules are packed into columns along the a axis by π–π interactions between adjacent molecules with the closest approach between centroids of aromatic rings being 3.815 (3) Å (Fig. 2).

Experimental

The title compound was prepared by the previously reported method in the literature; following the classical method of synthesis of other aromatic azo-compounds, diazotization of 2,4,6-tribromoaniline followed by a coupling reaction with 2-naphthol (Wang et al., 2003). This gives a red powder which was crystallized from methanol solution leading to red prismatic crystals.

Refinement

All H atoms have been placed in geometrically idealized positions (C—H = 0.93 Å and O—H = 0.82 Å) and refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(O).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, with atom labels and 50% probability displacement ellipsoids for non-H atoms. The dashed line indicates the O—H···N hydrogen bond.

Fig. 2.

Fig. 2.

A packing diagram of the title compound viewed along the a axis.

Crystal data

C16H9Br3N2O Dx = 2.093 Mg m3
Mr = 484.98 Melting point: 422 K
Orthorhombic, P212121 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2ab Cell parameters from 2052 reflections
a = 3.9904 (11) Å θ = 3.1–28.6°
b = 15.689 (4) Å µ = 7.87 mm1
c = 24.580 (7) Å T = 293 K
V = 1538.8 (7) Å3 Prism, red
Z = 4 0.03 × 0.02 × 0.02 mm
F(000) = 928

Data collection

Bruker APEXII CCD diffractometer 3841 independent reflections
Radiation source: fine-focus sealed tube 2910 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.046
φ and ω scans θmax = 28.3°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Sheldrick, 2004) h = −5→5
Tmin = 0.244, Tmax = 0.332 k = −20→20
13143 measured reflections l = −32→32

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034 H-atom parameters constrained
wR(F2) = 0.066 w = 1/[σ2(Fo2) + (0.0241P)2] where P = (Fo2 + 2Fc2)/3
S = 0.96 (Δ/σ)max < 0.001
3841 reflections Δρmax = 0.44 e Å3
199 parameters Δρmin = −0.44 e Å3
0 restraints Absolute structure: Flack (1983), 1553 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: 0.004 (13)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 −0.12633 (11) −0.15833 (2) 0.00161 (2) 0.0379 (1)
Br2 0.51026 (12) 0.09227 (3) 0.12476 (2) 0.0481 (2)
Br3 0.12463 (15) 0.17248 (3) −0.08940 (2) 0.0557 (2)
O1 −0.4121 (9) 0.02557 (17) −0.18018 (11) 0.0512 (10)
N1 −0.0964 (9) −0.01183 (18) −0.09266 (12) 0.0352 (10)
N2 −0.0368 (8) −0.08820 (18) −0.10973 (11) 0.0317 (10)
C1 0.0433 (10) 0.0081 (2) −0.04134 (14) 0.0304 (11)
C2 0.0607 (9) −0.0479 (2) 0.00323 (14) 0.0304 (11)
C3 0.2004 (11) −0.0226 (2) 0.05163 (14) 0.0333 (12)
C4 0.3199 (11) 0.0592 (2) 0.05766 (15) 0.0342 (11)
C5 0.2983 (11) 0.1171 (2) 0.01563 (15) 0.0373 (14)
C6 0.1572 (11) 0.0906 (2) −0.03316 (14) 0.0337 (11)
C7 −0.1725 (10) −0.1097 (2) −0.15902 (14) 0.0307 (11)
C8 −0.3485 (12) −0.0537 (3) −0.19353 (15) 0.0387 (14)
C9 −0.4639 (11) −0.0836 (3) −0.24475 (15) 0.0432 (15)
C10 −0.4111 (11) −0.1653 (3) −0.25976 (14) 0.0437 (15)
C11 −0.2321 (11) −0.2247 (3) −0.22725 (14) 0.0355 (11)
C12 −0.1079 (10) −0.1969 (2) −0.17622 (14) 0.0299 (11)
C13 0.0637 (11) −0.2558 (2) −0.14376 (15) 0.0360 (14)
C14 0.1125 (12) −0.3377 (2) −0.16128 (16) 0.0443 (14)
C15 −0.0059 (13) −0.3643 (3) −0.21170 (17) 0.0487 (16)
C16 −0.1756 (13) −0.3094 (3) −0.24383 (16) 0.0470 (16)
H1 −0.33456 0.03546 −0.14993 0.0768*
H3 0.21435 −0.06078 0.08045 0.0402*
H5 0.37633 0.17259 0.01985 0.0449*
H9 −0.57652 −0.04673 −0.26807 0.0520*
H10 −0.49596 −0.18353 −0.29301 0.0524*
H13 0.14544 −0.23913 −0.10996 0.0432*
H14 0.22647 −0.37609 −0.13916 0.0531*
H15 0.03174 −0.41991 −0.22331 0.0588*
H16 −0.25621 −0.32774 −0.27734 0.0563*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.0446 (2) 0.0286 (2) 0.0405 (2) −0.0047 (2) 0.0045 (2) 0.0003 (2)
Br2 0.0505 (3) 0.0582 (3) 0.0356 (2) −0.0074 (2) −0.0023 (2) −0.0136 (2)
Br3 0.0867 (4) 0.0324 (2) 0.0481 (2) −0.0006 (3) 0.0002 (3) 0.0081 (2)
O1 0.072 (2) 0.0408 (16) 0.0409 (16) 0.0086 (18) −0.0086 (17) 0.0069 (13)
N1 0.045 (2) 0.0281 (16) 0.0324 (16) −0.0006 (16) 0.0006 (17) −0.0034 (13)
N2 0.035 (2) 0.0328 (16) 0.0273 (14) −0.0046 (16) 0.0039 (14) −0.0007 (13)
C1 0.031 (2) 0.0277 (18) 0.0324 (19) 0.0023 (18) 0.0052 (18) −0.0024 (15)
C2 0.031 (2) 0.0263 (17) 0.0339 (18) 0.0023 (16) 0.0058 (19) −0.0031 (16)
C3 0.036 (2) 0.033 (2) 0.031 (2) 0.0011 (19) 0.0048 (18) 0.0007 (16)
C4 0.031 (2) 0.041 (2) 0.0306 (19) 0.000 (2) 0.0028 (19) −0.0106 (17)
C5 0.047 (3) 0.028 (2) 0.037 (2) −0.0053 (19) 0.0080 (19) −0.0072 (16)
C6 0.042 (2) 0.0272 (18) 0.0318 (19) 0.001 (2) 0.0068 (19) 0.0040 (16)
C7 0.033 (2) 0.035 (2) 0.0241 (18) −0.0030 (19) 0.0019 (17) 0.0007 (16)
C8 0.045 (3) 0.036 (2) 0.035 (2) −0.002 (2) 0.001 (2) 0.0053 (17)
C9 0.044 (3) 0.056 (3) 0.0297 (19) −0.002 (2) −0.005 (2) 0.0108 (19)
C10 0.048 (3) 0.059 (3) 0.0240 (18) −0.013 (3) 0.0018 (18) −0.0022 (19)
C11 0.037 (2) 0.045 (2) 0.0245 (19) −0.011 (2) 0.0032 (18) −0.0023 (18)
C12 0.028 (2) 0.0331 (19) 0.0286 (18) −0.0085 (19) 0.0068 (17) −0.0003 (15)
C13 0.040 (3) 0.038 (2) 0.0301 (19) −0.002 (2) 0.0008 (18) −0.0044 (16)
C14 0.052 (3) 0.036 (2) 0.045 (2) 0.005 (2) 0.006 (2) −0.0030 (19)
C15 0.048 (3) 0.041 (2) 0.057 (3) −0.004 (2) 0.013 (3) −0.015 (2)
C16 0.054 (3) 0.053 (3) 0.034 (2) −0.014 (2) 0.006 (2) −0.016 (2)

Geometric parameters (Å, º)

Br1—C2 1.887 (3) C9—C10 1.350 (7)
Br2—C4 1.889 (4) C10—C11 1.420 (6)
Br3—C6 1.892 (3) C11—C16 1.408 (7)
O1—C8 1.311 (5) C11—C12 1.418 (5)
O1—H1 0.8200 C12—C13 1.400 (5)
N1—N2 1.292 (4) C13—C14 1.369 (5)
N1—C1 1.414 (5) C14—C15 1.390 (6)
N2—C7 1.369 (5) C15—C16 1.351 (7)
C1—C2 1.406 (5) C3—H3 0.9300
C1—C6 1.387 (5) C5—H5 0.9300
C2—C3 1.373 (5) C9—H9 0.9300
C3—C4 1.377 (5) C10—H10 0.9300
C4—C5 1.378 (5) C13—H13 0.9300
C5—C6 1.389 (5) C14—H14 0.9300
C7—C8 1.409 (6) C15—H15 0.9300
C7—C12 1.455 (5) C16—H16 0.9300
C8—C9 1.420 (6)
C8—O1—H1 109.00 C12—C11—C16 119.4 (4)
N2—N1—C1 115.0 (3) C10—C11—C12 118.2 (4)
N1—N2—C7 116.3 (3) C7—C12—C13 122.8 (3)
N1—C1—C2 125.2 (3) C11—C12—C13 118.2 (3)
C2—C1—C6 117.0 (3) C7—C12—C11 119.0 (3)
N1—C1—C6 117.7 (3) C12—C13—C14 120.7 (3)
Br1—C2—C3 116.4 (2) C13—C14—C15 120.9 (4)
C1—C2—C3 121.0 (3) C14—C15—C16 120.0 (4)
Br1—C2—C1 122.5 (3) C11—C16—C15 120.9 (4)
C2—C3—C4 120.2 (3) C2—C3—H3 120.00
Br2—C4—C5 119.9 (3) C4—C3—H3 120.00
C3—C4—C5 120.8 (3) C4—C5—H5 121.00
Br2—C4—C3 119.3 (3) C6—C5—H5 121.00
C4—C5—C6 118.4 (3) C8—C9—H9 120.00
Br3—C6—C5 117.1 (2) C10—C9—H9 120.00
C1—C6—C5 122.5 (3) C9—C10—H10 118.00
Br3—C6—C1 120.4 (3) C11—C10—H10 118.00
N2—C7—C12 114.8 (3) C12—C13—H13 120.00
C8—C7—C12 120.0 (3) C14—C13—H13 120.00
N2—C7—C8 125.2 (3) C13—C14—H14 120.00
O1—C8—C9 118.2 (4) C15—C14—H14 120.00
C7—C8—C9 119.3 (4) C14—C15—H15 120.00
O1—C8—C7 122.5 (3) C16—C15—H15 120.00
C8—C9—C10 120.3 (4) C11—C16—H16 120.00
C9—C10—C11 123.2 (4) C15—C16—H16 120.00
C10—C11—C16 122.5 (4)
C1—N1—N2—C7 179.2 (3) C12—C7—C8—O1 −179.7 (4)
N2—N1—C1—C2 −38.6 (5) C12—C7—C8—C9 0.6 (6)
N2—N1—C1—C6 144.9 (4) N2—C7—C12—C11 −178.7 (3)
N1—N2—C7—C8 4.8 (6) N2—C7—C12—C13 3.3 (6)
N1—N2—C7—C12 −178.4 (3) C8—C7—C12—C11 −1.6 (6)
N1—C1—C2—Br1 −3.5 (5) C8—C7—C12—C13 −179.6 (4)
N1—C1—C2—C3 −179.8 (4) O1—C8—C9—C10 −178.5 (4)
C6—C1—C2—Br1 173.1 (3) C7—C8—C9—C10 1.3 (7)
C6—C1—C2—C3 −3.2 (6) C8—C9—C10—C11 −2.1 (7)
N1—C1—C6—Br3 −0.1 (5) C9—C10—C11—C12 1.0 (6)
N1—C1—C6—C5 179.9 (4) C9—C10—C11—C16 −179.2 (4)
C2—C1—C6—Br3 −176.9 (3) C10—C11—C12—C7 0.9 (6)
C2—C1—C6—C5 3.1 (6) C10—C11—C12—C13 179.0 (4)
Br1—C2—C3—C4 −175.1 (3) C16—C11—C12—C7 −179.0 (4)
C1—C2—C3—C4 1.4 (6) C16—C11—C12—C13 −0.9 (6)
C2—C3—C4—Br2 179.9 (3) C10—C11—C16—C15 −179.6 (4)
C2—C3—C4—C5 0.7 (6) C12—C11—C16—C15 0.2 (7)
Br2—C4—C5—C6 179.9 (3) C7—C12—C13—C14 178.7 (4)
C3—C4—C5—C6 −0.8 (6) C11—C12—C13—C14 0.7 (6)
C4—C5—C6—Br3 178.9 (3) C12—C13—C14—C15 0.2 (7)
C4—C5—C6—C1 −1.1 (6) C13—C14—C15—C16 −0.9 (7)
N2—C7—C8—O1 −3.0 (7) C14—C15—C16—C11 0.7 (7)
N2—C7—C8—C9 177.3 (4)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O1—H1···N1 0.82 1.85 2.561 (4) 144

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS5290).

References

  1. Bruker (2006). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Deveci, O., Işık, S., Albayrak, C. & Ağar, E. (2005). Acta Cryst. E61, o3226–o3227.
  3. El-Ghamry, H., Issa, R., El-Baradie, K., Isagai, K., Masaoka, S. & Sakai, K. (2008). Acta Cryst. E64, o1673–o1674. [DOI] [PMC free article] [PubMed]
  4. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  5. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  6. Gale, P. A., Chen, Z., Drew, M. G. B., Heath, J. A. & Beer, P. D. (1998). Polyhedron, 4, 405–412.
  7. Heinrich, M. R., Blank, O. & Wetzel, A. (2007). J. Org. Chem. 72, 476–484. [DOI] [PubMed]
  8. Sheldrick, G. M. (2004). SADABS University of Göttingen, Germany.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Wang, M., Funabiki, K. & Matsui, M. (2003). Dyes Pigm. 57, 77–86.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536813018977/is5290sup1.cif

e-69-o1250-sup1.cif (24.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813018977/is5290Isup2.hkl

e-69-o1250-Isup2.hkl (184.5KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813018977/is5290Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES