Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Jul 13;69(Pt 8):o1251–o1252. doi: 10.1107/S1600536813018564

1-(5-Bromo-2-oxoindolin-3-yl­idene)thio­semicarbazone

Katlen C T Bandeira a, Leandro Bresolin a, Christian Näther b, Inke Jess b, Adriano B Oliveira c,*
PMCID: PMC3793752  PMID: 24109339

Abstract

The title mol­ecule, C9H7BrN4OS, is essentially planar [r.m.s. deviation = 0.066 (2) Å], the maximum deviation from the mean plane through the non-H atoms being 0.190 (3) Å for the terminal amine N atom. In the crystal, mol­ecules are linked through N—H⋯O and N—H⋯S inter­actions, generating infinite chains along the b-axis direction. In turn, the chains are stacked along the a axis via π–π inter­actions [centroid–centroid distance = 3.470 (2) Å] and further connected by N—H⋯Br inter­actions into a three-dimensional network. An intra­molecular N—H⋯O hydrogen bond is also observed.

Related literature  

For the pharmacological properties of isatin-thio­semicarbazone derivatives against cruzain, falcipain-2 and rhodesain, see: Chiyanzu et al. (2003). For the synthesis of 5-bromo­isatin-3-thio­semicarbazone, see: Campaigne & Archer (1952). For the crystal structure of 1-(5-bromo-2-oxoindolin-3-yl­idene)thio­semicarbazide aceto­nitrile monosolvate, see: Pederzolli et al. (2011).graphic file with name e-69-o1251-scheme1.jpg

Experimental  

Crystal data  

  • C9H7BrN4OS

  • M r = 299.16

  • Orthorhombic, Inline graphic

  • a = 4.0185 (2) Å

  • b = 14.6418 (8) Å

  • c = 18.8276 (11) Å

  • V = 1107.78 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.88 mm−1

  • T = 293 K

  • 0.10 × 0.06 × 0.04 mm

Data collection  

  • Stoe IPDS-1 diffractometer

  • 7791 measured reflections

  • 2405 independent reflections

  • 2106 reflections with I > 2σ(I)

  • R int = 0.051

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.039

  • wR(F 2) = 0.091

  • S = 1.02

  • 2405 reflections

  • 148 parameters

  • H-atom parameters constrained

  • Δρmax = 0.73 e Å−3

  • Δρmin = −0.55 e Å−3

  • Absolute structure: Flack (1983), 951 Friedel pairs

  • Absolute structure parameter: −0.015 (13)

Data collection: X-AREA (Stoe & Cie, 2008); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, publication_text. DOI: 10.1107/S1600536813018564/lr2109sup1.cif

e-69-o1251-sup1.cif (16.1KB, cif)

Structure factors: contains datablock(s) platon_shelxl. DOI: 10.1107/S1600536813018564/lr2109Isup2.hkl

e-69-o1251-Isup2.hkl (118.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯S1i 0.86 2.82 3.507 (3) 139
N3—H3⋯O1 0.86 2.04 2.726 (4) 135
N4—H2N4⋯Br1ii 0.83 2.91 3.665 (4) 152
N4—H1N4⋯O1iii 0.87 1.99 2.851 (4) 167

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

We gratefully acknowledge financial support by the State of Schleswig–Holstein, Germany. We thank Professor Dr Wolfgang Bensch for access to his experimental facilities. We gratefully acknowledge financial support through the DECIT/SCTIE-MS-CNPq-FAPERGS-Pronem-# 11/2029–1 and PRONEX-CNPq-FAPERGS projects. KCTB thanks FAPEAM for the award of a scholarship and ABO acknowledges financial support through the FAPITEC/SE/FUNTEC/CNPq PPP 04/2011 program.

supplementary crystallographic information

Comment

Thiosemicarbazone derivatives have a wide range of biological properties. For example, isatin-based synthetic thiosemicarbazones show pharmacological activity against cruzain, falcipain-2 and rhodesain (Chiyanzu et al., 2003). As part of our study of thiosemicarbazone derivatives, we report herein the crystal structure of 5-bromoisatin-3-thiosemicarbazone (Campaigne & Archer, 1952). In the title compound, in which the molecular structure matches the asymmetric unit, the maximal deviation from the least squares plane through all non-hydrogen atoms amount to 0.1896 (32) Å for N4.The molecule shows an E conformation for the atoms about the N2—N3 bond (Fig. 1). The E conformation for the thiosemicarbazone fragment is also observed in the crystal structure of the 5-bromoisatin-3-thiosemicarbazone acetonitrile monosolvate (Pederzolli et al., 2011) and is related with the intramolecular N—H···O H-interaction (Table 1). The mean deviations from the least squares planes for the C1—C8/Br1/N1 and C9/N2—N4/S1 fragments amount to 0.0568 (26) Å for O1 and 0.0394 (27) Å for N3, respectively, and the dihedral angle between the two planes is 9.01 (12)°. The molecules are connected via centrosymmetric pairs of N—H···S and N—H···O interactions and additionally by N—H···Br interactions (Fig. 2 and Table 1) forming a three-dimensional hydrogen-bonded network, which stabilizes the crystal packing. Additionally, π–π-interactions are observed, with C···C distances = 3.396 (6) Å. The molecules are arranged in layers and are stacked into the crystallographic a-axis direction (Fig. 3).

Experimental

Starting materials were commercially available and were used without further purification. The 5-bromoisatine-3-thiosemicarbazone synthesis was adapted from a procedure reported previously (Campaigne & Archer, 1952). A mixture of of 5-bromoisatin (8,83 mmol) and thiosemicarbazide (8,83 mmol) in ethanol (50 ml) in the presence of a catalytic amount of hydrochloric acid was refluxed for 6 h. After cooling and filtering, the title compound was obtained. Crystals suitable for X-ray diffraction of 5-bromoisatine-3-thiosemicarbazone were obtained unexpectedly from an unsuccessful reaction of SnCl2 dihydrate with the title compound in methanol and dichloromethane by the slow evaporation of the solvents. Elemental analysis(%): Calc. 36.01 C, 2.69 H, 18.67 N, 10.68 S; found 35.95 C, 2.25 H, 18.67 N, 10.60 S.

Refinement

All non-hydrogen atoms were refined anisotropically. All C—H and N—H atoms were located in difference map but were positioned with idealized geometry and refined isotropically with Uiso(H) = 1.2 Ueq(C) using a riding model with C—H = 0.93 Å for aromatic and N—H = 0.86 Å for methyl H atoms. The terminal N—H atoms were located in difference map, their bond lengths were set to 0.86 Å and afterwards they were refined isotropically with Uiso(H) = 1.5 Ueq(N) using a riding model.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with displacement ellipsoids drawn at the 40% probability level.

Fig. 2.

Fig. 2.

Molecules of the title compound connected via N—H···S, N—H···O and N—H···Br interactions. H-interactions are indicated as dashed lines and the Figure is simplified for clarity.

Fig. 3.

Fig. 3.

A view of the stacking along the crystallographic a-axis. The π–π-interactions are drawn as dashed lines.Symmetry codes are: (iv) x - 1,y,z; (v) x + 1,y,z.

Crystal data

C9H7BrN4OS Z = 4
Mr = 299.16 F(000) = 592
Orthorhombic, P212121 Dx = 1.794 Mg m3
Hall symbol: P 2ac 2ab Mo Kα radiation, λ = 0.71073 Å
a = 4.0185 (2) Å µ = 3.88 mm1
b = 14.6418 (8) Å T = 293 K
c = 18.8276 (11) Å Prism, yellow
V = 1107.78 (10) Å3 0.10 × 0.06 × 0.04 mm

Data collection

Stoe IPDS-1 diffractometer 2106 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube, Stoe IPDS-1 Rint = 0.051
Graphite monochromator θmax = 27.0°, θmin = 2.6°
φ scans h = −4→5
7791 measured reflections k = −18→17
2405 independent reflections l = −24→24

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.039 w = 1/[σ2(Fo2) + (0.0516P)2 + 0.9296P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.091 (Δ/σ)max < 0.001
S = 1.02 Δρmax = 0.73 e Å3
2405 reflections Δρmin = −0.55 e Å3
148 parameters Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraints Extinction coefficient: 0.0123 (16)
Primary atom site location: structure-invariant direct methods Absolute structure: Flack (1983), 951 Friedel pairs
Secondary atom site location: difference Fourier map Flack parameter: −0.015 (13)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 1.14379 (13) 0.36317 (4) 0.59001 (2) 0.04209 (17)
S1 −0.1204 (3) 0.31338 (7) 0.15460 (5) 0.0298 (2)
O1 0.2574 (8) 0.5699 (2) 0.26587 (16) 0.0352 (8)
N1 0.5769 (10) 0.6107 (2) 0.36442 (17) 0.0271 (8)
H1 0.5788 0.6690 0.3590 0.033*
N2 0.3785 (9) 0.3806 (2) 0.32307 (15) 0.0223 (6)
N3 0.2026 (9) 0.3844 (2) 0.26195 (17) 0.0248 (7)
H3 0.1764 0.4359 0.2406 0.030*
N4 0.0979 (10) 0.2311 (2) 0.27236 (17) 0.0285 (7)
H1N4 0.0154 0.1799 0.2562 0.029 (13)*
H2N4 0.1793 0.2242 0.3124 0.038 (15)*
C1 0.4265 (11) 0.5512 (3) 0.31935 (19) 0.0254 (9)
C2 0.4870 (10) 0.4577 (2) 0.3483 (2) 0.0209 (7)
C3 0.6801 (9) 0.4700 (2) 0.4126 (2) 0.0213 (7)
C4 0.8021 (10) 0.4087 (3) 0.4623 (2) 0.0253 (8)
H4 0.7701 0.3461 0.4574 0.030*
C5 0.9739 (11) 0.4448 (3) 0.5197 (2) 0.0299 (9)
C6 1.0274 (11) 0.5383 (3) 0.5283 (2) 0.0335 (10)
H6 1.1455 0.5597 0.5674 0.040*
C7 0.9031 (13) 0.5993 (3) 0.4782 (2) 0.0344 (10)
H7 0.9363 0.6618 0.4832 0.041*
C8 0.7292 (10) 0.5647 (3) 0.4210 (2) 0.0269 (9)
C9 0.0663 (9) 0.3069 (3) 0.2340 (2) 0.0227 (8)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.0320 (2) 0.0652 (3) 0.0290 (2) −0.0030 (3) −0.0044 (2) 0.0148 (2)
S1 0.0302 (5) 0.0322 (5) 0.0270 (4) −0.0033 (5) −0.0081 (5) 0.0052 (4)
O1 0.052 (2) 0.0260 (14) 0.0281 (14) 0.0089 (13) −0.0046 (13) 0.0020 (12)
N1 0.038 (2) 0.0155 (15) 0.0274 (16) 0.0004 (13) 0.0009 (15) −0.0012 (11)
N2 0.0221 (15) 0.0232 (15) 0.0218 (13) 0.0011 (14) −0.0005 (14) −0.0003 (11)
N3 0.030 (2) 0.0213 (16) 0.0228 (14) 0.0008 (13) −0.0016 (13) 0.0024 (12)
N4 0.035 (2) 0.0228 (16) 0.0272 (16) −0.0010 (15) −0.0076 (16) 0.0050 (12)
C1 0.030 (2) 0.0227 (18) 0.0233 (18) 0.0025 (16) 0.0038 (16) 0.0031 (14)
C2 0.0209 (18) 0.0195 (17) 0.0223 (17) 0.0033 (14) 0.0046 (14) 0.0013 (14)
C3 0.0202 (19) 0.0214 (16) 0.0224 (16) −0.0034 (14) 0.0063 (17) −0.0001 (14)
C4 0.020 (2) 0.0313 (19) 0.0241 (17) −0.0021 (15) 0.0031 (15) 0.0055 (15)
C5 0.021 (2) 0.046 (2) 0.0223 (18) −0.0016 (17) 0.0043 (15) 0.0033 (17)
C6 0.029 (2) 0.045 (3) 0.027 (2) −0.0087 (19) 0.0034 (17) −0.0087 (18)
C7 0.036 (3) 0.036 (2) 0.0306 (19) −0.010 (2) 0.010 (2) −0.0104 (16)
C8 0.030 (2) 0.0275 (19) 0.0236 (19) −0.0019 (15) 0.0086 (15) −0.0031 (15)
C9 0.018 (2) 0.0256 (18) 0.0248 (17) −0.0018 (14) 0.0051 (14) 0.0014 (15)

Geometric parameters (Å, º)

Br1—C5 1.910 (4) N4—H2N4 0.8285
S1—C9 1.675 (4) C1—C2 1.494 (5)
O1—C1 1.245 (5) C2—C3 1.449 (6)
N1—C1 1.358 (5) C3—C4 1.387 (5)
N1—C8 1.400 (5) C3—C8 1.409 (5)
N1—H1 0.8598 C4—C5 1.386 (6)
N2—C2 1.299 (5) C4—H4 0.9300
N2—N3 1.352 (4) C5—C6 1.396 (6)
N3—C9 1.367 (5) C6—C7 1.392 (7)
N3—H3 0.8600 C6—H6 0.9300
N4—C9 1.330 (5) C7—C8 1.381 (6)
N4—H1N4 0.8746 C7—H7 0.9300
C1—N1—C8 111.2 (3) C5—C4—C3 117.1 (4)
C1—N1—H1 124.5 C5—C4—H4 121.4
C8—N1—H1 124.3 C3—C4—H4 121.4
C2—N2—N3 116.8 (3) C4—C5—C6 122.8 (4)
N2—N3—C9 120.2 (3) C4—C5—Br1 118.7 (3)
N2—N3—H3 119.9 C6—C5—Br1 118.5 (3)
C9—N3—H3 119.9 C7—C6—C5 119.7 (4)
C9—N4—H1N4 119.3 C7—C6—H6 120.2
C9—N4—H2N4 129.3 C5—C6—H6 120.2
H1N4—N4—H2N4 111.2 C8—C7—C6 118.4 (4)
O1—C1—N1 127.3 (4) C8—C7—H7 120.8
O1—C1—C2 125.9 (4) C6—C7—H7 120.8
N1—C1—C2 106.7 (3) C7—C8—N1 129.6 (4)
N2—C2—C3 126.4 (3) C7—C8—C3 121.3 (4)
N2—C2—C1 127.4 (4) N1—C8—C3 109.1 (3)
C3—C2—C1 106.1 (3) N4—C9—N3 116.4 (3)
C4—C3—C8 120.7 (4) N4—C9—S1 125.1 (3)
C4—C3—C2 132.3 (3) N3—C9—S1 118.4 (3)
C8—C3—C2 106.9 (3)
C2—N2—N3—C9 −176.8 (4) C3—C4—C5—C6 −0.3 (6)
C8—N1—C1—O1 176.5 (4) C3—C4—C5—Br1 179.5 (3)
C8—N1—C1—C2 −0.5 (5) C4—C5—C6—C7 0.5 (7)
N3—N2—C2—C3 −179.9 (4) Br1—C5—C6—C7 −179.3 (3)
N3—N2—C2—C1 3.1 (6) C5—C6—C7—C8 0.0 (7)
O1—C1—C2—N2 0.6 (7) C6—C7—C8—N1 179.1 (4)
N1—C1—C2—N2 177.7 (4) C6—C7—C8—C3 −0.6 (6)
O1—C1—C2—C3 −176.9 (4) C1—N1—C8—C7 −179.1 (4)
N1—C1—C2—C3 0.2 (4) C1—N1—C8—C3 0.6 (5)
N2—C2—C3—C4 0.9 (7) C4—C3—C8—C7 0.8 (6)
C1—C2—C3—C4 178.4 (4) C2—C3—C8—C7 179.3 (4)
N2—C2—C3—C8 −177.4 (4) C4—C3—C8—N1 −178.9 (3)
C1—C2—C3—C8 0.1 (4) C2—C3—C8—N1 −0.4 (4)
C8—C3—C4—C5 −0.3 (6) N2—N3—C9—N4 4.4 (6)
C2—C3—C4—C5 −178.4 (4) N2—N3—C9—S1 −174.7 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1···S1i 0.86 2.82 3.507 (3) 139
N3—H3···O1 0.86 2.04 2.726 (4) 135
N4—H2N4···Br1ii 0.83 2.91 3.665 (4) 152
N4—H1N4···O1iii 0.87 1.99 2.851 (4) 167

Symmetry codes: (i) −x, y+1/2, −z+1/2; (ii) x−1/2, −y+1/2, −z+1; (iii) −x, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LR2109).

References

  1. Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  2. Campaigne, E. & Archer, W. L. (1952). J. Am. Chem. Soc. 74, 5801.
  3. Chiyanzu, I., Hansell, E., Gut, J., Rosenthal, P. J., McKerrow, J. H. & Chibale, K. (2003). Bioorg. Med. Chem. Lett. 13, 3527–3530. [DOI] [PubMed]
  4. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  5. Pederzolli, F. R. S., Bresolin, L., Carratu, V. S., Locatelli, A. & Oliveira, A. B. de (2011). Acta Cryst. E67, o1804. [DOI] [PMC free article] [PubMed]
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Stoe & Cie (2008). X-AREA and X-RED32 Stoe & Cie, Darmstadt, Germany.
  8. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, publication_text. DOI: 10.1107/S1600536813018564/lr2109sup1.cif

e-69-o1251-sup1.cif (16.1KB, cif)

Structure factors: contains datablock(s) platon_shelxl. DOI: 10.1107/S1600536813018564/lr2109Isup2.hkl

e-69-o1251-Isup2.hkl (118.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES