Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Jul 13;69(Pt 8):o1255–o1256. doi: 10.1107/S1600536813018680

2,2-Diphenyl-N-{[2-(tri­fluoro­meth­yl)phen­yl]carbamo­thio­yl}acetamide

Mohd Sukeri Mohd Yusof a, Nur Rafikah Razali a, Suhana Arshad b,, Azhar Abdul Rahman b, Ibrahim Abdul Razak b,*,§
PMCID: PMC3793754  PMID: 24109341

Abstract

The title mol­ecule, C22H17F3N2OS, adopts a transcis conformation with respect to the positions of the carbonyl and tri­fluoro­methyl­benzene groups against the thio­carbonyl group across the C—N bonds. The mol­ecular structure is stabilized by an intra­molecular N—H⋯O hydrogen bond with an S(6) ring motif. The tri­fluoro­methyl-substituted benzene ring forms dihedral angles of 66.05 (9) and 47.19 (9)° with the terminal phenyl rings and is twisted from the O=C—N—(C=S)—N carbonyl­thio­urea plane [maximum deviation = 0.0535 (12) Å], making a dihedral angle of 63.59 (8)°. In the crystal, N—H⋯O and C—H⋯F hydrogen bonds link the mol­ecules into a layer parallel to the bc plane. A C—H⋯π inter­action is also observed.

Related literature  

For the biological activity of thio­urea derivatives, see: Vankatachalam et al. (2001). For related structures, see: Yusof, Arshad et al. (2012); Yusof, Embong et al. (2012); Yusof, Mutalib et al. (2012). For hydrogen-bond motifs, see: Bernstein et al. (1995). For bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).graphic file with name e-69-o1255-scheme1.jpg

Experimental  

Crystal data  

  • C22H17F3N2OS

  • M r = 414.44

  • Orthorhombic, Inline graphic

  • a = 20.0318 (4) Å

  • b = 10.2866 (2) Å

  • c = 9.5351 (2) Å

  • V = 1964.79 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 100 K

  • 0.56 × 0.18 × 0.06 mm

Data collection  

  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.892, T max = 0.987

  • 21265 measured reflections

  • 5618 independent reflections

  • 4608 reflections with I > 2σ(I)

  • R int = 0.047

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.044

  • wR(F 2) = 0.081

  • S = 1.02

  • 5618 reflections

  • 270 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.25 e Å−3

  • Absolute structure: Flack (1983), 2568 Freidel pairs

  • Flack parameter: 0.01 (6)

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536813018680/is5283sup1.cif

e-69-o1255-sup1.cif (28.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813018680/is5283Isup2.hkl

e-69-o1255-Isup2.hkl (275.1KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813018680/is5283Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N1⋯O1 0.96 (3) 1.93 (2) 2.6237 (19) 127 (2)
N2—H1N2⋯O1i 0.81 (2) 2.04 (2) 2.838 (2) 174 (2)
C9—H9A⋯F1ii 0.95 2.53 3.395 (2) 151
C7—H7ACg1iii 1.00 2.84 3.7826 (19) 158

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

The authors thank the Malaysian Government and Universiti Sains Malaysia (USM) for the USM Short Term Grant, No. 304/PFIZIK/6312078, to conduct this work. SA thanks the Malaysian Government and USM for an Academic Staff Training Scheme Fellowship (ASTS).

supplementary crystallographic information

Comment

Recent studies have shown that thiourea derivatives are potential biologically active agents, such as antimicrobials and HIV inhibitors (Vankatachalam et al., 2001). The molecular structure of the title compound is shown in Fig. 1. The bond lengths (Allen et al., 1987) and angles are within normal ranges and are comparable to the related structures (Yusof, Arshad et al., 2012; Yusof, Embong et al., 2012; Yusof, Mutalib et al., 2012). The molecule adopts a trans-cis configuration with respect to the positions of diphenylmethane and trifluoromethylbenzene (F1–F3/C16–C22) groups, respectively, to the sulfur (S1) atom across the C—N bond. The trifluoromethyl-substituted benzene ring (C16–C21) forms dihedral angles of 66.05 (9) and 47.19 (9)° with the terminal phenyl rings, C1–C6 and C8–C13, respectively. Furthermore, the trifluoromethylbenzene plane (C16–C22) is slightly twisted from the carbonyl thiourea moiety (S1/O1/N1/N2/C15/C14) with a C15—N1—C16—C21 torsion angle of 119.3 (2)°. In the molecule, an intramolecular N2—H1N2···O1 hydrogen bond forms an S(6) graph-set motif (Bernstein et al., 1995).

In the crystal (Fig. 2), molecules are linked into a one-dimensional chain along the c-axis via intermolecular N2—H1N2···O1 hydrogen bonds (Table 1) and further connected into a two dimensional layer parallel to the bc-plane by intermolecular C9—H9A···F1 hydrogen bonds (Table 1). In addition, a C7—H7A···Cg1 (Table 1) interaction is also observed in the crystal structure (Cg1 is the centroid of C1–C6).

Experimental

An acetone (30 ml) solution of 2-triflouroaniline (1.25 g, 8.4 mmol) was added to a round-bottom flask containing 2,2-diphenylacetyl chloride (1.93 g, 8.4 mmol) and ammonium thiocyanate (0.64 g, 8.4 mmol). The mixture was put at reflux for 1.5 H then filtered off and left to evaporate at room temperature. The colourless precipitate obtained was washed with water and cold ethanol. Colourless crystals suitable for X-ray analysis were obtained by recrystallization of the precipitate in acetone.

Refinement

N-bound H atoms were located in a difference Fourier map. Atom H1N1 was refined freely [N—H = 0.96 (3) Å], while atom H1N2 was refined with a bond restraint N—H = 0.85 (2) Å [refined distance: N1—H1N1 = 0.807 (15) Å]. The remaining H atoms were positioned geometrically (C—H = 0.95 or 1.00 Å) and refined using a riding model with Uiso(H) = 1.2Ueq(C). In the final refinement, one outlier was omitted (10 0 -7).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with atom labels with 50% probability displacement ellipsoids. The dashed line represents the intramolecular hydrogen bond.

Fig. 2.

Fig. 2.

The crystal packing of the title compound. The H atoms not involved in the intermolecular interactions (dashed lines) have been omitted for clarity.

Crystal data

C22H17F3N2OS F(000) = 856
Mr = 414.44 Dx = 1.401 Mg m3
Orthorhombic, Pca21 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2ac Cell parameters from 5325 reflections
a = 20.0318 (4) Å θ = 2.2–27.2°
b = 10.2866 (2) Å µ = 0.21 mm1
c = 9.5351 (2) Å T = 100 K
V = 1964.79 (7) Å3 Plate, colourless
Z = 4 0.56 × 0.18 × 0.06 mm

Data collection

Bruker SMART APEXII CCD area-detector diffractometer 5618 independent reflections
Radiation source: fine-focus sealed tube 4608 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.047
φ and ω scans θmax = 30.1°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −27→28
Tmin = 0.892, Tmax = 0.987 k = −14→14
21265 measured reflections l = −13→13

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.081 w = 1/[σ2(Fo2) + (0.0299P)2 + 0.2655P] where P = (Fo2 + 2Fc2)/3
S = 1.02 (Δ/σ)max = 0.001
5618 reflections Δρmax = 0.24 e Å3
270 parameters Δρmin = −0.25 e Å3
2 restraints Absolute structure: Flack (1983), 2568 Freidel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: 0.01 (6)

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
F1 0.34230 (6) 0.45765 (11) −0.02227 (17) 0.0418 (4)
F2 0.32081 (5) 0.66244 (10) −0.02775 (14) 0.0327 (3)
F3 0.29424 (5) 0.54911 (10) 0.15416 (15) 0.0328 (3)
S1 0.35402 (2) 0.73635 (4) 0.50740 (6) 0.02441 (11)
N1 0.36053 (7) 0.78665 (14) 0.2330 (2) 0.0187 (3)
N2 0.28048 (8) 0.90001 (14) 0.3579 (2) 0.0174 (3)
O1 0.27383 (6) 0.95082 (11) 0.12731 (15) 0.0193 (3)
C1 0.14450 (8) 1.10138 (16) 0.0592 (2) 0.0181 (4)
H1A 0.1299 1.0144 0.0731 0.022*
C2 0.12280 (9) 1.16913 (18) −0.0574 (2) 0.0224 (4)
H2A 0.0944 1.1282 −0.1238 0.027*
C3 0.14277 (9) 1.29838 (18) −0.0774 (2) 0.0257 (5)
H3A 0.1276 1.3458 −0.1568 0.031*
C4 0.18467 (8) 1.35616 (16) 0.0193 (2) 0.0243 (5)
H4A 0.1982 1.4439 0.0065 0.029*
C5 0.20734 (8) 1.28682 (16) 0.1358 (2) 0.0222 (4)
H5A 0.2365 1.3272 0.2012 0.027*
C6 0.18726 (8) 1.15807 (15) 0.1565 (2) 0.0168 (4)
C7 0.20977 (8) 1.08378 (15) 0.2869 (2) 0.0152 (4)
H7A 0.2368 1.1458 0.3444 0.018*
C8 0.14922 (8) 1.04613 (16) 0.3756 (2) 0.0161 (4)
C9 0.12615 (9) 1.13343 (17) 0.4758 (2) 0.0217 (4)
H9A 0.1498 1.2121 0.4917 0.026*
C10 0.06891 (9) 1.10700 (18) 0.5532 (2) 0.0253 (4)
H10A 0.0533 1.1678 0.6206 0.030*
C11 0.03473 (9) 0.99143 (19) 0.5314 (2) 0.0273 (5)
H11A −0.0043 0.9727 0.5843 0.033*
C12 0.05759 (9) 0.90365 (18) 0.4329 (2) 0.0240 (5)
H12A 0.0341 0.8246 0.4183 0.029*
C13 0.11465 (9) 0.92994 (16) 0.3548 (2) 0.0201 (4)
H13A 0.1301 0.8689 0.2874 0.024*
C14 0.25639 (8) 0.97102 (14) 0.2475 (2) 0.0148 (3)
C15 0.33231 (8) 0.80792 (16) 0.3580 (2) 0.0176 (4)
C16 0.41583 (8) 0.70043 (16) 0.2104 (2) 0.0185 (4)
C17 0.47773 (9) 0.72797 (17) 0.2680 (2) 0.0216 (4)
H17A 0.4830 0.8010 0.3280 0.026*
C18 0.53209 (9) 0.64879 (18) 0.2380 (2) 0.0260 (5)
H18A 0.5745 0.6681 0.2774 0.031*
C19 0.52477 (9) 0.54208 (18) 0.1511 (3) 0.0295 (5)
H19A 0.5619 0.4874 0.1320 0.035*
C20 0.46349 (9) 0.51515 (18) 0.0922 (3) 0.0269 (5)
H20A 0.4586 0.4424 0.0317 0.032*
C21 0.40852 (9) 0.59409 (16) 0.1208 (2) 0.0213 (4)
C22 0.34224 (9) 0.56611 (17) 0.0566 (3) 0.0261 (5)
H1N2 0.2679 (10) 0.9143 (17) 0.4368 (17) 0.015 (6)*
H1N1 0.3439 (11) 0.823 (2) 0.147 (3) 0.049 (7)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
F1 0.0392 (7) 0.0294 (6) 0.0567 (11) −0.0032 (5) −0.0016 (8) −0.0226 (7)
F2 0.0323 (6) 0.0328 (6) 0.0330 (8) −0.0032 (5) −0.0084 (6) −0.0004 (6)
F3 0.0265 (5) 0.0316 (6) 0.0403 (9) −0.0078 (4) 0.0048 (6) −0.0017 (6)
S1 0.0327 (2) 0.02260 (19) 0.0179 (2) 0.00898 (17) 0.0012 (3) 0.0045 (2)
N1 0.0213 (7) 0.0191 (7) 0.0156 (9) 0.0036 (6) −0.0009 (8) −0.0003 (7)
N2 0.0215 (7) 0.0200 (7) 0.0107 (9) 0.0040 (6) 0.0024 (8) −0.0003 (7)
O1 0.0197 (6) 0.0248 (6) 0.0135 (8) 0.0022 (5) −0.0008 (6) 0.0012 (6)
C1 0.0161 (7) 0.0196 (8) 0.0187 (10) −0.0002 (6) 0.0020 (8) 0.0020 (8)
C2 0.0202 (8) 0.0273 (9) 0.0196 (11) 0.0014 (7) −0.0015 (9) 0.0023 (9)
C3 0.0211 (9) 0.0286 (9) 0.0274 (13) 0.0056 (7) 0.0021 (9) 0.0119 (9)
C4 0.0224 (8) 0.0200 (7) 0.0306 (13) 0.0011 (6) 0.0028 (10) 0.0105 (9)
C5 0.0185 (8) 0.0188 (7) 0.0293 (13) −0.0021 (6) 0.0018 (10) 0.0033 (9)
C6 0.0150 (7) 0.0169 (7) 0.0186 (11) 0.0018 (6) 0.0020 (8) 0.0023 (8)
C7 0.0163 (7) 0.0154 (7) 0.0138 (10) −0.0015 (6) −0.0004 (8) −0.0005 (7)
C8 0.0165 (7) 0.0195 (8) 0.0124 (10) 0.0018 (6) −0.0008 (8) 0.0021 (7)
C9 0.0228 (8) 0.0226 (7) 0.0196 (12) 0.0038 (6) −0.0019 (9) 0.0013 (8)
C10 0.0252 (9) 0.0319 (9) 0.0188 (11) 0.0098 (7) 0.0021 (9) 0.0015 (9)
C11 0.0180 (8) 0.0378 (10) 0.0260 (14) 0.0047 (7) 0.0044 (10) 0.0123 (10)
C12 0.0190 (8) 0.0265 (9) 0.0266 (13) −0.0021 (7) −0.0007 (9) 0.0081 (9)
C13 0.0188 (8) 0.0209 (8) 0.0205 (11) 0.0003 (6) −0.0009 (9) 0.0038 (9)
C14 0.0132 (7) 0.0164 (7) 0.0147 (10) −0.0030 (6) −0.0007 (8) 0.0026 (8)
C15 0.0199 (8) 0.0142 (7) 0.0187 (10) −0.0012 (6) 0.0015 (9) 0.0011 (8)
C16 0.0195 (8) 0.0176 (7) 0.0184 (11) 0.0030 (6) 0.0024 (9) 0.0021 (8)
C17 0.0239 (9) 0.0209 (8) 0.0199 (11) 0.0006 (7) −0.0005 (9) 0.0008 (8)
C18 0.0201 (8) 0.0277 (9) 0.0303 (13) 0.0017 (7) 0.0004 (10) 0.0047 (10)
C19 0.0255 (9) 0.0252 (9) 0.0378 (15) 0.0072 (7) 0.0066 (11) 0.0030 (10)
C20 0.0301 (9) 0.0196 (8) 0.0309 (14) 0.0026 (7) 0.0053 (10) −0.0042 (9)
C21 0.0231 (8) 0.0162 (7) 0.0247 (12) −0.0007 (6) 0.0029 (9) −0.0006 (8)
C22 0.0275 (9) 0.0197 (8) 0.0313 (13) −0.0021 (7) 0.0027 (10) −0.0066 (9)

Geometric parameters (Å, º)

F1—C22 1.345 (2) C7—C14 1.536 (2)
F2—C22 1.346 (2) C7—H7A 1.0000
F3—C22 1.349 (2) C8—C9 1.391 (3)
S1—C15 1.661 (2) C8—C13 1.395 (2)
N1—C15 1.337 (3) C9—C10 1.390 (3)
N1—C16 1.435 (2) C9—H9A 0.9500
N1—H1N1 0.96 (3) C10—C11 1.388 (3)
N2—C14 1.369 (3) C10—H10A 0.9500
N2—C15 1.405 (2) C11—C12 1.382 (3)
N2—H1N2 0.807 (15) C11—H11A 0.9500
O1—C14 1.216 (2) C12—C13 1.391 (3)
C1—C2 1.382 (3) C12—H12A 0.9500
C1—C6 1.391 (3) C13—H13A 0.9500
C1—H1A 0.9500 C16—C17 1.386 (2)
C2—C3 1.402 (3) C16—C21 1.395 (3)
C2—H2A 0.9500 C17—C18 1.390 (2)
C3—C4 1.382 (3) C17—H17A 0.9500
C3—H3A 0.9500 C18—C19 1.383 (3)
C4—C5 1.396 (3) C18—H18A 0.9500
C4—H4A 0.9500 C19—C20 1.378 (3)
C5—C6 1.398 (2) C19—H19A 0.9500
C5—H5A 0.9500 C20—C21 1.395 (2)
C6—C7 1.527 (3) C20—H20A 0.9500
C7—C8 1.529 (2) C21—C22 1.490 (3)
C15—N1—C16 124.13 (18) C12—C11—C10 119.86 (18)
C15—N1—H1N1 123.6 (14) C12—C11—H11A 120.1
C16—N1—H1N1 112.2 (15) C10—C11—H11A 120.1
C14—N2—C15 128.37 (19) C11—C12—C13 120.64 (18)
C14—N2—H1N2 120.6 (14) C11—C12—H12A 119.7
C15—N2—H1N2 110.6 (14) C13—C12—H12A 119.7
C2—C1—C6 121.25 (16) C12—C13—C8 119.89 (19)
C2—C1—H1A 119.4 C12—C13—H13A 120.1
C6—C1—H1A 119.4 C8—C13—H13A 120.1
C1—C2—C3 119.90 (18) O1—C14—N2 122.15 (15)
C1—C2—H2A 120.1 O1—C14—C7 122.26 (17)
C3—C2—H2A 120.1 N2—C14—C7 115.46 (18)
C4—C3—C2 119.35 (19) N1—C15—N2 114.95 (19)
C4—C3—H3A 120.3 N1—C15—S1 125.53 (14)
C2—C3—H3A 120.3 N2—C15—S1 119.53 (16)
C3—C4—C5 120.61 (16) C17—C16—C21 119.80 (16)
C3—C4—H4A 119.7 C17—C16—N1 120.32 (16)
C5—C4—H4A 119.7 C21—C16—N1 119.68 (16)
C4—C5—C6 120.18 (18) C16—C17—C18 119.99 (18)
C4—C5—H5A 119.9 C16—C17—H17A 120.0
C6—C5—H5A 119.9 C18—C17—H17A 120.0
C1—C6—C5 118.69 (17) C19—C18—C17 120.36 (18)
C1—C6—C7 120.99 (14) C19—C18—H18A 119.8
C5—C6—C7 120.27 (17) C17—C18—H18A 119.8
C6—C7—C8 110.06 (13) C20—C19—C18 119.87 (17)
C6—C7—C14 111.04 (16) C20—C19—H19A 120.1
C8—C7—C14 115.23 (13) C18—C19—H19A 120.1
C6—C7—H7A 106.7 C19—C20—C21 120.42 (18)
C8—C7—H7A 106.7 C19—C20—H20A 119.8
C14—C7—H7A 106.7 C21—C20—H20A 119.8
C9—C8—C13 119.07 (17) C20—C21—C16 119.55 (17)
C9—C8—C7 118.72 (15) C20—C21—C22 120.68 (17)
C13—C8—C7 122.14 (17) C16—C21—C22 119.77 (16)
C10—C9—C8 120.82 (17) F1—C22—F2 106.09 (19)
C10—C9—H9A 119.6 F1—C22—F3 106.16 (14)
C8—C9—H9A 119.6 F2—C22—F3 106.26 (15)
C11—C10—C9 119.71 (18) F1—C22—C21 112.90 (15)
C11—C10—H10A 120.1 F2—C22—C21 112.79 (15)
C9—C10—H10A 120.1 F3—C22—C21 112.10 (19)
C6—C1—C2—C3 −1.4 (3) C8—C7—C14—O1 128.74 (18)
C1—C2—C3—C4 0.7 (3) C6—C7—C14—N2 178.66 (14)
C2—C3—C4—C5 0.3 (3) C8—C7—C14—N2 −55.4 (2)
C3—C4—C5—C6 −0.6 (3) C16—N1—C15—N2 177.55 (15)
C2—C1—C6—C5 1.1 (3) C16—N1—C15—S1 −2.0 (3)
C2—C1—C6—C7 178.57 (16) C14—N2—C15—N1 −1.1 (3)
C4—C5—C6—C1 −0.1 (3) C14—N2—C15—S1 178.46 (14)
C4—C5—C6—C7 −177.58 (16) C15—N1—C16—C17 −65.9 (2)
C1—C6—C7—C8 −60.0 (2) C15—N1—C16—C21 119.3 (2)
C5—C6—C7—C8 117.41 (17) C21—C16—C17—C18 −0.8 (3)
C1—C6—C7—C14 68.76 (19) N1—C16—C17—C18 −175.70 (19)
C5—C6—C7—C14 −113.78 (17) C16—C17—C18—C19 −0.2 (3)
C6—C7—C8—C9 −88.1 (2) C17—C18—C19—C20 1.0 (3)
C14—C7—C8—C9 145.37 (17) C18—C19—C20—C21 −0.7 (3)
C6—C7—C8—C13 88.9 (2) C19—C20—C21—C16 −0.4 (3)
C14—C7—C8—C13 −37.6 (3) C19—C20—C21—C22 179.5 (2)
C13—C8—C9—C10 −1.0 (3) C17—C16—C21—C20 1.1 (3)
C7—C8—C9—C10 176.08 (17) N1—C16—C21—C20 176.01 (19)
C8—C9—C10—C11 0.8 (3) C17—C16—C21—C22 −178.75 (18)
C9—C10—C11—C12 −0.3 (3) N1—C16—C21—C22 −3.9 (3)
C10—C11—C12—C13 0.0 (3) C20—C21—C22—F1 2.8 (3)
C11—C12—C13—C8 −0.2 (3) C16—C21—C22—F1 −177.32 (18)
C9—C8—C13—C12 0.7 (3) C20—C21—C22—F2 −117.5 (2)
C7—C8—C13—C12 −176.30 (18) C16—C21—C22—F2 62.4 (3)
C15—N2—C14—O1 8.3 (3) C20—C21—C22—F3 122.6 (2)
C15—N2—C14—C7 −167.60 (16) C16—C21—C22—F3 −57.5 (2)
C6—C7—C14—O1 2.8 (2)

Hydrogen-bond geometry (Å, º)

Cg1 is the centroid of the C1–C6 ring.

D—H···A D—H H···A D···A D—H···A
N1—H1N1···O1 0.96 (3) 1.93 (2) 2.6237 (19) 127 (2)
N2—H1N2···O1i 0.81 (2) 2.04 (2) 2.838 (2) 174 (2)
C9—H9A···F1ii 0.95 2.53 3.395 (2) 151
C7—H7A···Cg1iii 1.00 2.84 3.7826 (19) 158

Symmetry codes: (i) −x+1/2, y, z+1/2; (ii) −x+1/2, y+1, z+1/2; (iii) x+1/2, −y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS5283).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  3. Bruker (2009). SADABS, APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.
  5. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  8. Vankatachalam, T. K., Sudbeck, E. A., Mao, C. & Uckun, F. M. (2001). Bioorg. Med. Chem. Lett. 11, 523–528. [DOI] [PubMed]
  9. Yusof, M. S. M., Arshad, S., Razak, I. A. & Rahman, A. A. (2012). Acta Cryst. E68, o2670. [DOI] [PMC free article] [PubMed]
  10. Yusof, M. S. M., Embong, N. F., Arshad, S. & Razak, I. A. (2012). Acta Cryst. E68, o1029. [DOI] [PMC free article] [PubMed]
  11. Yusof, M. S. M., Mutalib, S. F. A., Arshad, S. & Razak, I. A. (2012). Acta Cryst. E68, o982. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536813018680/is5283sup1.cif

e-69-o1255-sup1.cif (28.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813018680/is5283Isup2.hkl

e-69-o1255-Isup2.hkl (275.1KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813018680/is5283Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES