Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Jul 13;69(Pt 8):o1259. doi: 10.1107/S1600536813019120

4-Phenyl-1,2,4-tri­aza­spiro­[4.5]dec-1-ene-3-thione

Mehmet Akkurt a, Joel T Mague b, Shaaban K Mohamed c,d, Alaa A Hassan d, Mustafa R Albayati e,*
PMCID: PMC3793756  PMID: 24109343

Abstract

In the title compound, C13H15N3S, the 4,5-di­hydro-3H-1,2,4-triazole ring is nearly planar [maximum deviation = 0.020 (1) Å], while the cyclo­hexane ring adopts a chair conformation. The dihedral angle between the 4,5-di­hydro-3H-1,2,4-triazole ring and the phenyl ring is 74.68 (7)°. No specific inter­molecular inter­actions are discerned in the crystal packing.

Related literature  

For wide-spectrum medicinal applications of spiro compounds incorporating heterocyclic substructures, see: Patil et al. (2010); Pawar et al. (2009); Thadhaney et al. (2010); Chin et al. (2008); Wang et al. (2007); Chande et al. (2005); Obniska et al. (2006); Kamiński et al. (2008); Sarma et al. (2010); Shimakawa et al. (2003). For ring-puckering parameters, see: Cremer & Pople (1975).graphic file with name e-69-o1259-scheme1.jpg

Experimental  

Crystal data  

  • C13H15N3S

  • M r = 245.34

  • Orthorhombic, Inline graphic

  • a = 9.4952 (9) Å

  • b = 7.4845 (7) Å

  • c = 34.692 (3) Å

  • V = 2465.5 (4) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 150 K

  • 0.28 × 0.22 × 0.17 mm

Data collection  

  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2013) T min = 0.810, T max = 0.960

  • 41202 measured reflections

  • 3168 independent reflections

  • 2899 reflections with I > 2σ(I)

  • R int = 0.046

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.042

  • wR(F 2) = 0.104

  • S = 1.10

  • 3168 reflections

  • 154 parameters

  • H-atom parameters constrained

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.25 e Å−3

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536813019120/tk5237sup1.cif

e-69-o1259-sup1.cif (22.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813019120/tk5237Isup2.hkl

e-69-o1259-Isup2.hkl (174.1KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813019120/tk5237Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

Tulane University, Erciyes University and Minia University are gratefully acknowledged for supporting this study.

supplementary crystallographic information

Comment

Heterocyclic compounds such as 1.2.4-triazoles exhibit a wide range of biological activities (Patil et al., 2010). Several spiro-compounds incorporating different heterocyclic structures have showed significant industrial and pharmaceutical applications such as anti-microbial (Pawar et al., 2009; Thadhaney et al., 2010), anti-cancer (Chin et al., 2008; Wang et al., 2007), anti-tubercular (Chande et al., 2005) and anti-convulsant activities (Obniska et al., 2006; Kamiński et al., 2008) as well as functioning as antioxidants (Sarma et al., 2010; Shimakawa et al., 2003). In view of such facts and as part of our on-going study on the synthesis of bio-active molecules, we herein report the synthesis and crystal structure of the title compound (I).

As shown in Fig. 1, the 4,5-dihydro-3H-1,2,4-triazole ring (N1–N3/C1/C2) of (I) is nearly planar with a maximum deviation of 0.020 (1) Å for N1 and it makes a dihedral angle of 74.68 (7)° with the phenyl ring (C8–C13). The cyclohexane ring (C2–C7) adopts a chair conformation with the puckering parameters (Cremer & Pople, 1975) of QT = 0.5610 (14) Å, θ = 1.74 (14)° and φ = 342 (4)°.

The stabilization of the molecular packing of (I) is assisted by a number of non-bonded forces including van der Waals.

Experimental

A solution of 2-cyclohexylidene-N-phenylhydrazinecarbothioamide (1 mmol) in dry ethyl acetate (15 ml) was added drop wise over 2 h to a stirred solution of 4,5-dichloro-3,6-dioxocyclohexa-1,4-diene-1,2-dicarbonitrile (227 mg, 1 mmol) in dry ethyl acetate (10 ml). The pink coloration of the reaction mixture turned quickly to red brown and the mixture was left to stand at room temperature for 48 h. The precipitated DDQ-H2 [JM1] was filtered off and washed with few drops of ethyl acetate. The filtrate was collected, concentrated under vacuum and left at room temperature to afford the title compound as red brown crystals suitable for X-ray diffraction.

IR: 3052 (Ar—CH), 2941, 2863 (Ali – CH), 1594 (Ar—C=C), 1350 (C═S); 1H-NMR (CDCl3) 1.26, 1.65, 1.94 and 2.20 (10H, cyclohexane–CH2), 7.707, 7.51, 7.55 (5H, Ar–H); 13C–NMR (CDCl3) 23.58, 24.52 and 33.90 (cyclohexane-CH2), 112.19 (spiro Cx b), 127.81, 129.87, 130.22 (Ar—CH), 135.07 (Ar-c), 187.83 (C═S).

Refinement

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H = 0.95 and 0.99 Å, with Uiso(H) = 1.2 Uiso(C).

Figures

Fig. 1.

Fig. 1.

View of the title compound (I) with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level.

Crystal data

C13H15N3S F(000) = 1040
Mr = 245.34 Dx = 1.322 Mg m3
Orthorhombic, Pbca Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2ab Cell parameters from 9973 reflections
a = 9.4952 (9) Å θ = 2.5–28.6°
b = 7.4845 (7) Å µ = 0.24 mm1
c = 34.692 (3) Å T = 150 K
V = 2465.5 (4) Å3 Block, red-brown
Z = 8 0.28 × 0.22 × 0.17 mm

Data collection

Bruker SMART APEX CCD diffractometer 3168 independent reflections
Radiation source: fine-focus sealed tube 2899 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.046
Detector resolution: 8.3660 pixels mm-1 θmax = 28.7°, θmin = 2.4°
φ and ω scans h = −12→12
Absorption correction: multi-scan (SADABS; Bruker, 2013) k = −10→10
Tmin = 0.810, Tmax = 0.960 l = −46→46
41202 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.104 H-atom parameters constrained
S = 1.10 W = 1/[Σ2(FO2) + (0.0483P)2 + 1.0447P] where P = (FO2 + 2FC2)/3
3168 reflections (Δ/σ)max = 0.001
154 parameters Δρmax = 0.40 e Å3
0 restraints Δρmin = −0.25 e Å3

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.53002 (4) 1.40579 (5) 0.84564 (2) 0.0310 (1)
N1 0.50442 (11) 1.06645 (14) 0.87249 (3) 0.0199 (3)
N2 0.53364 (11) 1.27385 (15) 0.91860 (3) 0.0252 (3)
N3 0.51796 (11) 1.13018 (15) 0.93661 (3) 0.0233 (3)
C1 0.52216 (12) 1.24250 (17) 0.87698 (4) 0.0219 (3)
C2 0.49469 (12) 0.97820 (16) 0.91027 (3) 0.0188 (3)
C3 0.60868 (13) 0.83732 (18) 0.91727 (4) 0.0241 (3)
C4 0.59589 (15) 0.75735 (19) 0.95773 (4) 0.0282 (4)
C5 0.44880 (15) 0.68348 (18) 0.96539 (4) 0.0280 (4)
C6 0.33484 (14) 0.82248 (17) 0.95781 (3) 0.0240 (3)
C7 0.34706 (13) 0.90101 (16) 0.91725 (3) 0.0209 (3)
C8 0.47802 (13) 0.97938 (17) 0.83642 (3) 0.0208 (3)
C9 0.58094 (15) 0.87142 (18) 0.82019 (4) 0.0273 (4)
C10 0.55240 (17) 0.7858 (2) 0.78557 (4) 0.0346 (4)
C11 0.42447 (19) 0.8099 (2) 0.76734 (4) 0.0377 (5)
C12 0.32316 (18) 0.9190 (2) 0.78367 (4) 0.0369 (4)
C13 0.34905 (15) 1.00429 (19) 0.81847 (4) 0.0283 (4)
H3A 0.70270 0.89270 0.91420 0.0290*
H3B 0.59970 0.74110 0.89790 0.0290*
H4A 0.66580 0.66010 0.96070 0.0340*
H4B 0.61770 0.85060 0.97710 0.0340*
H5A 0.43240 0.57840 0.94860 0.0340*
H5B 0.44270 0.64330 0.99250 0.0340*
H6A 0.34290 0.91980 0.97700 0.0290*
H6B 0.24110 0.76650 0.96090 0.0290*
H7A 0.27600 0.99650 0.91390 0.0250*
H7B 0.32760 0.80660 0.89800 0.0250*
H9 0.66940 0.85640 0.83260 0.0330*
H10 0.62130 0.71000 0.77430 0.0410*
H11 0.40610 0.75150 0.74360 0.0450*
H12 0.23540 0.93560 0.77100 0.0440*
H13 0.27940 1.07870 0.82980 0.0340*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0373 (2) 0.0214 (2) 0.0344 (2) −0.0050 (1) 0.0002 (1) 0.0067 (1)
N1 0.0234 (5) 0.0179 (5) 0.0183 (5) −0.0008 (4) −0.0003 (4) 0.0003 (4)
N2 0.0254 (5) 0.0214 (5) 0.0287 (6) −0.0028 (4) 0.0010 (4) −0.0045 (4)
N3 0.0255 (5) 0.0209 (5) 0.0235 (5) −0.0009 (4) −0.0004 (4) −0.0056 (4)
C1 0.0190 (5) 0.0195 (6) 0.0272 (6) −0.0014 (4) 0.0011 (4) −0.0011 (5)
C2 0.0230 (5) 0.0172 (6) 0.0162 (5) −0.0001 (4) −0.0014 (4) −0.0013 (4)
C3 0.0240 (6) 0.0248 (6) 0.0235 (6) 0.0054 (5) −0.0030 (5) −0.0015 (5)
C4 0.0337 (7) 0.0276 (7) 0.0234 (6) 0.0075 (6) −0.0077 (5) 0.0000 (5)
C5 0.0406 (7) 0.0218 (6) 0.0215 (6) 0.0034 (5) −0.0025 (5) 0.0022 (5)
C6 0.0308 (6) 0.0208 (6) 0.0204 (6) −0.0017 (5) 0.0018 (5) 0.0011 (4)
C7 0.0216 (5) 0.0200 (5) 0.0210 (6) −0.0004 (5) −0.0011 (4) 0.0011 (4)
C8 0.0263 (6) 0.0189 (6) 0.0172 (5) −0.0034 (5) 0.0008 (4) 0.0014 (4)
C9 0.0313 (7) 0.0269 (6) 0.0236 (6) 0.0007 (5) 0.0058 (5) 0.0003 (5)
C10 0.0504 (9) 0.0281 (7) 0.0252 (7) −0.0031 (6) 0.0146 (6) −0.0030 (5)
C11 0.0607 (10) 0.0340 (8) 0.0185 (6) −0.0168 (7) 0.0013 (6) −0.0025 (5)
C12 0.0434 (8) 0.0404 (8) 0.0268 (7) −0.0093 (7) −0.0107 (6) 0.0008 (6)
C13 0.0302 (7) 0.0298 (7) 0.0250 (6) −0.0013 (5) −0.0029 (5) 0.0006 (5)

Geometric parameters (Å, º)

S1—C1 1.6375 (14) C11—C12 1.383 (2)
N1—C1 1.3375 (17) C12—C13 1.388 (2)
N1—C2 1.4706 (15) C3—H3A 0.9900
N1—C8 1.4330 (15) C3—H3B 0.9900
N2—N3 1.2525 (16) C4—H4A 0.9900
N2—C1 1.4669 (17) C4—H4B 0.9900
N3—C2 1.4757 (16) C5—H5A 0.9900
C2—C3 1.5305 (17) C5—H5B 0.9900
C2—C7 1.5354 (17) C6—H6A 0.9900
C3—C4 1.531 (2) C6—H6B 0.9900
C4—C5 1.525 (2) C7—H7A 0.9900
C5—C6 1.5239 (19) C7—H7B 0.9900
C6—C7 1.5293 (15) C9—H9 0.9500
C8—C9 1.3874 (19) C10—H10 0.9500
C8—C13 1.3864 (19) C11—H11 0.9500
C9—C10 1.388 (2) C12—H12 0.9500
C10—C11 1.381 (2) C13—H13 0.9500
C1—N1—C2 110.28 (10) H3A—C3—H3B 108.00
C1—N1—C8 124.87 (11) C3—C4—H4A 109.00
C2—N1—C8 124.27 (10) C3—C4—H4B 109.00
N3—N2—C1 110.17 (10) C5—C4—H4A 109.00
N2—N3—C2 111.76 (10) C5—C4—H4B 109.00
S1—C1—N1 131.58 (11) H4A—C4—H4B 108.00
S1—C1—N2 122.06 (10) C4—C5—H5A 109.00
N1—C1—N2 106.36 (11) C4—C5—H5B 109.00
N1—C2—N3 101.32 (9) C6—C5—H5A 109.00
N1—C2—C3 113.98 (10) C6—C5—H5B 109.00
N1—C2—C7 111.53 (9) H5A—C5—H5B 108.00
N3—C2—C3 109.08 (9) C5—C6—H6A 109.00
N3—C2—C7 109.21 (9) C5—C6—H6B 109.00
C3—C2—C7 111.19 (10) C7—C6—H6A 109.00
C2—C3—C4 111.03 (10) C7—C6—H6B 109.00
C3—C4—C5 111.97 (11) H6A—C6—H6B 108.00
C4—C5—C6 111.88 (11) C2—C7—H7A 109.00
C5—C6—C7 111.55 (10) C2—C7—H7B 109.00
C2—C7—C6 111.04 (10) C6—C7—H7A 110.00
N1—C8—C9 119.74 (11) C6—C7—H7B 109.00
N1—C8—C13 119.05 (11) H7A—C7—H7B 108.00
C9—C8—C13 121.21 (11) C8—C9—H9 120.00
C8—C9—C10 118.85 (13) C10—C9—H9 121.00
C9—C10—C11 120.50 (14) C9—C10—H10 120.00
C10—C11—C12 120.08 (13) C11—C10—H10 120.00
C11—C12—C13 120.31 (15) C10—C11—H11 120.00
C8—C13—C12 119.04 (13) C12—C11—H11 120.00
C2—C3—H3A 109.00 C11—C12—H12 120.00
C2—C3—H3B 109.00 C13—C12—H12 120.00
C4—C3—H3A 110.00 C8—C13—H13 121.00
C4—C3—H3B 109.00 C12—C13—H13 120.00
C2—N1—C1—S1 −175.88 (10) N2—N3—C2—C7 −116.28 (11)
C2—N1—C1—N2 3.52 (12) N1—C2—C3—C4 177.48 (10)
C8—N1—C1—S1 −4.33 (19) N3—C2—C3—C4 65.07 (13)
C8—N1—C1—N2 175.07 (10) C7—C2—C3—C4 −55.43 (13)
C1—N1—C2—N3 −3.14 (12) N1—C2—C7—C6 −175.60 (10)
C1—N1—C2—C3 −120.14 (11) N3—C2—C7—C6 −64.44 (12)
C1—N1—C2—C7 112.94 (11) C3—C2—C7—C6 55.98 (13)
C8—N1—C2—N3 −174.76 (10) C2—C3—C4—C5 54.36 (15)
C8—N1—C2—C3 68.24 (14) C3—C4—C5—C6 −53.80 (15)
C8—N1—C2—C7 −58.67 (14) C4—C5—C6—C7 54.12 (14)
C1—N1—C8—C9 110.43 (14) C5—C6—C7—C2 −55.15 (13)
C1—N1—C8—C13 −69.89 (16) N1—C8—C9—C10 178.89 (12)
C2—N1—C8—C9 −79.16 (15) C13—C8—C9—C10 −0.8 (2)
C2—N1—C8—C13 100.51 (14) N1—C8—C13—C12 −179.57 (12)
C1—N2—N3—C2 0.53 (13) C9—C8—C13—C12 0.1 (2)
N3—N2—C1—S1 176.89 (9) C8—C9—C10—C11 1.0 (2)
N3—N2—C1—N1 −2.58 (13) C9—C10—C11—C12 −0.5 (2)
N2—N3—C2—N1 1.50 (12) C10—C11—C12—C13 −0.2 (2)
N2—N3—C2—C3 122.02 (11) C11—C12—C13—C8 0.4 (2)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK5237).

References

  1. Bruker (2013). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Chande, M. S., Verma, R. S., Barve, P. A., Khanwelkar, R. R., Vaidya, R. B. & Ajaikumar, K. B. (2005). Eur. J. Med. Chem. 40, 1143–1148. [DOI] [PubMed]
  3. Chin, Y.-W., Salim, A. A., Su, B.-N., Mi, Q., Chai, H.-B., Riswan, S., Kardono, L. B. S., Ruskandi, A., Farnsworth, N. R., Swanson, S. M. & Kinghorn, A. D. (2008). J. Nat. Prod. 3, 390–395. [DOI] [PMC free article] [PubMed]
  4. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  5. Kamiński, K., Obniska, J. & Dybala, M. (2008). Eur. J. Med. Chem. 43, 53–61. [DOI] [PubMed]
  6. Obniska, J., Kamiński, K. & Tatarczyńska, E. (2006). Pharmacol. Rep. 58, 207–214. [PubMed]
  7. Patil, B. S., Krishnamurthy, G., BhojyaNaik, H. S., Latthe, P. R. & Ghate, M. (2010). Eur. J. Med. Chem. 45, 3329–3334. [DOI] [PubMed]
  8. Pawar, M. J., Burungale, A. B. & Karale, B. K. (2009). ARKIVOC, XIII, 97–107.
  9. Sarma, B. K., Manna, D., Minoura, M. & Mugesh, G. (2010). J. Am. Chem. Soc. 132, 5364–5374. [DOI] [PubMed]
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Shimakawa, S., Yoshida, Y. & Niki, E. (2003). Lipids, 38, 225–231. [DOI] [PubMed]
  12. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  13. Thadhaney, B., Sain, D., Pernawat, G. & Talesara, G. L. (2010). Indian J. Chem. Sect. B, 49, 368–373.
  14. Wang, W.-L., Zhu, T.-J., Tao, H.-W., Lu, Z.-Y., Fang, Y.-C., Gu, Q.-Q. & Zhu, W.-M. (2007). Chem. Biodivers. 4, 2913–2919. [DOI] [PubMed]
  15. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536813019120/tk5237sup1.cif

e-69-o1259-sup1.cif (22.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813019120/tk5237Isup2.hkl

e-69-o1259-Isup2.hkl (174.1KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813019120/tk5237Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES