Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Jul 17;69(Pt 8):o1272. doi: 10.1107/S1600536813017960

3,4-Di­methyl­thieno[2,3-b]thio­phene-2,5-dicarbo­nitrile

Yahia Nasser Mabkhot a,, S S Al-Showiman a, Assem Barakat a,b, M Iqbal Choudhary c,a, Sammer Yousuf c,*
PMCID: PMC3793767  PMID: 24109354

Abstract

The asymmetric unit of the title compound, C10H6N2S2, contains two crystallographically independent but conformationally similar mol­ecules. The fused thio­phene ring cores are almost planar [maximum deviation = 0.027 (3) Å] with the thio­phene rings forming dihedral angles of 0.5 (4)° in one mol­ecule and 1.91 (4)° in the other. The crystal packing is stabilized only by van der Waals inter­actions.

Related literature  

For the biological activity of thio­phene derivatives, see: Mabkhot et al. (2013); Mishra et al. (2011). For the synthesis of fused heterocyclic compounds, see: Cornel & Kirsch (2001); Mashraqui et al. (1999). For crystal data for related thio­phene compounds, see: Gunasekaran et al. (2009); Mashraqui et al. (2004).graphic file with name e-69-o1272-scheme1.jpg

Experimental  

Crystal data  

  • C10H6N2S2

  • M r = 218.31

  • Triclinic, Inline graphic

  • a = 7.2573 (11) Å

  • b = 10.1538 (15) Å

  • c = 13.665 (2) Å

  • α = 94.467 (3)°

  • β = 99.120 (4)°

  • γ = 95.850 (4)°

  • V = 984.5 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.50 mm−1

  • T = 273 K

  • 0.37 × 0.15 × 0.11 mm

Data collection  

  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000) T min = 0.838, T max = 0.947

  • 13821 measured reflections

  • 4912 independent reflections

  • 3074 reflections with I > 2σ(I)

  • R int = 0.053

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.055

  • wR(F 2) = 0.132

  • S = 0.99

  • 4912 reflections

  • 257 parameters

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.24 e Å−3

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536813017960/rz5077sup1.cif

e-69-o1272-sup1.cif (20.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813017960/rz5077Isup2.hkl

e-69-o1272-Isup2.hkl (240.6KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813017960/rz5077Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors extend their appreciation to the Deanship of Scientific Research at the King Saud University (Riyadh) for funding this study through the research grant No. RGP-VPP-007.

supplementary crystallographic information

Comment

Thiophene moieties containing heterocyclic compounds are known to have a number of biological activities, including anti-inflammatory, anti-oxidant and anti-glycation properties etc. (Mabkhot et al., 2013; Mishra et al. 2011). The title compound is a thiophene derivative, composed of two fused thiophene rings. It was synthesized as part of our ongoing research towards the synthesis of novel chemical entities with diverse biological activities.

The title, compound C10H6N2S2, contains two independent (S1–S2/C1–C6 and S3–S4/C11–C16) in the asymmetric unit (Fig. 1). Structurally it is similar to the previous reported compound diethyl 3,4-bis(acetoxymethyl)thieno-[2,3-b]thiophene-2,5-dicarboxylate (Gunasekaran et al., 2009) with the difference that four acetoxy methyl substituents has been replaced by two nitrile and two methyl substituents. The fused thiophene ring cores are almost planar [maximum deviation 0.027 (3) Å for atom C16] as indicated by the dihedral angles formed by the thiophene rings of 0.5 (4)° in one molecule and 1.91 (4)° in the other. The crystal packing (Fig. 2) is stabilized only by van der Waals interactions.

Experimental

The title compound was synthesized by following the procedure described in the literature (Mashraqui et al., 1999; Cornel et al., 2001). The compound was crystallized by using a mixture of dimethyl formamide (DMF) and dichloromethane (CH2Cl2) (1:1 v/v) at room temperature to obtain light brown crystals. M. p. 498 K. Anal. calcd. for C10H6N2S2: C, 55.04; H, 2.75; N, 12.84. Found: C, 54.82; H, 2.92; N, 12.97.

Spectral Data: IR (KBr, cm-1): 2964, 2213 cm-1; 1H-NMR (400 MHz, CDCl3): δ 2.69 (s, 6H, CH3); 13C-NMR (100 MHz, CDCl3): δ 14.8 (2 CH3), 108.5 (2 CAr), 113.3 (2 CN), 134.1 (CAr), 143.1 (2 CAr), 150.8 p.p.m. (CAr).

Refinement

H Atoms were positioned geometrically and refined as riding, with C—H = 0.96 Å and with Uiso(H) = 1.5Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level.

Fig. 2.

Fig. 2.

Partial packing diagram of the title compound. Hydrogen atoms are omitted for clarity.

Crystal data

C10H6N2S2 Z = 4
Mr = 218.31 F(000) = 448
Triclinic, P1 Dx = 1.473 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 7.2573 (11) Å Cell parameters from 1631 reflections
b = 10.1538 (15) Å θ = 1.5–28.4°
c = 13.665 (2) Å µ = 0.50 mm1
α = 94.467 (3)° T = 273 K
β = 99.120 (4)° Block, brown
γ = 95.850 (4)° 0.37 × 0.15 × 0.11 mm
V = 984.5 (3) Å3

Data collection

Bruker SMART APEX CCD area-detector diffractometer 4912 independent reflections
Radiation source: fine-focus sealed tube 3074 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.053
ω scan θmax = 28.4°, θmin = 1.5°
Absorption correction: multi-scan (SADABS; Bruker, 2000) h = −9→9
Tmin = 0.838, Tmax = 0.947 k = −13→13
13821 measured reflections l = −18→18

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.132 H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.0565P)2] where P = (Fo2 + 2Fc2)/3
4912 reflections (Δ/σ)max = 0.001
257 parameters Δρmax = 0.37 e Å3
0 restraints Δρmin = −0.24 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.18703 (11) 0.32325 (7) 0.83846 (5) 0.0460 (2)
S2 0.24419 (10) 0.62763 (7) 0.91346 (5) 0.0435 (2)
S3 0.38935 (11) 1.16617 (7) 0.61752 (6) 0.0477 (2)
S4 0.37946 (11) 0.89010 (8) 0.70279 (5) 0.0473 (2)
N1 0.1667 (4) −0.0317 (3) 0.8989 (2) 0.0718 (9)
N2 0.3550 (4) 0.8848 (3) 1.1405 (2) 0.0706 (9)
N3 0.2705 (5) 1.3690 (3) 0.4034 (3) 0.0902 (11)
N4 0.2415 (4) 0.5277 (3) 0.6753 (2) 0.0827 (10)
C1 0.1990 (4) 0.2211 (3) 0.9361 (2) 0.0424 (7)
C2 0.2290 (4) 0.2874 (3) 1.0280 (2) 0.0381 (6)
C3 0.2441 (3) 0.4276 (2) 1.02172 (19) 0.0336 (6)
C4 0.2755 (4) 0.5432 (3) 1.0910 (2) 0.0384 (6)
C5 0.2804 (4) 0.6552 (3) 1.0431 (2) 0.0396 (7)
C6 0.2251 (4) 0.4597 (3) 0.9243 (2) 0.0371 (6)
C7 0.1799 (4) 0.0807 (3) 0.9144 (2) 0.0520 (8)
C8 0.2489 (4) 0.2224 (3) 1.1236 (2) 0.0471 (7)
H8A 0.2582 0.1294 1.1097 0.071*
H8B 0.1410 0.2332 1.1547 0.071*
H8C 0.3601 0.2632 1.1674 0.071*
C9 0.3013 (4) 0.5424 (3) 1.20166 (19) 0.0447 (7)
H9A 0.3111 0.6320 1.2319 0.067*
H9B 0.4138 0.5039 1.2246 0.067*
H9C 0.1954 0.4909 1.2196 0.067*
C10 0.3195 (4) 0.7857 (3) 1.0941 (2) 0.0474 (7)
C11 0.2885 (4) 1.1564 (3) 0.4924 (2) 0.0457 (7)
C12 0.2220 (4) 1.0317 (3) 0.4497 (2) 0.0410 (7)
C13 0.2546 (3) 0.9366 (3) 0.52151 (18) 0.0341 (6)
C14 0.2139 (4) 0.7963 (3) 0.5223 (2) 0.0389 (6)
C15 0.2732 (4) 0.7597 (3) 0.6151 (2) 0.0441 (7)
C16 0.3434 (4) 0.9965 (3) 0.6131 (2) 0.0378 (6)
C17 0.2795 (5) 1.2748 (3) 0.4434 (3) 0.0590 (9)
C18 0.1286 (4) 0.9979 (3) 0.34337 (19) 0.0452 (7)
H18A 0.1082 1.0783 0.3128 0.068*
H18B 0.0102 0.9451 0.3412 0.068*
H18C 0.2077 0.9486 0.3081 0.068*
C19 0.1235 (4) 0.6996 (3) 0.4357 (2) 0.0453 (7)
H19A 0.1213 0.6108 0.4554 0.068*
H19B 0.1938 0.7076 0.3822 0.068*
H19C −0.0028 0.7184 0.4140 0.068*
C20 0.2548 (4) 0.6297 (3) 0.6466 (2) 0.0546 (8)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0602 (5) 0.0394 (4) 0.0360 (4) 0.0018 (3) 0.0067 (3) −0.0035 (3)
S2 0.0552 (5) 0.0359 (4) 0.0397 (4) 0.0042 (3) 0.0079 (3) 0.0063 (3)
S3 0.0538 (5) 0.0395 (4) 0.0488 (5) 0.0045 (3) 0.0102 (4) −0.0032 (3)
S4 0.0534 (5) 0.0508 (5) 0.0343 (4) 0.0019 (4) 0.0001 (3) 0.0040 (3)
N1 0.100 (2) 0.0396 (16) 0.075 (2) −0.0008 (16) 0.0267 (18) −0.0085 (15)
N2 0.096 (2) 0.0385 (16) 0.074 (2) 0.0009 (15) 0.0168 (18) −0.0122 (15)
N3 0.126 (3) 0.067 (2) 0.096 (3) 0.034 (2) 0.044 (2) 0.036 (2)
N4 0.094 (2) 0.059 (2) 0.083 (2) −0.0117 (17) −0.0187 (18) 0.0285 (18)
C1 0.0446 (16) 0.0374 (16) 0.0437 (17) 0.0029 (13) 0.0064 (13) −0.0007 (13)
C2 0.0362 (15) 0.0378 (15) 0.0390 (16) 0.0041 (12) 0.0023 (12) 0.0039 (13)
C3 0.0340 (14) 0.0327 (14) 0.0331 (15) 0.0031 (11) 0.0038 (11) 0.0025 (12)
C4 0.0351 (15) 0.0411 (16) 0.0375 (16) 0.0034 (12) 0.0030 (12) 0.0016 (13)
C5 0.0426 (16) 0.0355 (15) 0.0387 (16) 0.0024 (12) 0.0038 (13) −0.0002 (13)
C6 0.0396 (15) 0.0341 (15) 0.0364 (16) 0.0044 (12) 0.0046 (12) −0.0001 (12)
C7 0.063 (2) 0.0372 (17) 0.055 (2) 0.0003 (15) 0.0145 (16) −0.0051 (15)
C8 0.0604 (19) 0.0353 (16) 0.0450 (18) 0.0048 (14) 0.0022 (14) 0.0143 (14)
C9 0.0579 (18) 0.0425 (16) 0.0303 (15) 0.0027 (14) 0.0015 (13) −0.0020 (13)
C10 0.0543 (18) 0.0351 (16) 0.0538 (19) 0.0085 (14) 0.0114 (15) 0.0007 (15)
C11 0.0480 (17) 0.0458 (18) 0.0489 (18) 0.0131 (14) 0.0175 (14) 0.0102 (15)
C12 0.0351 (15) 0.0507 (18) 0.0424 (17) 0.0122 (13) 0.0152 (13) 0.0097 (14)
C13 0.0290 (13) 0.0421 (16) 0.0314 (15) 0.0047 (12) 0.0072 (11) 0.0005 (12)
C14 0.0345 (14) 0.0447 (17) 0.0368 (16) 0.0044 (12) 0.0060 (12) 0.0004 (13)
C15 0.0454 (16) 0.0437 (17) 0.0422 (17) 0.0028 (13) 0.0050 (13) 0.0048 (14)
C16 0.0367 (15) 0.0398 (15) 0.0370 (16) 0.0055 (12) 0.0077 (12) −0.0003 (12)
C17 0.070 (2) 0.050 (2) 0.067 (2) 0.0178 (17) 0.0297 (19) 0.0122 (18)
C18 0.0427 (16) 0.063 (2) 0.0307 (15) 0.0129 (14) 0.0007 (13) 0.0102 (14)
C19 0.0459 (17) 0.0402 (16) 0.0440 (17) −0.0025 (13) 0.0009 (13) −0.0084 (13)
C20 0.057 (2) 0.050 (2) 0.052 (2) −0.0026 (16) −0.0051 (15) 0.0129 (16)

Geometric parameters (Å, º)

S1—C6 1.714 (3) C8—H8A 0.9600
S1—C1 1.750 (3) C8—H8B 0.9600
S2—C6 1.716 (3) C8—H8C 0.9600
S2—C5 1.745 (3) C9—H9A 0.9600
S3—C16 1.716 (3) C9—H9B 0.9600
S3—C11 1.741 (3) C9—H9C 0.9600
S4—C16 1.703 (3) C11—C12 1.360 (4)
S4—C15 1.742 (3) C11—C17 1.423 (4)
N1—C7 1.136 (4) C12—C13 1.439 (3)
N2—C10 1.130 (4) C12—C18 1.501 (4)
N3—C17 1.140 (4) C13—C16 1.377 (3)
N4—C20 1.137 (4) C13—C14 1.427 (4)
C1—C2 1.351 (4) C14—C15 1.365 (4)
C1—C7 1.421 (4) C14—C19 1.495 (4)
C2—C3 1.428 (3) C15—C20 1.420 (4)
C2—C8 1.502 (4) C18—H18A 0.9600
C3—C6 1.384 (3) C18—H18B 0.9600
C3—C4 1.425 (4) C18—H18C 0.9600
C4—C5 1.356 (4) C19—H19A 0.9600
C4—C9 1.495 (4) C19—H19B 0.9600
C5—C10 1.428 (4) C19—H19C 0.9600
C6—S1—C1 89.13 (13) H9B—C9—H9C 109.5
C6—S2—C5 88.80 (13) N2—C10—C5 175.0 (4)
C16—S3—C11 88.88 (14) C12—C11—C17 125.3 (3)
C16—S4—C15 88.73 (13) C12—C11—S3 115.1 (2)
C2—C1—C7 126.0 (3) C17—C11—S3 119.6 (2)
C2—C1—S1 114.5 (2) C11—C12—C13 110.0 (3)
C7—C1—S1 119.5 (2) C11—C12—C18 125.1 (3)
C1—C2—C3 110.7 (2) C13—C12—C18 124.9 (3)
C1—C2—C8 124.6 (3) C16—C13—C14 111.9 (2)
C3—C2—C8 124.6 (2) C16—C13—C12 112.0 (2)
C6—C3—C4 111.9 (2) C14—C13—C12 136.0 (3)
C6—C3—C2 112.3 (2) C15—C14—C13 110.0 (2)
C4—C3—C2 135.9 (2) C15—C14—C19 123.4 (3)
C5—C4—C3 110.8 (2) C13—C14—C19 126.5 (3)
C5—C4—C9 124.2 (3) C14—C15—C20 127.2 (3)
C3—C4—C9 125.0 (2) C14—C15—S4 114.8 (2)
C4—C5—C10 123.0 (3) C20—C15—S4 118.0 (2)
C4—C5—S2 114.7 (2) C13—C16—S4 114.5 (2)
C10—C5—S2 122.2 (2) C13—C16—S3 114.0 (2)
C3—C6—S1 113.3 (2) S4—C16—S3 131.48 (17)
C3—C6—S2 113.8 (2) N3—C17—C11 179.2 (4)
S1—C6—S2 132.84 (17) C12—C18—H18A 109.5
N1—C7—C1 178.6 (4) C12—C18—H18B 109.5
C2—C8—H8A 109.5 H18A—C18—H18B 109.5
C2—C8—H8B 109.5 C12—C18—H18C 109.5
H8A—C8—H8B 109.5 H18A—C18—H18C 109.5
C2—C8—H8C 109.5 H18B—C18—H18C 109.5
H8A—C8—H8C 109.5 C14—C19—H19A 109.5
H8B—C8—H8C 109.5 C14—C19—H19B 109.5
C4—C9—H9A 109.5 H19A—C19—H19B 109.5
C4—C9—H9B 109.5 C14—C19—H19C 109.5
H9A—C9—H9B 109.5 H19A—C19—H19C 109.5
C4—C9—H9C 109.5 H19B—C19—H19C 109.5
H9A—C9—H9C 109.5 N4—C20—C15 177.4 (4)
C6—S1—C1—C2 0.4 (2) C16—S3—C11—C12 0.6 (2)
C6—S1—C1—C7 −178.9 (2) C16—S3—C11—C17 180.0 (2)
C7—C1—C2—C3 179.1 (3) C17—C11—C12—C13 −179.8 (3)
S1—C1—C2—C3 −0.1 (3) S3—C11—C12—C13 −0.4 (3)
C7—C1—C2—C8 0.5 (5) C17—C11—C12—C18 0.3 (5)
S1—C1—C2—C8 −178.6 (2) S3—C11—C12—C18 179.7 (2)
C1—C2—C3—C6 −0.3 (3) C11—C12—C13—C16 0.0 (3)
C8—C2—C3—C6 178.3 (2) C18—C12—C13—C16 179.8 (2)
C1—C2—C3—C4 −179.5 (3) C11—C12—C13—C14 178.1 (3)
C8—C2—C3—C4 −1.0 (5) C18—C12—C13—C14 −2.0 (5)
C6—C3—C4—C5 −0.6 (3) C16—C13—C14—C15 0.6 (3)
C2—C3—C4—C5 178.7 (3) C12—C13—C14—C15 −177.5 (3)
C6—C3—C4—C9 179.9 (2) C16—C13—C14—C19 −178.2 (2)
C2—C3—C4—C9 −0.9 (5) C12—C13—C14—C19 3.7 (5)
C3—C4—C5—C10 −176.6 (3) C13—C14—C15—C20 178.6 (3)
C9—C4—C5—C10 3.0 (4) C19—C14—C15—C20 −2.5 (5)
C3—C4—C5—S2 0.9 (3) C13—C14—C15—S4 −0.4 (3)
C9—C4—C5—S2 −179.5 (2) C19—C14—C15—S4 178.5 (2)
C6—S2—C5—C4 −0.8 (2) C16—S4—C15—C14 0.1 (2)
C6—S2—C5—C10 176.8 (3) C16—S4—C15—C20 −179.0 (2)
C4—C3—C6—S1 180.00 (18) C14—C13—C16—S4 −0.6 (3)
C2—C3—C6—S1 0.5 (3) C12—C13—C16—S4 177.97 (17)
C4—C3—C6—S2 0.0 (3) C14—C13—C16—S3 −178.12 (18)
C2—C3—C6—S2 −179.51 (18) C12—C13—C16—S3 0.5 (3)
C1—S1—C6—C3 −0.5 (2) C15—S4—C16—C13 0.3 (2)
C1—S1—C6—S2 179.6 (2) C15—S4—C16—S3 177.3 (2)
C5—S2—C6—C3 0.5 (2) C11—S3—C16—C13 −0.6 (2)
C5—S2—C6—S1 −179.6 (2) C11—S3—C16—S4 −177.5 (2)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ5077).

References

  1. Bruker (2000). SADABS, SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Cornel, A. & Kirsch, G. (2001). J. Heterocycl. Chem. 38, 1167–1171.
  3. Gunasekaran, B., Sureshbabu, R., Mohanakrishnan, A. K., Chakkaravarthi, G. & Manivannan, V. (2009). Acta Cryst. E65, o2455. [DOI] [PMC free article] [PubMed]
  4. Mabkhot, Y. N., Barakat, A., Al-Majid, A. & Choudhary, M. I. (2013). Int. J. Mol. Sci. 14, 5712–5722. [DOI] [PMC free article] [PubMed]
  5. Mashraqui, S. H., Asharf, M., Hariharasubrahmanian, H., Kellogg, R. K. & Meetsma, A. (2004). J. Mol. Struct. 689, 107–113.
  6. Mashraqui, S. H., Hariharasubrahmanian, H. & Kumar, S. (1999). Synthesis, pp. 2030–2033.
  7. Mishra, R., Jha, K. K., Kumar, S. & Tomer, S. (2011). Pharma Chem. 3, 38–54.
  8. Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536813017960/rz5077sup1.cif

e-69-o1272-sup1.cif (20.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813017960/rz5077Isup2.hkl

e-69-o1272-Isup2.hkl (240.6KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813017960/rz5077Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES