Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Jul 20;69(Pt 8):o1275. doi: 10.1107/S1600536813019405

(2E)-3-(2-Chloro-8-methyl­quinolin-3-yl)-1-(2,4-di­methyl­quinolin-3-yl)prop-2-en-1-one

R Prasath a,, S Sarveswari b, Seik Weng Ng c,d, Edward R T Tiekink c,*
PMCID: PMC3793770  PMID: 24109357

Abstract

In the mol­ecule of the title compound, C24H19ClN2O, the terminal quinolinyl residues are close to perpendicular to each other [dihedral angle 83.72 (4)°]. The quinolinyl residues are connected by and inclined to the prop-2-en-1-one bridge, with the Car—Car—C—C (ar = aromatic) torsion angles being 71.01 (17) and 20.6 (2)°. The crystal structure features phen­yl–carbonyl C—H⋯O inter­actions and π–π inter­actions between centrosymmetrically related quinolinyl residues [3.5341 (10) and 3.8719 (9) Å], which together lead to a three-dimensional architecture.

Related literature  

For background to quinoline chalcones and for a related structure, see: Prasath et al. (2013).graphic file with name e-69-o1275-scheme1.jpg

Experimental  

Crystal data  

  • C24H19ClN2O

  • M r = 386.86

  • Triclinic, Inline graphic

  • a = 7.4150 (5) Å

  • b = 9.9045 (6) Å

  • c = 14.0696 (9) Å

  • α = 71.072 (5)°

  • β = 88.427 (5)°

  • γ = 72.552 (5)°

  • V = 929.66 (10) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 1.95 mm−1

  • T = 100 K

  • 0.25 × 0.25 × 0.25 mm

Data collection  

  • Agilent SuperNova Dual diffractometer with Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2013) T min = 0.853, T max = 1.000

  • 6846 measured reflections

  • 3811 independent reflections

  • 3587 reflections with I > 2σ(I)

  • R int = 0.014

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.035

  • wR(F 2) = 0.095

  • S = 1.04

  • 3811 reflections

  • 256 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.30 e Å−3

Data collection: CrysAlis PRO (Agilent, 2013); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536813019405/hb7108sup1.cif

e-69-o1275-sup1.cif (28.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813019405/hb7108Isup2.hkl

e-69-o1275-Isup2.hkl (183KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813019405/hb7108Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C20—H20⋯O1i 0.95 2.58 3.364 (2) 140

Symmetry code: (i) Inline graphic.

Acknowledgments

RP gratefully acknowledges the Council of Scientific and Industrial Research (CSIR), India, for a Senior Research Fellowship [grant No. 09/919/(0014)/2012 EMR-I]. We also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (grant No. UM·C/HIR-MOHE/SC/03).

supplementary crystallographic information

Comment

For the background to biological activities, utility as intermediates in organic synthesis and photophysical properties of quinolines, as well as the bio-activities of quinolinyl chalcones and a related structure, see the Introduction to Prasath et al. (2013).

In (I), Fig. 1, the dihedral angle between the quinolinyl rings is 83.72 (4)°. The conformation about the ethylene bond [C13═C14 = 1.3333 (19) Å] is E. The central prop-2-en-1-one residue, comprising the O1 and C12–C15 atoms, is twisted, as manifested in the O1—C12—C13—C14 torsion angle of 16.4 (2)°. The N1- and N2-containing quinolinyl rings are also twisted with respect to the central bridge, as seen in the C7—C8—C12—C13 and C13—C14—C15—C23 torsion angles of 71.01 (17) and 20.6 (2)°, respectively.

In the most closely related structure available for comparison, (II), namely (2E)-3-(6-chloro-2-methoxyquinolin-3-yl)-1-(5,7-dimethylquinolin-6-yl)prop-2-en-1-one (Prasath et al., 2013), the dihedral angle between the quinolinyl residues is 63.30 (5)°, indicating a more compact configuration than that in (I); the central residue in (II) is planar. Finally, when the structures are viewed normal to the ethylene bond, the pyridyl-N atoms in (I) can be described as anti, whereas they are closer to syn in (II).

In the crystal, linear supramolecular chains are formed by phenyl-C—H···O(carbonyl) interactions, Table 1. These, along with π–π interactions between the rings of centrosymmetrically related N1-quinolinyl residues [3.7578 (9) Å; angle of inclination = 1.91 (7)° for symmetry operation 1 - x, -y, 1 - z] and between the rings of centrosymmetrically related N2-quinolinyl residues [3.5767 (9) Å; angle of inclination = 0.99 (7)° for symmetry operation -x, 2 - y, -z], connect the molecules into a three-dimensional architecture, Fig. 2.

Experimental

A mixture of 2,4-dimethyl-3-acetylquinoline (200 mg, 0.001 M) and 2-chloro-8-methylquinoline-3-carbaldehyde (200 mg, 0.001 M) in methanol (20 ml) containing 0.2 g of potassium hydroxide was stirred at room temperature for 12 h. Then the reaction mixture was neutralized with dilute acetic acid and the resultant solid was filtered, dried and purified by column chromatography using ethyl acetate–hexane (1:1) mixture to afford (I). Re-crystallization was by slow evaporation of an acetone solution of (I), which yielded pale-yellow blocks in 78% yield; m.p. 458–460 K.

Refinement

Carbon-bound H atoms were placed in calculated positions [C—H = 0.95–0.98 Å, Uiso(H) = 1.2–1.5Ueq(C)] and were included in the refinement in the riding-model approximation.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I), showing displacement ellipsoids at the 50% probability level.

Fig. 2.

Fig. 2.

A view, in projection down the a axis, of the unit-cell contents of (I). The C—H···O and π—π interactions are shown as orange and purple blue dashed lines, respectively.

Crystal data

C24H19ClN2O Z = 2
Mr = 386.86 F(000) = 404
Triclinic, P1 Dx = 1.382 Mg m3
Hall symbol: -P 1 Cu Kα radiation, λ = 1.54184 Å
a = 7.4150 (5) Å Cell parameters from 4165 reflections
b = 9.9045 (6) Å θ = 3.3–76.5°
c = 14.0696 (9) Å µ = 1.95 mm1
α = 71.072 (5)° T = 100 K
β = 88.427 (5)° Block, pale-yellow
γ = 72.552 (5)° 0.25 × 0.25 × 0.25 mm
V = 929.66 (10) Å3

Data collection

Agilent SuperNova Dual diffractometer with Atlas detector 3811 independent reflections
Radiation source: SuperNova (Cu) X-ray Source 3587 reflections with I > 2σ(I)
Mirror monochromator Rint = 0.014
Detector resolution: 10.4041 pixels mm-1 θmax = 76.7°, θmin = 3.3°
ω scans h = −9→6
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2013) k = −12→11
Tmin = 0.853, Tmax = 1.000 l = −17→17
6846 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.095 H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0508P)2 + 0.4107P] where P = (Fo2 + 2Fc2)/3
3811 reflections (Δ/σ)max < 0.001
256 parameters Δρmax = 0.30 e Å3
0 restraints Δρmin = −0.30 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.50310 (4) 0.74397 (4) −0.07296 (2) 0.02306 (10)
O1 0.77211 (15) 0.37500 (12) 0.27778 (8) 0.0303 (2)
N1 0.59497 (15) 0.23114 (12) 0.58173 (8) 0.0197 (2)
N2 0.27853 (15) 0.99608 (13) −0.06433 (8) 0.0204 (2)
C1 0.45484 (18) 0.16757 (15) 0.57864 (10) 0.0191 (3)
C2 0.40578 (19) 0.08004 (16) 0.67102 (10) 0.0230 (3)
H2 0.4675 0.0690 0.7326 0.028*
C3 0.2705 (2) 0.01120 (16) 0.67258 (11) 0.0248 (3)
H3 0.2387 −0.0471 0.7351 0.030*
C4 0.1783 (2) 0.02640 (16) 0.58199 (11) 0.0250 (3)
H4 0.0863 −0.0233 0.5835 0.030*
C5 0.22039 (19) 0.11248 (15) 0.49156 (10) 0.0222 (3)
H5 0.1563 0.1227 0.4309 0.027*
C6 0.35811 (18) 0.18627 (14) 0.48764 (10) 0.0187 (3)
C7 0.40656 (18) 0.27748 (14) 0.39547 (10) 0.0191 (3)
C8 0.55043 (18) 0.33647 (14) 0.40032 (10) 0.0192 (3)
C9 0.64203 (18) 0.31126 (14) 0.49597 (10) 0.0189 (3)
C10 0.3031 (2) 0.30187 (16) 0.29759 (10) 0.0234 (3)
H10A 0.3453 0.3727 0.2423 0.035*
H10B 0.1664 0.3426 0.3016 0.035*
H10C 0.3304 0.2061 0.2853 0.035*
C11 0.79125 (19) 0.38402 (16) 0.50126 (11) 0.0232 (3)
H11A 0.8428 0.3514 0.5713 0.035*
H11B 0.7346 0.4933 0.4766 0.035*
H11C 0.8934 0.3547 0.4594 0.035*
C12 0.61717 (19) 0.42581 (16) 0.30561 (10) 0.0219 (3)
C13 0.4853 (2) 0.57651 (16) 0.25090 (10) 0.0233 (3)
H13 0.3830 0.6205 0.2844 0.028*
C14 0.50609 (19) 0.65201 (16) 0.15594 (10) 0.0216 (3)
H14 0.6057 0.6040 0.1228 0.026*
C15 0.38631 (18) 0.80355 (15) 0.09910 (10) 0.0204 (3)
C16 0.37602 (18) 0.86237 (15) −0.00807 (10) 0.0198 (3)
C17 0.17413 (18) 1.09272 (15) −0.01732 (10) 0.0203 (3)
C18 0.06749 (19) 1.24027 (16) −0.07813 (11) 0.0226 (3)
C19 −0.0346 (2) 1.33729 (16) −0.03049 (12) 0.0261 (3)
H19 −0.1056 1.4363 −0.0702 0.031*
C20 −0.0373 (2) 1.29435 (17) 0.07542 (12) 0.0264 (3)
H20 −0.1087 1.3644 0.1057 0.032*
C21 0.0626 (2) 1.15243 (17) 0.13450 (11) 0.0243 (3)
H21 0.0597 1.1235 0.2057 0.029*
C22 0.17080 (19) 1.04805 (16) 0.08914 (10) 0.0209 (3)
C23 0.27938 (19) 0.90076 (16) 0.14569 (10) 0.0213 (3)
H23 0.2790 0.8678 0.2171 0.026*
C24 0.0660 (2) 1.28611 (17) −0.19129 (11) 0.0274 (3)
H24A −0.0111 1.3913 −0.2211 0.041*
H24B 0.0120 1.2227 −0.2151 0.041*
H24C 0.1959 1.2741 −0.2113 0.041*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.02514 (17) 0.02405 (17) 0.01915 (17) −0.00578 (13) 0.00524 (12) −0.00798 (12)
O1 0.0269 (5) 0.0329 (6) 0.0264 (5) −0.0062 (4) 0.0094 (4) −0.0069 (4)
N1 0.0197 (5) 0.0203 (5) 0.0189 (5) −0.0053 (4) 0.0017 (4) −0.0067 (4)
N2 0.0193 (5) 0.0222 (6) 0.0213 (5) −0.0090 (4) 0.0033 (4) −0.0071 (5)
C1 0.0180 (6) 0.0184 (6) 0.0198 (6) −0.0032 (5) 0.0017 (5) −0.0072 (5)
C2 0.0235 (6) 0.0255 (7) 0.0181 (6) −0.0068 (5) 0.0009 (5) −0.0053 (5)
C3 0.0241 (7) 0.0251 (7) 0.0213 (7) −0.0078 (6) 0.0041 (5) −0.0028 (5)
C4 0.0221 (6) 0.0243 (7) 0.0276 (7) −0.0091 (5) 0.0018 (5) −0.0055 (6)
C5 0.0209 (6) 0.0218 (6) 0.0230 (7) −0.0056 (5) −0.0006 (5) −0.0069 (5)
C6 0.0181 (6) 0.0175 (6) 0.0190 (6) −0.0023 (5) 0.0017 (5) −0.0069 (5)
C7 0.0195 (6) 0.0176 (6) 0.0180 (6) −0.0015 (5) 0.0011 (5) −0.0067 (5)
C8 0.0200 (6) 0.0174 (6) 0.0182 (6) −0.0029 (5) 0.0038 (5) −0.0059 (5)
C9 0.0181 (6) 0.0177 (6) 0.0196 (6) −0.0026 (5) 0.0026 (5) −0.0073 (5)
C10 0.0255 (7) 0.0241 (7) 0.0189 (6) −0.0072 (5) −0.0004 (5) −0.0052 (5)
C11 0.0212 (6) 0.0235 (7) 0.0256 (7) −0.0079 (5) 0.0027 (5) −0.0083 (5)
C12 0.0236 (6) 0.0238 (7) 0.0195 (6) −0.0092 (5) 0.0037 (5) −0.0073 (5)
C13 0.0255 (7) 0.0225 (7) 0.0218 (6) −0.0082 (5) 0.0052 (5) −0.0065 (5)
C14 0.0221 (6) 0.0239 (7) 0.0208 (6) −0.0093 (5) 0.0041 (5) −0.0080 (5)
C15 0.0198 (6) 0.0224 (7) 0.0210 (6) −0.0109 (5) 0.0031 (5) −0.0061 (5)
C16 0.0191 (6) 0.0225 (6) 0.0207 (6) −0.0096 (5) 0.0042 (5) −0.0083 (5)
C17 0.0174 (6) 0.0220 (7) 0.0243 (7) −0.0101 (5) 0.0033 (5) −0.0079 (5)
C18 0.0200 (6) 0.0233 (7) 0.0260 (7) −0.0107 (5) 0.0023 (5) −0.0066 (5)
C19 0.0212 (6) 0.0216 (7) 0.0355 (8) −0.0074 (5) 0.0018 (6) −0.0087 (6)
C20 0.0222 (6) 0.0275 (7) 0.0362 (8) −0.0107 (6) 0.0080 (6) −0.0172 (6)
C21 0.0235 (7) 0.0296 (7) 0.0274 (7) −0.0150 (6) 0.0076 (5) −0.0134 (6)
C22 0.0196 (6) 0.0244 (7) 0.0239 (7) −0.0126 (5) 0.0044 (5) −0.0096 (5)
C23 0.0225 (6) 0.0252 (7) 0.0199 (6) −0.0134 (5) 0.0039 (5) −0.0072 (5)
C24 0.0267 (7) 0.0250 (7) 0.0262 (7) −0.0073 (6) 0.0006 (6) −0.0036 (6)

Geometric parameters (Å, º)

Cl1—C16 1.7554 (14) C11—H11A 0.9800
O1—C12 1.2177 (17) C11—H11B 0.9800
N1—C9 1.3150 (17) C11—H11C 0.9800
N1—C1 1.3749 (17) C12—C13 1.4825 (19)
N2—C16 1.2963 (18) C13—C14 1.3333 (19)
N2—C17 1.3752 (18) C13—H13 0.9500
C1—C6 1.4161 (18) C14—C15 1.4636 (19)
C1—C2 1.4161 (18) C14—H14 0.9500
C2—C3 1.368 (2) C15—C23 1.3814 (19)
C2—H2 0.9500 C15—C16 1.4243 (18)
C3—C4 1.406 (2) C17—C22 1.4193 (19)
C3—H3 0.9500 C17—C18 1.423 (2)
C4—C5 1.370 (2) C18—C19 1.378 (2)
C4—H4 0.9500 C18—C24 1.507 (2)
C5—C6 1.4136 (19) C19—C20 1.412 (2)
C5—H5 0.9500 C19—H19 0.9500
C6—C7 1.4269 (18) C20—C21 1.366 (2)
C7—C8 1.3739 (19) C20—H20 0.9500
C7—C10 1.5082 (18) C21—C22 1.4221 (19)
C8—C9 1.4371 (18) C21—H21 0.9500
C8—C12 1.5050 (18) C22—C23 1.410 (2)
C9—C11 1.5055 (18) C23—H23 0.9500
C10—H10A 0.9800 C24—H24A 0.9800
C10—H10B 0.9800 C24—H24B 0.9800
C10—H10C 0.9800 C24—H24C 0.9800
C9—N1—C1 118.17 (11) O1—C12—C8 120.60 (12)
C16—N2—C17 117.78 (12) C13—C12—C8 116.16 (11)
N1—C1—C6 122.93 (12) C14—C13—C12 121.82 (13)
N1—C1—C2 118.08 (12) C14—C13—H13 119.1
C6—C1—C2 119.00 (12) C12—C13—H13 119.1
C3—C2—C1 120.74 (13) C13—C14—C15 124.62 (13)
C3—C2—H2 119.6 C13—C14—H14 117.7
C1—C2—H2 119.6 C15—C14—H14 117.7
C2—C3—C4 120.19 (13) C23—C15—C16 115.37 (12)
C2—C3—H3 119.9 C23—C15—C14 122.38 (12)
C4—C3—H3 119.9 C16—C15—C14 122.23 (12)
C5—C4—C3 120.42 (13) N2—C16—C15 126.49 (13)
C5—C4—H4 119.8 N2—C16—Cl1 115.42 (10)
C3—C4—H4 119.8 C15—C16—Cl1 118.08 (10)
C4—C5—C6 120.68 (13) N2—C17—C22 121.50 (13)
C4—C5—H5 119.7 N2—C17—C18 118.38 (12)
C6—C5—H5 119.7 C22—C17—C18 120.12 (13)
C5—C6—C1 118.94 (12) C19—C18—C17 118.10 (13)
C5—C6—C7 122.83 (12) C19—C18—C24 121.77 (13)
C1—C6—C7 118.22 (12) C17—C18—C24 120.12 (13)
C8—C7—C6 117.71 (12) C18—C19—C20 122.18 (14)
C8—C7—C10 122.91 (12) C18—C19—H19 118.9
C6—C7—C10 119.36 (12) C20—C19—H19 118.9
C7—C8—C9 120.42 (12) C21—C20—C19 120.24 (13)
C7—C8—C12 120.60 (12) C21—C20—H20 119.9
C9—C8—C12 118.97 (12) C19—C20—H20 119.9
N1—C9—C8 122.49 (12) C20—C21—C22 119.83 (13)
N1—C9—C11 117.30 (12) C20—C21—H21 120.1
C8—C9—C11 120.14 (12) C22—C21—H21 120.1
C7—C10—H10A 109.5 C23—C22—C17 117.73 (13)
C7—C10—H10B 109.5 C23—C22—C21 122.75 (13)
H10A—C10—H10B 109.5 C17—C22—C21 119.52 (13)
C7—C10—H10C 109.5 C15—C23—C22 121.13 (12)
H10A—C10—H10C 109.5 C15—C23—H23 119.4
H10B—C10—H10C 109.5 C22—C23—H23 119.4
C9—C11—H11A 109.5 C18—C24—H24A 109.5
C9—C11—H11B 109.5 C18—C24—H24B 109.5
H11A—C11—H11B 109.5 H24A—C24—H24B 109.5
C9—C11—H11C 109.5 C18—C24—H24C 109.5
H11A—C11—H11C 109.5 H24A—C24—H24C 109.5
H11B—C11—H11C 109.5 H24B—C24—H24C 109.5
O1—C12—C13 123.24 (12)
C9—N1—C1—C6 −0.82 (19) O1—C12—C13—C14 16.4 (2)
C9—N1—C1—C2 179.35 (12) C8—C12—C13—C14 −164.32 (13)
N1—C1—C2—C3 −178.51 (12) C12—C13—C14—C15 −177.18 (12)
C6—C1—C2—C3 1.7 (2) C13—C14—C15—C23 20.6 (2)
C1—C2—C3—C4 0.1 (2) C13—C14—C15—C16 −161.14 (13)
C2—C3—C4—C5 −1.3 (2) C17—N2—C16—C15 0.2 (2)
C3—C4—C5—C6 0.6 (2) C17—N2—C16—Cl1 179.09 (9)
C4—C5—C6—C1 1.2 (2) C23—C15—C16—N2 0.5 (2)
C4—C5—C6—C7 −179.81 (13) C14—C15—C16—N2 −177.91 (12)
N1—C1—C6—C5 177.89 (12) C23—C15—C16—Cl1 −178.36 (9)
C2—C1—C6—C5 −2.28 (19) C14—C15—C16—Cl1 3.26 (17)
N1—C1—C6—C7 −1.16 (19) C16—N2—C17—C22 −0.64 (19)
C2—C1—C6—C7 178.67 (12) C16—N2—C17—C18 179.55 (11)
C5—C6—C7—C8 −176.23 (12) N2—C17—C18—C19 −179.07 (12)
C1—C6—C7—C8 2.78 (18) C22—C17—C18—C19 1.12 (19)
C5—C6—C7—C10 2.20 (19) N2—C17—C18—C24 1.80 (19)
C1—C6—C7—C10 −178.79 (12) C22—C17—C18—C24 −178.01 (12)
C6—C7—C8—C9 −2.55 (19) C17—C18—C19—C20 −0.5 (2)
C10—C7—C8—C9 179.08 (12) C24—C18—C19—C20 178.63 (13)
C6—C7—C8—C12 176.23 (11) C18—C19—C20—C21 −0.4 (2)
C10—C7—C8—C12 −2.1 (2) C19—C20—C21—C22 0.5 (2)
C1—N1—C9—C8 1.12 (19) N2—C17—C22—C23 0.34 (19)
C1—N1—C9—C11 178.05 (11) C18—C17—C22—C23 −179.86 (11)
C7—C8—C9—N1 0.6 (2) N2—C17—C22—C21 179.24 (11)
C12—C8—C9—N1 −178.20 (12) C18—C17—C22—C21 −0.95 (19)
C7—C8—C9—C11 −176.24 (12) C20—C21—C22—C23 178.96 (12)
C12—C8—C9—C11 4.96 (18) C20—C21—C22—C17 0.12 (19)
C7—C8—C12—O1 −109.66 (16) C16—C15—C23—C22 −0.77 (18)
C9—C8—C12—O1 69.14 (18) C14—C15—C23—C22 177.61 (12)
C7—C8—C12—C13 71.01 (17) C17—C22—C23—C15 0.40 (19)
C9—C8—C12—C13 −110.19 (14) C21—C22—C23—C15 −178.47 (12)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C20—H20···O1i 0.95 2.58 3.364 (2) 140

Symmetry code: (i) x−1, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB7108).

References

  1. Agilent (2013). CrysAlis PRO Agilent Technologies Inc., Santa Clara, CA, USA.
  2. Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  3. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  4. Prasath, R., Sarveswari, S., Ng, S. W. & Tiekink, E. R. T. (2013). Acta Cryst. E69, o1274. [DOI] [PMC free article] [PubMed]
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536813019405/hb7108sup1.cif

e-69-o1275-sup1.cif (28.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813019405/hb7108Isup2.hkl

e-69-o1275-Isup2.hkl (183KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813019405/hb7108Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES