Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Jul 20;69(Pt 8):o1286–o1287. doi: 10.1107/S1600536813019168

5-(4-Chloro­phen­yl)-7-(4-methyl­phen­yl)-4-(pyrrolidin-1-yl)-7H-pyrrolo­[2,3-d]pyrimidine

Urmila H Patel a,*, Rajesh D Modh a, Dhaval A Shah b
PMCID: PMC3793780  PMID: 24109367

Abstract

The title compound, C23H21ClN4, contains two molecules (A and B) in the asymmetric unit, which are related to one another by a pseudo-inversion center. The non-aromatic pyrrolidine ring in each independent mol­ecule adopts a half-chair conformation; the ring puckering parameters are θ = 0.407 (3) Å and ϕ = 270.5 (4)°, and the pseudo-rotation parameters are ρ = 72.5 (3)° and τ = 42.2 (2)° for an N—C bond of molecule A, and the corresponding values are 0.415 (3) Å, 271.6 (4)°, 73.6 (3)° and 42.6 (2)° for molecule B. The dihedral angles between the central fused-ring system and the substituted chlorophenyl and methylphenyl rings are 66.35 and 45.59°, respectively, for molecule A, and 64.51 and 41.89° for molecule B. The geometry of all four intramolecular C—H⋯π interactions are of type III. π–π interactions involving the centroids of symmetry-related pyrrole rings of molecule B are 4.390 Å, contributing further to the stability of the molecule.

Related literature  

For background to and the biological activity of pyrrolo­[2,3-d]pyrimidines, see: Chadwick (1990); Hulzenlaub et al. (1972); Ohgi et al. (1979); Smith et al. (1972). For our crystallographic investigations of heterocyclic compounds, see: Patel et al. (2007, 2012). For C—H⋯π inter­actions, see: Malone et al. (1997). For puckering parameters, see: Cremer & Pople (1975).graphic file with name e-69-o1286-scheme1.jpg

Experimental  

Crystal data  

  • C23H21ClN4

  • M r = 388.72

  • Triclinic, Inline graphic

  • a = 8.967 (3) Å

  • b = 15.367 (5) Å

  • c = 15.960 (2) Å

  • α = 69.210 (17)°

  • β = 75.653 (16)°

  • γ = 76.52 (3)°

  • V = 1966.2 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 293 K

  • 0.3 × 0.2 × 0.2 mm

Data collection  

  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968) T min = 0.951, T max = 0.959

  • 7458 measured reflections

  • 6864 independent reflections

  • 3569 reflections with I > 2σ(I)

  • R int = 0.027

  • 2 standard reflections every 1 min intensity decay: none

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.042

  • wR(F 2) = 0.125

  • S = 1.01

  • 6864 reflections

  • 507 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.25 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software; data reduction: CAD-4 Software; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536813019168/gg2114sup1.cif

e-69-o1286-sup1.cif (33.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813019168/gg2114Isup2.hkl

e-69-o1286-Isup2.hkl (329.1KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813019168/gg2114Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1, Cg2, Cg3 and Cg4 are the centroids of the N6/C5/C4/C9/N8/C7, N34/C33/C32/C37/N36/C35, C17–C22 and C45–C50 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C18—H18⋯Cg1i 0.93 2.68 3.483 (3) 144
C46—H46⋯Cg2ii 0.93 2.73 3.549 (3) 147
C25—H251⋯Cg3 0.97 2.79 3.462 (3) 127
C53—H531⋯Cg4 0.97 2.84 3.506 (3) 127

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors are thankful to Department of Physics, SPU, for providing the financial support to carry out this work and to Dr Babu Varghese of RSIC, IIT Madras, for helping us with the data collection. RDM is thankful to the UGC, New Delhi, for the UGC teacher fellowship under the FIP scheme and to Gujarat Arts and Science College, Ahmedabad, for allowing the research work to be carried out under the FIP scheme.

supplementary crystallographic information

Comment

Pyrrolo[2,3-d]pyrimidine belongs to an important class of biologically active heterocyclic compounds, structurally closely related to nucleosides and some antibiotics (Chadwick, 1990; Ohgi et al., 1979). These group of compounds are very well recognized for their biological activities such as anti-tumor, anti-allergic, anti-viral and anti-inflammatory (Hulzenlaub et al., 1972; Smith et al., 1972). As a part of a continuation of our crystallographic investigations of heterocyclic compounds (Patel et al., 2007; Patel et al., 2012), we now report herein the supra-molecular structure of a fused pyrrolo[2,3-d]pyrimidine derivative.

Two independent molecules A and B of the asymmetric unit [Fig.1] have similar conformations. The fused pyrrolo pyrimidine rings of A and B in the title compound are practically planar with a dihedral angle of 4.11 (16)° in A and 3.00 (17)° in B. The observed bond lengths and bond angles indicate a significant amount of strain arising due to fusion. A close observation of the molecular geometry: bond lengths, bond angles including torsional angles of both molecules A and B reveals that two independent molecules of the asymmetric unit are related to each other by a pseudoinversion center. The aromatic pyrrolodine ring of both molecules is puckered to adopt half chair conformation. The ring puckering parameters for mol A corresponding to the atom sequence N24—C25—C26—C27—C28 (Cremer et al., 1975) are Theta = 0.407 (3)° and Phi = 270.5 (4)° and pseudo rotation parameters are Rho = 72.5 (3)° and t = 42.2 (2)° for N24—C25 bond and those of molecule B are Theta = 0.415 (3)° and Phi = 271.6 (4)° for the atom sequence N52—C53—C54—C55—C56 and the pseudo rotation parameters Rho = 73.6 (3)° and t = 42.6 (2)° for N52—C53 bond confirming a half chair conformation. The conformation of the substituents chlorophenyl, methylphenyl and pyrrolodine of both molecules are very similar. Torsional angles C4—C5—N24—C28 (177.9 (3)°) and C32—C33—N52—C53 (177.9 (3)°) confirm an extended conformation of the pyrrolodine ring with respect to fused ring system where as chlorophenyl ring of both molecules indicates a maximum turn, with dihedral angle of 66.35° (A)and 64.51°(B) between the said ring and fused system. The tolyl ring of both molecules are twisted by 44.59° and 41.89° for A and B, respectively.

In the absence of potential donor-acceptor groups in these heterocyclic compounds, the stability of supra-molecular structure is mainly due to relatively weak but significant C—H···π, π–π interactions. Molecule A and its centro-symmetry related pair gets superimposed centering at 0,0,1. The molecular aggregate so formed are held together by two pairs of C—H···π hydrogen bonds [Fig.2], one intra involving C25—H251 with Cg(3) (the centroid of the ring C17—C18—C19—C20—C21—C22) and the other intermolecular involving C18—H18 with Cg(1) (the centroid of the ring N6—C5—C4—C9—N8—C7) at 1-x, -y, 1-z. The C—H···π interactions involving molecule B and its symmetry related partner is very similar to that of molecule A but this time centered at 0,1,0. The intramolecular hydrogen bond involves C53—H531 to Cg(4) (the centroid of the ring C45—C46—C47—C48—C49—C50) and the intermolecular hydrogen bond is between C46—H46 with Cg(2) (the centroid of the ring N34—C33—C32—C37—N36—C35) at -x, 1 - y, 2 - z. The details of the geometry of these interation is in Table 1. The striking feature of the C—H···π hydrogen bond is that these interactions do not interlink molecules A and B, but it involves only individual molecules. The interactions involve the same group of moieties of the two molecules and is of same length. All of the four C—H···π interactions are of type-III as described by Malone et al., 1997, indicating an exact similarities in the C—H···π interactions. In addition, direction specific π–π interaction involving symmetry related pyrrole ring of molecule B at -1-x, 1-y, 2-z contribute further to the stability of molecular packing along the [100] direction; their centroids are seperated by 4.390 Å [Fig.3]. However,this interaction is absent in molecule A. In the molecule, the closest approach distance between two symmetry (x - 1,-y + 1, Z+1) related chlorines is 3.883 (2) Å.

Experimental

A uniform mixture of 4-chloro-5-(4-Chlorophenyl)-7-(4-methylphenyl)-7H- pyrrolo[2,3-d]pyrimidine and pyrrolodine was heated in an oil bath at 80–90° C with stirring. The heating was continued till the starting compound was consumed. The pH of reaction mixture was maintained and the final product was separated from a mixture of ethanol and N,N-dimethylformamide.

Refinement

All the H atoms were placed in geometrically idealized positions with C—H distances of 0.96 Å (methyl) or 0.93 Å (aromatic) and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C) for the phenyl H atoms and Uiso(H) = 1.5Ueq(C) for the methyl H atoms.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I), showing the atom-labelling scheme and 50% probability displacement ellipsoids.

Fig. 2.

Fig. 2.

Part of the crystal structure showing the centrosymmetry related molecule A and molecule B which interlink by two pair of similar C—H···π hydrogen bond interaction, H-atoms have been omitted for clarity.

Fig. 3.

Fig. 3.

Part of the crystal structure Packing view of the molecule B along a axis showing the π–π interactions, H-atoms have been omitted for clarity.

Crystal data

C23H21ClN4 Z = 4
Mr = 388.72 F(000) = 816
Triclinic, P1 Dx = 1.313 Mg m3Dm = 1.310 Mg m3Dm measured by floatation method
Hall symbol: -P 1 Melting point: 433 K
a = 8.967 (3) Å Mo Kα radiation, λ = 0.71073 Å
b = 15.367 (5) Å Cell parameters from 25 reflections
c = 15.960 (2) Å θ = 10–25°
α = 69.210 (17)° µ = 0.21 mm1
β = 75.653 (16)° T = 293 K
γ = 76.52 (3)° Needle, white
V = 1966.2 (10) Å3 0.3 × 0.2 × 0.2 mm

Data collection

Enraf–Nonius CAD-4 diffractometer 3569 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.027
Graphite monochromator θmax = 25.0°, θmin = 2.3°
ω–2θ scans h = 0→10
Absorption correction: ψ scan (North et al., 1968) k = −17→18
Tmin = 0.951, Tmax = 0.959 l = −18→18
7458 measured reflections 2 standard reflections every 1 min
6909 independent reflections intensity decay: none

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.125 H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0544P)2 + 0.227P] where P = (Fo2 + 2Fc2)/3
6864 reflections (Δ/σ)max = 0.001
507 parameters Δρmax = 0.18 e Å3
0 restraints Δρmin = −0.25 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C2 0.2724 (3) 0.05271 (17) 0.38941 (16) 0.0460 (7)
H2 0.2653 0.1114 0.3448 0.055*
C3 0.2482 (3) 0.03931 (16) 0.48054 (16) 0.0411 (6)
C4 0.2704 (3) −0.06207 (16) 0.52460 (16) 0.0396 (6)
C5 0.2610 (3) −0.12783 (17) 0.61396 (17) 0.0446 (6)
C7 0.3092 (3) −0.24738 (18) 0.55056 (18) 0.0528 (7)
H7 0.3204 −0.3120 0.5614 0.063*
C9 0.3067 (3) −0.10308 (17) 0.45445 (16) 0.0400 (6)
C10 0.3198 (3) −0.04409 (17) 0.28547 (16) 0.0440 (6)
C11 0.4300 (3) −0.11218 (19) 0.25792 (18) 0.0569 (8)
H11 0.4996 −0.1513 0.2955 0.068*
C12 0.4371 (4) −0.12247 (19) 0.17456 (19) 0.0641 (8)
H12 0.5110 −0.1694 0.1572 0.077*
C13 0.3380 (4) −0.0653 (2) 0.11640 (18) 0.0593 (8)
C14 0.2295 (4) 0.0028 (2) 0.14461 (19) 0.0673 (9)
H14 0.1615 0.0426 0.1063 0.081*
C15 0.2187 (3) 0.0137 (2) 0.22876 (17) 0.0576 (8)
H15 0.1434 0.0598 0.2467 0.069*
C16 0.3471 (5) −0.0769 (2) 0.02497 (19) 0.0868 (11)
H161 0.4047 −0.1378 0.0243 0.130*
H162 0.3986 −0.0287 −0.0223 0.130*
H163 0.2437 −0.0716 0.0149 0.130*
C17 0.2019 (3) 0.11753 (16) 0.52038 (15) 0.0385 (6)
C18 0.3034 (3) 0.17926 (17) 0.50595 (17) 0.0469 (6)
H18 0.4013 0.1724 0.4697 0.056*
C19 0.2609 (4) 0.25081 (18) 0.54483 (18) 0.0547 (7)
H19 0.3304 0.2911 0.5357 0.066*
C20 0.1156 (4) 0.26198 (18) 0.59692 (17) 0.0526 (7)
C21 0.0117 (3) 0.20315 (19) 0.61140 (18) 0.0542 (7)
H21 −0.0868 0.2114 0.6466 0.065*
C22 0.0553 (3) 0.13137 (17) 0.57289 (17) 0.0464 (6)
H22 −0.0151 0.0915 0.5824 0.056*
C25 0.2933 (3) −0.02809 (17) 0.70083 (16) 0.0502 (7)
H251 0.2101 0.0249 0.7018 0.060*
H252 0.3776 −0.0073 0.6510 0.060*
C26 0.3500 (3) −0.06977 (19) 0.79062 (17) 0.0575 (8)
H261 0.3441 −0.0215 0.8179 0.069*
H262 0.4565 −0.1025 0.7832 0.069*
C27 0.2377 (4) −0.1378 (2) 0.84733 (17) 0.0616 (8)
H271 0.2794 −0.1843 0.8990 0.074*
H272 0.1375 −0.1048 0.8690 0.074*
C28 0.2244 (4) −0.1824 (2) 0.78017 (17) 0.0687 (9)
H281 0.3079 −0.2351 0.7782 0.082*
H282 0.1251 −0.2046 0.7959 0.082*
C30 −0.2721 (3) 0.44162 (18) 1.08795 (17) 0.0534 (7)
H30 −0.2631 0.3836 1.1335 0.064*
C31 −0.2150 (3) 0.45403 (17) 0.99830 (17) 0.0468 (7)
C32 −0.2535 (3) 0.55481 (16) 0.95198 (16) 0.0430 (6)
C33 −0.2305 (3) 0.62018 (17) 0.86288 (17) 0.0458 (6)
C35 −0.3802 (3) 0.73629 (19) 0.92152 (19) 0.0600 (8)
H35 −0.4276 0.7991 0.9088 0.072*
C37 −0.3365 (3) 0.59490 (17) 1.02000 (16) 0.0446 (6)
C38 −0.4294 (3) 0.53417 (18) 1.18981 (16) 0.0468 (7)
C39 −0.4229 (4) 0.60878 (19) 1.21646 (18) 0.0626 (8)
H39 −0.3627 0.6546 1.1787 0.075*
C40 −0.5069 (4) 0.6149 (2) 1.3000 (2) 0.0719 (9)
H40 −0.5041 0.6664 1.3170 0.086*
C41 −0.5943 (4) 0.5476 (2) 1.35894 (19) 0.0617 (8)
C42 −0.5965 (3) 0.4730 (2) 1.33070 (19) 0.0637 (8)
H42 −0.6538 0.4260 1.3693 0.076*
C43 −0.5163 (3) 0.4657 (2) 1.24665 (17) 0.0552 (7)
H43 −0.5211 0.4151 1.2289 0.066*
C44 −0.6872 (4) 0.5557 (3) 1.4501 (2) 0.0919 (11)
H441 −0.7890 0.5402 1.4592 0.138*
H442 −0.6971 0.6191 1.4506 0.138*
H443 −0.6342 0.5130 1.4981 0.138*
C45 −0.1389 (3) 0.37392 (16) 0.96308 (16) 0.0426 (6)
C46 −0.0005 (3) 0.32038 (18) 0.98691 (17) 0.0496 (7)
H46 0.0462 0.3350 1.0251 0.060*
C47 0.0700 (3) 0.24517 (19) 0.95481 (19) 0.0592 (8)
H47 0.1640 0.2099 0.9708 0.071*
C48 0.0001 (4) 0.22310 (19) 0.89926 (19) 0.0562 (7)
C49 −0.1395 (4) 0.27394 (19) 0.87578 (18) 0.0563 (7)
H49 −0.1871 0.2581 0.8388 0.068*
C50 −0.2080 (3) 0.34898 (18) 0.90797 (17) 0.0508 (7)
H50 −0.3026 0.3836 0.8924 0.061*
C53 −0.0106 (3) 0.52431 (18) 0.78628 (17) 0.0521 (7)
H531 −0.0438 0.4688 0.7858 0.062*
H532 0.0390 0.5077 0.8386 0.062*
C54 0.0984 (3) 0.56544 (19) 0.69815 (17) 0.0571 (7)
H541 0.1655 0.6014 0.7071 0.069*
H542 0.1625 0.5163 0.6742 0.069*
C55 −0.0132 (3) 0.62861 (19) 0.63545 (17) 0.0574 (7)
H551 −0.0603 0.5922 0.6133 0.069*
H552 0.0386 0.6746 0.5840 0.069*
C56 −0.1328 (3) 0.67548 (19) 0.69846 (16) 0.0576 (8)
H561 −0.0987 0.7299 0.7008 0.069*
H562 −0.2330 0.6952 0.6789 0.069*
Cl23 0.06434 (12) 0.35242 (6) 0.64549 (6) 0.0915 (3)
Cl51 0.08881 (13) 0.12936 (6) 0.85807 (7) 0.1017 (4)
N1 0.3089 (2) −0.03272 (14) 0.37193 (13) 0.0444 (5)
N6 0.2761 (3) −0.22063 (15) 0.62491 (14) 0.0556 (6)
N8 0.3286 (2) −0.19553 (14) 0.46364 (14) 0.0461 (5)
N24 0.2366 (3) −0.10608 (14) 0.69211 (13) 0.0507 (6)
N29 −0.3456 (2) 0.52587 (14) 1.10356 (13) 0.0497 (6)
N34 −0.3012 (3) 0.71100 (15) 0.84872 (15) 0.0586 (6)
N36 −0.4013 (3) 0.68604 (15) 1.00855 (14) 0.0519 (6)
N52 −0.1417 (3) 0.60092 (14) 0.78740 (13) 0.0492 (6)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C2 0.0559 (17) 0.0360 (14) 0.0417 (16) −0.0042 (12) −0.0103 (13) −0.0080 (12)
C3 0.0426 (15) 0.0390 (14) 0.0401 (15) −0.0051 (12) −0.0104 (12) −0.0096 (12)
C4 0.0412 (15) 0.0386 (14) 0.0401 (14) −0.0090 (11) −0.0088 (11) −0.0111 (12)
C5 0.0488 (17) 0.0395 (15) 0.0428 (15) −0.0103 (12) −0.0073 (12) −0.0085 (12)
C7 0.070 (2) 0.0363 (15) 0.0526 (18) −0.0150 (14) −0.0114 (15) −0.0106 (14)
C9 0.0386 (15) 0.0399 (15) 0.0418 (15) −0.0072 (12) −0.0102 (12) −0.0105 (12)
C10 0.0522 (17) 0.0433 (15) 0.0341 (14) −0.0117 (13) −0.0034 (12) −0.0099 (12)
C11 0.068 (2) 0.0485 (17) 0.0490 (17) −0.0010 (15) −0.0079 (15) −0.0168 (14)
C12 0.089 (2) 0.0490 (18) 0.0499 (18) −0.0106 (17) 0.0008 (17) −0.0198 (15)
C13 0.079 (2) 0.0597 (19) 0.0394 (16) −0.0269 (17) 0.0012 (15) −0.0146 (15)
C14 0.075 (2) 0.080 (2) 0.0440 (17) −0.0086 (18) −0.0185 (15) −0.0135 (16)
C15 0.0596 (19) 0.0644 (19) 0.0436 (16) −0.0016 (15) −0.0096 (14) −0.0161 (14)
C16 0.131 (3) 0.093 (3) 0.0460 (18) −0.041 (2) −0.0030 (19) −0.0286 (17)
C17 0.0438 (16) 0.0337 (13) 0.0340 (13) −0.0030 (12) −0.0123 (12) −0.0044 (11)
C18 0.0463 (16) 0.0452 (15) 0.0438 (15) −0.0098 (13) −0.0031 (12) −0.0094 (12)
C19 0.070 (2) 0.0444 (16) 0.0549 (17) −0.0174 (15) −0.0123 (16) −0.0162 (14)
C20 0.068 (2) 0.0459 (16) 0.0412 (15) −0.0020 (15) −0.0100 (14) −0.0153 (13)
C21 0.0524 (18) 0.0537 (17) 0.0496 (16) 0.0007 (15) −0.0036 (14) −0.0178 (14)
C22 0.0432 (16) 0.0434 (15) 0.0500 (16) −0.0067 (12) −0.0097 (13) −0.0108 (13)
C25 0.0644 (19) 0.0439 (15) 0.0422 (15) −0.0078 (13) −0.0169 (13) −0.0092 (12)
C26 0.072 (2) 0.0575 (17) 0.0426 (16) −0.0152 (15) −0.0180 (14) −0.0070 (14)
C27 0.073 (2) 0.0655 (19) 0.0402 (16) −0.0132 (16) −0.0077 (15) −0.0105 (14)
C28 0.104 (3) 0.0559 (18) 0.0418 (17) −0.0307 (18) −0.0082 (16) −0.0021 (14)
C30 0.0649 (19) 0.0356 (15) 0.0475 (17) −0.0055 (13) −0.0038 (14) −0.0043 (12)
C31 0.0496 (17) 0.0414 (15) 0.0419 (15) −0.0075 (13) −0.0030 (13) −0.0074 (12)
C32 0.0404 (15) 0.0388 (14) 0.0436 (15) −0.0018 (12) −0.0061 (12) −0.0096 (12)
C33 0.0493 (17) 0.0409 (15) 0.0430 (15) −0.0017 (13) −0.0141 (13) −0.0081 (12)
C35 0.064 (2) 0.0447 (17) 0.0566 (19) 0.0113 (14) −0.0131 (15) −0.0095 (15)
C37 0.0409 (15) 0.0409 (15) 0.0438 (15) −0.0028 (12) −0.0064 (12) −0.0068 (13)
C38 0.0500 (17) 0.0459 (16) 0.0360 (14) 0.0002 (13) −0.0080 (13) −0.0077 (12)
C39 0.085 (2) 0.0423 (16) 0.0510 (18) −0.0099 (15) −0.0010 (16) −0.0106 (14)
C40 0.100 (3) 0.0532 (19) 0.061 (2) −0.0037 (18) −0.0095 (19) −0.0247 (16)
C41 0.067 (2) 0.0632 (19) 0.0464 (17) −0.0006 (16) −0.0076 (15) −0.0155 (15)
C42 0.063 (2) 0.074 (2) 0.0491 (18) −0.0220 (17) −0.0028 (15) −0.0123 (16)
C43 0.0632 (19) 0.0609 (18) 0.0430 (16) −0.0175 (15) −0.0051 (14) −0.0165 (14)
C44 0.103 (3) 0.106 (3) 0.058 (2) 0.001 (2) −0.0004 (19) −0.036 (2)
C45 0.0447 (16) 0.0350 (14) 0.0409 (14) −0.0081 (12) −0.0021 (12) −0.0060 (11)
C46 0.0507 (17) 0.0481 (16) 0.0495 (16) −0.0067 (14) −0.0093 (13) −0.0153 (13)
C47 0.0533 (18) 0.0490 (17) 0.0660 (19) 0.0018 (14) −0.0098 (15) −0.0140 (15)
C48 0.067 (2) 0.0441 (16) 0.0557 (17) −0.0085 (15) −0.0030 (15) −0.0188 (14)
C49 0.069 (2) 0.0515 (17) 0.0519 (17) −0.0158 (16) −0.0115 (15) −0.0165 (14)
C50 0.0498 (17) 0.0469 (16) 0.0502 (16) −0.0064 (13) −0.0124 (13) −0.0073 (13)
C53 0.0548 (18) 0.0440 (15) 0.0471 (16) −0.0037 (13) −0.0021 (13) −0.0097 (13)
C54 0.0581 (19) 0.0569 (17) 0.0463 (16) −0.0085 (14) −0.0030 (14) −0.0090 (14)
C55 0.0619 (19) 0.0650 (19) 0.0410 (15) −0.0142 (15) −0.0069 (14) −0.0107 (14)
C56 0.070 (2) 0.0535 (17) 0.0388 (15) −0.0017 (15) −0.0145 (14) −0.0039 (13)
Cl23 0.1234 (8) 0.0718 (6) 0.0892 (6) −0.0090 (5) −0.0045 (6) −0.0513 (5)
Cl51 0.1162 (8) 0.0781 (6) 0.1212 (8) 0.0104 (6) −0.0169 (6) −0.0636 (6)
N1 0.0531 (14) 0.0415 (12) 0.0384 (12) −0.0056 (10) −0.0099 (10) −0.0124 (10)
N6 0.0789 (17) 0.0413 (13) 0.0460 (14) −0.0189 (12) −0.0083 (12) −0.0091 (11)
N8 0.0534 (14) 0.0403 (12) 0.0467 (13) −0.0121 (10) −0.0101 (11) −0.0126 (11)
N24 0.0726 (16) 0.0429 (13) 0.0360 (12) −0.0179 (11) −0.0061 (11) −0.0087 (10)
N29 0.0565 (15) 0.0397 (12) 0.0412 (13) −0.0012 (11) −0.0010 (11) −0.0083 (10)
N34 0.0714 (17) 0.0448 (14) 0.0460 (13) 0.0102 (12) −0.0124 (12) −0.0089 (11)
N36 0.0546 (15) 0.0433 (13) 0.0450 (14) 0.0066 (11) −0.0098 (11) −0.0075 (11)
N52 0.0589 (15) 0.0413 (12) 0.0367 (12) 0.0006 (11) −0.0073 (11) −0.0061 (10)

Geometric parameters (Å, º)

C2—C3 1.363 (3) C30—C31 1.355 (3)
C2—N1 1.387 (3) C30—N29 1.387 (3)
C2—H2 0.9300 C30—H30 0.9300
C3—C4 1.452 (3) C31—C32 1.459 (3)
C3—C17 1.483 (3) C31—C45 1.485 (3)
C4—C9 1.407 (3) C32—C37 1.404 (3)
C4—C5 1.421 (3) C32—C33 1.418 (3)
C5—N6 1.352 (3) C33—N34 1.355 (3)
C5—N24 1.357 (3) C33—N52 1.357 (3)
C7—N8 1.323 (3) C35—N36 1.318 (3)
C7—N6 1.334 (3) C35—N34 1.337 (3)
C7—H7 0.9300 C35—H35 0.9300
C9—N8 1.347 (3) C37—N36 1.351 (3)
C9—N1 1.375 (3) C37—N29 1.376 (3)
C10—C15 1.375 (4) C38—C39 1.374 (4)
C10—C11 1.376 (3) C38—C43 1.375 (4)
C10—N1 1.429 (3) C38—N29 1.430 (3)
C11—C12 1.379 (4) C39—C40 1.383 (4)
C11—H11 0.9300 C39—H39 0.9300
C12—C13 1.374 (4) C40—C41 1.375 (4)
C12—H12 0.9300 C40—H40 0.9300
C13—C14 1.374 (4) C41—C42 1.378 (4)
C13—C16 1.512 (4) C41—C44 1.519 (4)
C14—C15 1.389 (4) C42—C43 1.386 (4)
C14—H14 0.9300 C42—H42 0.9300
C15—H15 0.9300 C43—H43 0.9300
C16—H161 0.9600 C44—H441 0.9600
C16—H162 0.9600 C44—H442 0.9600
C16—H163 0.9600 C44—H443 0.9600
C17—C22 1.387 (3) C45—C46 1.377 (3)
C17—C18 1.388 (3) C45—C50 1.387 (3)
C18—C19 1.382 (3) C46—C47 1.385 (4)
C18—H18 0.9300 C46—H46 0.9300
C19—C20 1.370 (4) C47—C48 1.372 (4)
C19—H19 0.9300 C47—H47 0.9300
C20—C21 1.370 (4) C48—C49 1.374 (4)
C20—Cl23 1.742 (3) C48—Cl51 1.737 (3)
C21—C22 1.381 (3) C49—C50 1.380 (4)
C21—H21 0.9300 C49—H49 0.9300
C22—H22 0.9300 C50—H50 0.9300
C25—N24 1.467 (3) C53—N52 1.458 (3)
C25—C26 1.510 (3) C53—C54 1.520 (3)
C25—H251 0.9700 C53—H531 0.9700
C25—H252 0.9700 C53—H532 0.9700
C26—C27 1.514 (4) C54—C55 1.516 (4)
C26—H261 0.9700 C54—H541 0.9700
C26—H262 0.9700 C54—H542 0.9700
C27—C28 1.503 (4) C55—C56 1.517 (4)
C27—H271 0.9700 C55—H551 0.9700
C27—H272 0.9700 C55—H552 0.9700
C28—N24 1.475 (3) C56—N52 1.472 (3)
C28—H281 0.9700 C56—H561 0.9700
C28—H282 0.9700 C56—H562 0.9700
C3—C2—N1 111.1 (2) C33—C32—C31 139.3 (2)
C3—C2—H2 124.5 N34—C33—N52 114.8 (2)
N1—C2—H2 124.5 N34—C33—C32 119.2 (2)
C2—C3—C4 106.1 (2) N52—C33—C32 126.0 (2)
C2—C3—C17 123.5 (2) N36—C35—N34 130.0 (2)
C4—C3—C17 130.3 (2) N36—C35—H35 115.0
C9—C4—C5 114.5 (2) N34—C35—H35 115.0
C9—C4—C3 106.3 (2) N36—C37—N29 123.3 (2)
C5—C4—C3 139.1 (2) N36—C37—C32 127.2 (2)
N6—C5—N24 115.3 (2) N29—C37—C32 109.4 (2)
N6—C5—C4 119.1 (2) C39—C38—C43 120.1 (2)
N24—C5—C4 125.6 (2) C39—C38—N29 120.9 (2)
N8—C7—N6 129.5 (2) C43—C38—N29 119.0 (2)
N8—C7—H7 115.3 C38—C39—C40 119.2 (3)
N6—C7—H7 115.3 C38—C39—H39 120.4
N8—C9—N1 123.6 (2) C40—C39—H39 120.4
N8—C9—C4 127.2 (2) C41—C40—C39 122.4 (3)
N1—C9—C4 109.1 (2) C41—C40—H40 118.8
C15—C10—C11 119.3 (2) C39—C40—H40 118.8
C15—C10—N1 119.6 (2) C40—C41—C42 116.9 (3)
C11—C10—N1 121.0 (2) C40—C41—C44 121.8 (3)
C10—C11—C12 120.0 (3) C42—C41—C44 121.3 (3)
C10—C11—H11 120.0 C41—C42—C43 122.2 (3)
C12—C11—H11 120.0 C41—C42—H42 118.9
C13—C12—C11 121.9 (3) C43—C42—H42 118.9
C13—C12—H12 119.1 C38—C43—C42 119.2 (3)
C11—C12—H12 119.1 C38—C43—H43 120.4
C14—C13—C12 117.4 (3) C42—C43—H43 120.4
C14—C13—C16 121.1 (3) C41—C44—H441 109.5
C12—C13—C16 121.5 (3) C41—C44—H442 109.5
C13—C14—C15 121.8 (3) H441—C44—H442 109.5
C13—C14—H14 119.1 C41—C44—H443 109.5
C15—C14—H14 119.1 H441—C44—H443 109.5
C10—C15—C14 119.6 (3) H442—C44—H443 109.5
C10—C15—H15 120.2 C46—C45—C50 118.2 (2)
C14—C15—H15 120.2 C46—C45—C31 120.8 (2)
C13—C16—H161 109.5 C50—C45—C31 120.9 (2)
C13—C16—H162 109.5 C45—C46—C47 121.0 (3)
H161—C16—H162 109.5 C45—C46—H46 119.5
C13—C16—H163 109.5 C47—C46—H46 119.5
H161—C16—H163 109.5 C48—C47—C46 119.5 (3)
H162—C16—H163 109.5 C48—C47—H47 120.3
C22—C17—C18 118.0 (2) C46—C47—H47 120.3
C22—C17—C3 120.9 (2) C47—C48—C49 121.0 (3)
C18—C17—C3 121.0 (2) C47—C48—Cl51 119.7 (2)
C19—C18—C17 120.8 (2) C49—C48—Cl51 119.3 (2)
C19—C18—H18 119.6 C48—C49—C50 118.9 (3)
C17—C18—H18 119.6 C48—C49—H49 120.6
C20—C19—C18 119.6 (3) C50—C49—H49 120.6
C20—C19—H19 120.2 C49—C50—C45 121.5 (3)
C18—C19—H19 120.2 C49—C50—H50 119.3
C21—C20—C19 121.1 (3) C45—C50—H50 119.3
C21—C20—Cl23 120.0 (2) N52—C53—C54 103.2 (2)
C19—C20—Cl23 118.9 (2) N52—C53—H531 111.1
C20—C21—C22 119.1 (3) C54—C53—H531 111.1
C20—C21—H21 120.5 N52—C53—H532 111.1
C22—C21—H21 120.5 C54—C53—H532 111.1
C21—C22—C17 121.4 (3) H531—C53—H532 109.1
C21—C22—H22 119.3 C55—C54—C53 102.9 (2)
C17—C22—H22 119.3 C55—C54—H541 111.2
N24—C25—C26 103.9 (2) C53—C54—H541 111.2
N24—C25—H251 111.0 C55—C54—H542 111.2
C26—C25—H251 111.0 C53—C54—H542 111.2
N24—C25—H252 111.0 H541—C54—H542 109.1
C26—C25—H252 111.0 C54—C55—C56 101.6 (2)
H251—C25—H252 109.0 C54—C55—H551 111.5
C25—C26—C27 102.6 (2) C56—C55—H551 111.5
C25—C26—H261 111.2 C54—C55—H552 111.5
C27—C26—H261 111.2 C56—C55—H552 111.5
C25—C26—H262 111.2 H551—C55—H552 109.3
C27—C26—H262 111.2 N52—C56—C55 103.4 (2)
H261—C26—H262 109.2 N52—C56—H561 111.1
C28—C27—C26 102.1 (2) C55—C56—H561 111.1
C28—C27—H271 111.4 N52—C56—H562 111.1
C26—C27—H271 111.4 C55—C56—H562 111.1
C28—C27—H272 111.4 H561—C56—H562 109.0
C26—C27—H272 111.4 C9—N1—C2 107.42 (19)
H271—C27—H272 109.2 C9—N1—C10 126.5 (2)
N24—C28—C27 104.3 (2) C2—N1—C10 125.3 (2)
N24—C28—H281 110.9 C7—N6—C5 118.3 (2)
C27—C28—H281 110.9 C7—N8—C9 111.1 (2)
N24—C28—H282 110.9 C5—N24—C25 124.8 (2)
C27—C28—H282 110.9 C5—N24—C28 119.1 (2)
H281—C28—H282 108.9 C25—N24—C28 109.5 (2)
C31—C30—N29 111.8 (2) C37—N29—C30 106.9 (2)
C31—C30—H30 124.1 C37—N29—C38 128.0 (2)
N29—C30—H30 124.1 C30—N29—C38 124.7 (2)
C30—C31—C32 105.8 (2) C35—N34—C33 117.7 (2)
C30—C31—C45 122.3 (2) C35—N36—C37 110.8 (2)
C32—C31—C45 131.8 (2) C33—N52—C53 125.8 (2)
C37—C32—C33 114.6 (2) C33—N52—C56 119.9 (2)
C37—C32—C31 106.1 (2) C53—N52—C56 110.9 (2)
N1—C2—C3—C4 −0.2 (3) C30—C31—C45—C46 −65.2 (4)
N1—C2—C3—C17 −177.8 (2) C32—C31—C45—C46 118.8 (3)
C2—C3—C4—C9 −0.2 (3) C30—C31—C45—C50 112.5 (3)
C17—C3—C4—C9 177.2 (2) C32—C31—C45—C50 −63.5 (4)
C2—C3—C4—C5 −177.6 (3) C50—C45—C46—C47 1.7 (4)
C17—C3—C4—C5 −0.2 (5) C31—C45—C46—C47 179.5 (2)
C9—C4—C5—N6 −4.5 (3) C45—C46—C47—C48 −0.7 (4)
C3—C4—C5—N6 172.7 (3) C46—C47—C48—C49 −0.6 (4)
C9—C4—C5—N24 176.0 (2) C46—C47—C48—Cl51 179.5 (2)
C3—C4—C5—N24 −6.8 (5) C47—C48—C49—C50 1.0 (4)
C5—C4—C9—N8 1.9 (4) Cl51—C48—C49—C50 −179.2 (2)
C3—C4—C9—N8 −176.2 (2) C48—C49—C50—C45 0.1 (4)
C5—C4—C9—N1 178.7 (2) C46—C45—C50—C49 −1.4 (4)
C3—C4—C9—N1 0.6 (3) C31—C45—C50—C49 −179.1 (2)
C15—C10—C11—C12 −0.6 (4) N52—C53—C54—C55 −33.6 (3)
N1—C10—C11—C12 179.3 (2) C53—C54—C55—C56 42.5 (3)
C10—C11—C12—C13 1.0 (4) C54—C55—C56—N52 −34.9 (3)
C11—C12—C13—C14 −0.5 (4) N8—C9—N1—C2 176.2 (2)
C11—C12—C13—C16 179.8 (3) C4—C9—N1—C2 −0.7 (3)
C12—C13—C14—C15 −0.4 (4) N8—C9—N1—C10 6.1 (4)
C16—C13—C14—C15 179.3 (3) C4—C9—N1—C10 −170.8 (2)
C11—C10—C15—C14 −0.3 (4) C3—C2—N1—C9 0.6 (3)
N1—C10—C15—C14 179.8 (2) C3—C2—N1—C10 170.8 (2)
C13—C14—C15—C10 0.8 (5) C15—C10—N1—C9 131.9 (3)
C2—C3—C17—C22 112.0 (3) C11—C10—N1—C9 −48.0 (4)
C4—C3—C17—C22 −65.1 (4) C15—C10—N1—C2 −36.5 (4)
C2—C3—C17—C18 −67.7 (3) C11—C10—N1—C2 143.6 (3)
C4—C3—C17—C18 115.2 (3) N8—C7—N6—C5 −1.2 (4)
C22—C17—C18—C19 1.7 (4) N24—C5—N6—C7 −176.2 (2)
C3—C17—C18—C19 −178.6 (2) C4—C5—N6—C7 4.3 (4)
C17—C18—C19—C20 −1.2 (4) N6—C7—N8—C9 −1.5 (4)
C18—C19—C20—C21 0.2 (4) N1—C9—N8—C7 −175.4 (2)
C18—C19—C20—Cl23 179.88 (19) C4—C9—N8—C7 0.9 (4)
C19—C20—C21—C22 0.3 (4) N6—C5—N24—C25 146.9 (2)
Cl23—C20—C21—C22 −179.42 (19) C4—C5—N24—C25 −33.6 (4)
C20—C21—C22—C17 0.3 (4) N6—C5—N24—C28 −1.6 (4)
C18—C17—C22—C21 −1.2 (4) C4—C5—N24—C28 177.9 (3)
C3—C17—C22—C21 179.1 (2) C26—C25—N24—C5 −138.3 (3)
N24—C25—C26—C27 −33.8 (3) C26—C25—N24—C28 12.8 (3)
C25—C26—C27—C28 42.1 (3) C27—C28—N24—C5 166.5 (2)
C26—C27—C28—N24 −34.2 (3) C27—C28—N24—C25 13.6 (3)
N29—C30—C31—C32 0.5 (3) N36—C37—N29—C30 177.5 (2)
N29—C30—C31—C45 −176.5 (2) C32—C37—N29—C30 −1.7 (3)
C30—C31—C32—C37 −1.4 (3) N36—C37—N29—C38 4.5 (4)
C45—C31—C32—C37 175.1 (3) C32—C37—N29—C38 −174.7 (2)
C30—C31—C32—C33 177.5 (3) C31—C30—N29—C37 0.7 (3)
C45—C31—C32—C33 −5.9 (5) C31—C30—N29—C38 174.0 (2)
C37—C32—C33—N34 −6.7 (4) C39—C38—N29—C37 −45.6 (4)
C31—C32—C33—N34 174.3 (3) C43—C38—N29—C37 135.0 (3)
C37—C32—C33—N52 173.1 (2) C39—C38—N29—C30 142.5 (3)
C31—C32—C33—N52 −5.8 (5) C43—C38—N29—C30 −36.9 (4)
C33—C32—C37—N36 3.6 (4) N36—C35—N34—C33 0.5 (5)
C31—C32—C37—N36 −177.2 (2) N52—C33—N34—C35 −174.7 (3)
C33—C32—C37—N29 −177.4 (2) C32—C33—N34—C35 5.1 (4)
C31—C32—C37—N29 1.9 (3) N34—C35—N36—C37 −3.7 (4)
C43—C38—C39—C40 −1.2 (4) N29—C37—N36—C35 −177.6 (3)
N29—C38—C39—C40 179.4 (3) C32—C37—N36—C35 1.3 (4)
C38—C39—C40—C41 1.6 (5) N34—C33—N52—C53 155.2 (2)
C39—C40—C41—C42 −0.7 (5) C32—C33—N52—C53 −24.7 (4)
C39—C40—C41—C44 −179.4 (3) N34—C33—N52—C56 −2.2 (4)
C40—C41—C42—C43 −0.6 (5) C32—C33—N52—C56 177.9 (3)
C44—C41—C42—C43 178.1 (3) C54—C53—N52—C33 −147.2 (3)
C39—C38—C43—C42 0.0 (4) C54—C53—N52—C56 11.9 (3)
N29—C38—C43—C42 179.4 (2) C55—C56—N52—C33 175.1 (2)
C41—C42—C43—C38 1.0 (4) C55—C56—N52—C53 14.6 (3)

Hydrogen-bond geometry (Å, º)

Cg1, Cg2, Cg3 and Cg4 are the centroids of the N6/C5/C4/C9/N8/C7, N34/C33/C32/C37/N36/C35, C17–C22 and C45–C50 rings, respectively.

D—H···A D—H H···A D···A D—H···A
C18—H18···Cg1i 0.93 2.68 3.483 (3) 144
C46—H46···Cg2ii 0.93 2.73 3.549 (3) 147
C25—H251···Cg3 0.97 2.79 3.462 (3) 127
C53—H531···Cg4 0.97 2.84 3.506 (3) 127

Symmetry codes: (i) −x+1, −y, −z+1; (ii) −x, −y+1, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GG2114).

References

  1. Chadwick, D. J. (1990). The Chemistry of Heterocyclic Compounds, Vol. 48, edited by R. A. Jones, pp. 1–104. New York: Willey & Sons.
  2. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  3. Enraf–Nonius (1989). CAD-4 Software Enraf–Nonius, Delft, The Netherlands.
  4. Hulzenlaub, W., Tolman, R. L. & Robins, R. K. (1972). J. Med. Chem. 15, 879–883. [DOI] [PubMed]
  5. Malone, J. F., Murray, C. M., Charlton, M. H., Docherty, R. & Lavery, A. J. (1997). J. Chem. Soc. Faraday Trans. 93, 3429–3436.
  6. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  7. Ohgi, T., Kondo, T. & Goto, T. (1979). J. Am. Chem. Soc. 101, 3629–3633.
  8. Patel, U. H., Gandhi, S. A., Barot, V. M. & Patel, M. C. (2012). Acta Cryst. E68, o2926–o2927. [DOI] [PMC free article] [PubMed]
  9. Patel, U. H., Patel, P. D. & Thakker, N. (2007). Acta Cryst. C63, o337–o339. [DOI] [PubMed]
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Smith, C. W., Sidwell, R. W., Robins, R. K. & Tolman, R. L. (1972). J. Med. Chem. 15, 883–887. [DOI] [PubMed]
  12. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  13. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536813019168/gg2114sup1.cif

e-69-o1286-sup1.cif (33.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813019168/gg2114Isup2.hkl

e-69-o1286-Isup2.hkl (329.1KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813019168/gg2114Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES