Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Jul 24;69(Pt 8):o1301–o1302. doi: 10.1107/S1600536813019727

N 2-(4-Meth­oxy­salicyl­idene)arginine hemihydrate

M Sethuram a, G Bhargavi b, M Dhandapani a, G Amirthaganesan a, M NizamMohideen c,*
PMCID: PMC3793792  PMID: 24109379

Abstract

The title compound, C14H20N4O4·0.5H2O [systematic name: (2S)-5-{[amino­(iminium­yl)meth­yl]amino}-2-{[(1Z)-4-meth­oxy-2-oxido­benzyl­idene]aza­nium­yl}penta­noate hemihydrate], has been synthesized by the reaction of l-arginine and 4-meth­oxy­salicyl­aldehyde and crystallizes with two independent substituted l-arginine mol­ecules and one water mol­ecule of solvation in the asymmetric unit. Each mol­ecule exists as a zwitterion and adopts a Z configuration about the central C=N. The mol­ecular conformation is stabilized by strong intra­molecular N—H⋯O hydrogen bonds that generate S(6) and S(10) ring motifs. Inter­molecular N—H⋯O and O—H⋯O hydrogen bonds involving also the water mol­ecule and weak inter­molecular C—H⋯Owater inter­actions link the mol­ecules into an infinite one-dimensional ribbon structure extending along the b axis. The known (2S) absolute configuration for l-arginine was invoked. Weak intermolecular C—H⋯π interactions are also present.

Related literature  

For the synthesis of similar compounds, see: Srinivasan et al. (1986); Moutet & Ourari (1997). For general background on Schiff bases, see: von Konig et al. (1982); Lewis et al. (2009). For hydrogen-bond motifs, see: Bernstein et al. (1995). For related structures, see: Oueslati et al. (2007).graphic file with name e-69-o1301-scheme1.jpg

Experimental  

Crystal data  

  • C14H20N4O4·0.5H2O

  • M r = 317.35

  • Monoclinic, Inline graphic

  • a = 10.1828 (11) Å

  • b = 10.3414 (11) Å

  • c = 15.5542 (16) Å

  • β = 102.688 (2)°

  • V = 1597.9 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.30 × 0.30 × 0.25 mm

Data collection  

  • Bruker Kappa APEXII CCD-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004) T min = 0.971, T max = 0.976

  • 18648 measured reflections

  • 7483 independent reflections

  • 5859 reflections with I > 2σ(I)

  • R int = 0.036

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.072

  • wR(F 2) = 0.167

  • S = 1.10

  • 7483 reflections

  • 452 parameters

  • 14 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.21 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536813019727/zs2267sup1.cif

e-69-o1301-sup1.cif (38.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813019727/zs2267Isup2.hkl

e-69-o1301-Isup2.hkl (358.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2 0.89 (1) 1.94 (3) 2.638 (4) 134 (3)
N4—H4A⋯O4 0.90 (1) 2.06 (1) 2.935 (4) 165 (3)
N5—H5⋯O6 0.90 (1) 1.90 (3) 2.600 (4) 134 (3)
N8—H8A⋯O7 0.90 (1) 2.03 (1) 2.914 (4) 166 (3)
N2—H2⋯O2i 0.86 1.92 2.758 (4) 166
N3—H3A⋯O3i 0.89 (1) 2.58 (3) 3.333 (4) 142 (3)
N3—H3B⋯O4ii 0.89 (1) 1.93 (1) 2.817 (4) 175 (4)
N4—H4B⋯O3ii 0.89 (1) 2.03 (1) 2.912 (4) 171 (3)
N6—H6⋯O6iii 0.86 1.89 2.705 (4) 158
N7—H7A⋯O8iii 0.89 (1) 2.50 (3) 3.202 (4) 135 (3)
N7—H7B⋯O7iv 0.90 (1) 1.91 (1) 2.800 (4) 173 (3)
N8—H8B⋯O8iv 0.89 (1) 2.05 (2) 2.911 (4) 161 (3)
O1W—H2W⋯O3v 0.94 (1) 1.98 (2) 2.881 (5) 159 (6)
C15—H15C⋯O1W i 0.96 2.56 3.451 (7) 155
C22—H22⋯O1W 0.93 2.53 3.359 (6) 149
C1—H1CCg1vi 0.96 2.96 3.669 (4) 132
C15—H15CCg2vii 0.96 2.98 3.762 (5) 139

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic; (vii) Inline graphic.

Acknowledgments

MS thanks the UGC Networking Centre, School of Chemistry, University of Hyderabad, India, for the award of a Visiting Research Fellowship to use the facilities at the School. The authors also thank for access to the X-ray diffraction equipment.

supplementary crystallographic information

Comment

The Schiff base ligands derived from salicylaldehyde derivatives have been found to be excellent chelating agents for most applications in coordination chemistry such as in catalysis (Srinivasan et al., 1986) and electrocatalysis (Moutet & Ourari, 1997). Schiff bases of the general type p-R'-C6H4—CH═N—C6H4R"-p are well known reagents that find their practical application in various areas, e.g. photography (von Konig et al., 1982) and medicinal and pharmaceutical chemistry (Lewis et al., 2009). Here, we report the synthesis of the title compound, C14H20N4O4. 0.5H2O [systematic name: (2S)-5- {[amino(iminio)methyl]amino}-2-{[(1Z)-(4-methoxy-2-oxidophenyl) methylene]ammonio}pentanoate hemihydrate] and the structure is reported herein.

This compound crystallizes with two independent substituted L-arginine molecules (A and B), together with one water molecule of solvation in the asymmetric unit (Fig. 1). Each molecule exists as a zwitterion and adopts a Z configuration about the central iminium C═N functional group which is coplanar with the adjacent benzene ring. The known (2S) absolute configuration for L-arginine was invoked for the trivially named chiral centres at C9 and C23. The C—N bond distances of the NH2 groups(N3—C14, N4—C14, N7—C28 and N8—C28) are 1.332 (6), 1.319 (6), 1.328 (6) and 1.322 (5) Å, respectively, which is short for a C—N single bond, but still not quite as contracted as one would expect for a fully established C═N. These bond length features are consistent with an imino resonance form as is commonly found for C—N single bonds involving sp2 hybridized C and N atoms (Oueslati et al., 2007). The bond distances C6—O2, C10—O3, C10—O4, C20—O6, C24—O7 and C24—O8 [1.284 (5), 1.248 (6), 1.239 (5), 1.285 (5), 1.253 (5) and 1.237 (5) Å, respectively], clearly indicate the presence of C═O double bonds, including those also generated through resonance. The H atoms attached to the phenolic groups (O2 and O6) are transferred to the basic centres N1 and N5 respectively, generating the iminium groups. Also, the carboxylic H-atoms on O4 and O7 have been transferred to N4 and N8, respectively, to generate the common amino acid zwitterions.

In both molecules A and B, all nitrogen H-atoms are involved in hydrogen bonding (Table 1). In each, intramolecular N—H···O hydrogen bonds lead to the formation of a six- and a ten-membered ring motif [S(6) and S(10), respectively (Bernstein et al., 1995)] (Fig.1). Intermolecular N—H···O and O—H···O hydrogen bonds involving also the water molecule and weak intermolecular C—H···Owater interactions link the molecules into an infinite one-dimensional ribbon structure extending along the b axis (Fig. 2). Present also are weak intermolecular C—H..π interactions.

Experimental

L-Arginine and 4-methoxy salicylaldehyde (E-Merck- analar grades) were mixed in 1:1 stoichiometric proportions and dissolved in a triply distilled water–ethanol mixture using a mechanical stirrer for about four hours. The raw reaction product was removed by filtration, then re-dissolved in a water–ethanol solvent mixture and kept aside to allow crystal growth at ambient temperature. Bright yellowish crystals formed in 3 days and on removal were recrystallized several times to obtain the crystal specimen used in the X-ray analysis.

Refinement

The H atoms were positioned geometrically, with methyl C—H distances of 0.96 Å (methylene), 0.93 Å (aromatic) and the N2—H and N6—H distances of 0.86 Å, and were refined as riding on their parent atoms, with Uiso(H) = 1.2–1.5 Ueq of the parent atom. The remaining N—H atoms and water molecule H atoms were located from a difference Fourier map and refined with distance restraints [N—H = 0.90 (2) and O—H = 0.91 (2) Å] with Uiso(H) = 1.2Ueq(N) and Uiso(H) = 1.5Ueq(O). The known (2S) absolute configuration for L-arginine was invoked at the trivially numbered chiral centres of the A and B molecules (C9 and C23, respectively) (Flack parameter: 0.01 (14) for 3448 Friedel pairs).

Figures

Fig. 1.

Fig. 1.

Molecular configuration and atom numbering scheme for the two independent substituted L-arginine molecules and the water molecule of solvation in the asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 30% probability level and intramolecular hydrogen bonds are shown as dashed lines.

Fig. 2.

Fig. 2.

Packing diagram of the title compound viewed down the a axis. Dashed lines indicate intra and intermolecular N—H···O and O—H···O hydrogen bonds and weak C—H···O intermolecular interactions.

Crystal data

C14H20N4O4·0.5H2O F(000) = 676
Mr = 317.35 Dx = 1.319 Mg m3
Monoclinic, P21 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2yb Cell parameters from 3158 reflections
a = 10.1828 (11) Å θ = 2.5–31.2°
b = 10.3414 (11) Å µ = 0.10 mm1
c = 15.5542 (16) Å T = 293 K
β = 102.688 (2)° Block, yellow
V = 1597.9 (3) Å3 0.30 × 0.30 × 0.25 mm
Z = 4

Data collection

Bruker Kappa APEXII CCD-detector diffractometer 7483 independent reflections
Radiation source: fine-focus sealed tube 5859 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.036
ω and φ scans θmax = 28.4°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Bruker, 2004) h = −13→13
Tmin = 0.971, Tmax = 0.976 k = −13→13
18648 measured reflections l = −20→20

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.072 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.167 w = 1/[σ2(Fo2) + (0.0716P)2 + 0.2262P] where P = (Fo2 + 2Fc2)/3
S = 1.10 (Δ/σ)max < 0.001
7483 reflections Δρmax = 0.25 e Å3
452 parameters Δρmin = −0.21 e Å3
14 restraints Absolute structure: Flack (1983), 3448 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: 0.1 (14)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.1564 (4) 1.2584 (4) 0.5422 (3) 0.0774 (13)
H1A 0.1669 1.3231 0.5874 0.116*
H1B 0.0660 1.2607 0.5074 0.116*
H1C 0.2185 1.2750 0.5051 0.116*
C2 0.1744 (3) 1.0292 (4) 0.5285 (2) 0.0536 (8)
C3 0.2238 (4) 0.9149 (4) 0.5704 (2) 0.0566 (9)
H3 0.2572 0.9129 0.6310 0.068*
C4 0.2224 (3) 0.8064 (4) 0.5214 (2) 0.0515 (8)
H4 0.2571 0.7303 0.5492 0.062*
C5 0.1703 (3) 0.8047 (3) 0.4296 (2) 0.0444 (7)
C6 0.1152 (4) 0.9209 (3) 0.3871 (2) 0.0487 (8)
C7 0.1196 (4) 1.0328 (4) 0.4389 (2) 0.0559 (9)
H7 0.0853 1.1101 0.4127 0.067*
C8 0.1721 (3) 0.6905 (3) 0.3831 (2) 0.0471 (7)
H8 0.2109 0.6185 0.4146 0.057*
C9 0.1152 (3) 0.5543 (3) 0.2513 (2) 0.0462 (7)
H9 0.2055 0.5167 0.2598 0.055*
C10 0.0613 (4) 0.5805 (3) 0.1526 (2) 0.0499 (8)
C11 0.0248 (4) 0.4611 (3) 0.2890 (2) 0.0521 (8)
H11A 0.0645 0.4484 0.3510 0.063*
H11B −0.0618 0.5025 0.2849 0.063*
C12 0.0006 (4) 0.3291 (3) 0.2457 (2) 0.0496 (8)
H12A −0.0534 0.2779 0.2773 0.059*
H12B −0.0510 0.3401 0.1859 0.059*
C13 0.1279 (4) 0.2552 (3) 0.2433 (2) 0.0524 (8)
H13A 0.1827 0.3057 0.2120 0.063*
H13B 0.1792 0.2420 0.3030 0.063*
C14 0.0664 (3) 0.1157 (3) 0.1148 (2) 0.0474 (7)
C15 0.6713 (5) −0.0130 (4) 0.0132 (3) 0.0757 (12)
H15A 0.6971 −0.0757 −0.0255 0.114*
H15B 0.5757 −0.0169 0.0082 0.114*
H15C 0.7165 −0.0313 0.0728 0.114*
C16 0.6801 (4) 0.2145 (4) 0.0364 (2) 0.0574 (9)
C17 0.7369 (4) 0.3301 (4) 0.0165 (2) 0.0575 (9)
H17 0.7866 0.3324 −0.0270 0.069*
C18 0.7196 (4) 0.4378 (4) 0.0602 (2) 0.0551 (8)
H18 0.7587 0.5146 0.0472 0.066*
C19 0.6423 (3) 0.4371 (3) 0.1264 (2) 0.0494 (8)
C20 0.5796 (4) 0.3217 (3) 0.1448 (2) 0.0573 (9)
C21 0.6024 (4) 0.2094 (4) 0.0976 (2) 0.0631 (10)
H21 0.5639 0.1313 0.1086 0.076*
C22 0.6243 (3) 0.5520 (3) 0.1693 (2) 0.0480 (7)
H22 0.6677 0.6254 0.1550 0.058*
C23 0.5306 (4) 0.6853 (3) 0.2695 (2) 0.0463 (7)
H23 0.6141 0.7357 0.2800 0.056*
C24 0.4951 (3) 0.6572 (3) 0.3579 (2) 0.0470 (8)
C25 0.4207 (4) 0.7613 (3) 0.2061 (2) 0.0532 (8)
H25A 0.4490 0.7738 0.1510 0.064*
H25B 0.3392 0.7097 0.1935 0.064*
C26 0.3882 (4) 0.8927 (3) 0.2403 (2) 0.0550 (9)
H26A 0.3201 0.9348 0.1956 0.066*
H26B 0.3509 0.8803 0.2920 0.066*
C27 0.5096 (4) 0.9796 (3) 0.2639 (2) 0.0582 (9)
H27A 0.5780 0.9366 0.3078 0.070*
H27B 0.5460 0.9925 0.2119 0.070*
C28 0.4773 (3) 1.1249 (3) 0.3797 (2) 0.0456 (7)
N1 0.1241 (3) 0.6759 (3) 0.29926 (18) 0.0476 (6)
N2 0.0979 (3) 0.1312 (3) 0.20033 (17) 0.0545 (7)
H2 0.1009 0.0637 0.2330 0.065*
N3 0.0323 (4) −0.0009 (3) 0.0810 (2) 0.0585 (8)
N4 0.0709 (3) 0.2127 (3) 0.06010 (18) 0.0525 (7)
N5 0.5525 (3) 0.5643 (3) 0.22704 (17) 0.0482 (6)
N6 0.4817 (4) 1.1051 (3) 0.29785 (19) 0.0597 (8)
H6 0.4674 1.1695 0.2620 0.072*
N7 0.4545 (3) 1.2428 (3) 0.40673 (19) 0.0524 (7)
N8 0.4954 (4) 1.0294 (3) 0.43757 (19) 0.0575 (8)
O1 0.1831 (3) 1.1333 (3) 0.58193 (18) 0.0720 (8)
O2 0.0628 (3) 0.9232 (2) 0.30397 (14) 0.0621 (7)
O3 0.0088 (3) 0.6877 (3) 0.13073 (16) 0.0692 (8)
O4 0.0710 (3) 0.4893 (2) 0.10247 (15) 0.0584 (6)
O5 0.7073 (3) 0.1124 (3) −0.01041 (17) 0.0733 (8)
O6 0.5054 (3) 0.3186 (3) 0.20185 (19) 0.0779 (9)
O7 0.5093 (3) 0.7516 (3) 0.40963 (15) 0.0587 (6)
O8 0.4554 (3) 0.5477 (2) 0.37124 (16) 0.0586 (6)
O1W 0.8113 (4) 0.8224 (5) 0.2043 (3) 0.1180 (13)
H1W 0.834 (6) 0.892 (5) 0.244 (4) 0.177*
H2W 0.889 (4) 0.783 (6) 0.194 (5) 0.177*
H4A 0.081 (3) 0.2932 (15) 0.082 (2) 0.044 (9)*
H7A 0.459 (4) 1.306 (3) 0.3681 (19) 0.058 (11)*
H4B 0.056 (4) 0.205 (4) 0.0015 (7) 0.060 (11)*
H7B 0.461 (3) 1.251 (3) 0.4649 (8) 0.047 (9)*
H8A 0.492 (4) 0.9466 (15) 0.420 (2) 0.055 (10)*
H8B 0.492 (4) 1.045 (4) 0.4935 (10) 0.056 (10)*
H3A 0.021 (4) −0.064 (3) 0.118 (2) 0.065 (12)*
H3B 0.003 (3) −0.009 (4) 0.0228 (8) 0.054 (10)*
H5 0.513 (3) 0.493 (2) 0.241 (2) 0.053 (10)*
H1 0.083 (3) 0.744 (2) 0.271 (2) 0.049 (9)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.063 (2) 0.064 (3) 0.102 (3) 0.002 (2) 0.011 (2) −0.035 (3)
C2 0.0496 (19) 0.061 (2) 0.0531 (19) −0.0094 (17) 0.0164 (15) −0.0168 (17)
C3 0.055 (2) 0.069 (2) 0.0425 (17) −0.0028 (18) 0.0048 (15) −0.0087 (18)
C4 0.0464 (18) 0.055 (2) 0.0472 (18) −0.0038 (15) −0.0021 (14) −0.0025 (16)
C5 0.0464 (17) 0.0452 (17) 0.0428 (16) −0.0023 (14) 0.0126 (14) −0.0029 (14)
C6 0.0536 (19) 0.0472 (19) 0.0475 (18) −0.0096 (15) 0.0158 (15) −0.0057 (15)
C7 0.065 (2) 0.0477 (19) 0.056 (2) −0.0052 (17) 0.0158 (17) −0.0047 (16)
C8 0.0481 (18) 0.0470 (17) 0.0459 (17) −0.0023 (15) 0.0097 (14) 0.0040 (15)
C9 0.0590 (19) 0.0395 (17) 0.0390 (16) −0.0023 (15) 0.0085 (14) −0.0018 (13)
C10 0.062 (2) 0.048 (2) 0.0410 (17) −0.0091 (16) 0.0149 (15) −0.0017 (15)
C11 0.075 (2) 0.0420 (18) 0.0416 (17) −0.0030 (16) 0.0188 (16) 0.0003 (14)
C12 0.067 (2) 0.0421 (17) 0.0416 (16) −0.0115 (16) 0.0158 (15) −0.0018 (14)
C13 0.072 (2) 0.0427 (17) 0.0383 (16) −0.0027 (17) 0.0039 (15) −0.0006 (14)
C14 0.0542 (19) 0.0400 (17) 0.0479 (18) 0.0086 (15) 0.0110 (15) −0.0007 (15)
C15 0.092 (3) 0.056 (2) 0.077 (3) 0.007 (2) 0.016 (2) −0.017 (2)
C16 0.074 (2) 0.057 (2) 0.0395 (17) 0.0196 (18) 0.0091 (16) 0.0011 (15)
C17 0.062 (2) 0.070 (2) 0.0436 (18) 0.0046 (19) 0.0186 (16) −0.0002 (17)
C18 0.058 (2) 0.058 (2) 0.0509 (19) −0.0003 (17) 0.0150 (16) 0.0013 (17)
C19 0.0538 (19) 0.0484 (19) 0.0457 (17) 0.0080 (15) 0.0103 (14) 0.0053 (15)
C20 0.085 (3) 0.0418 (18) 0.0497 (19) 0.0124 (18) 0.0257 (18) 0.0095 (16)
C21 0.098 (3) 0.0403 (18) 0.057 (2) 0.0063 (19) 0.030 (2) 0.0084 (16)
C22 0.0561 (19) 0.0436 (17) 0.0435 (16) 0.0008 (15) 0.0090 (14) 0.0040 (14)
C23 0.062 (2) 0.0387 (16) 0.0384 (16) 0.0033 (15) 0.0125 (14) 0.0014 (13)
C24 0.0542 (19) 0.0458 (19) 0.0395 (17) 0.0143 (15) 0.0068 (14) 0.0091 (14)
C25 0.071 (2) 0.0432 (17) 0.0397 (17) 0.0071 (17) 0.0006 (15) 0.0000 (14)
C26 0.077 (2) 0.0447 (18) 0.0380 (17) 0.0116 (17) 0.0017 (16) 0.0011 (14)
C27 0.091 (3) 0.0456 (18) 0.0443 (18) 0.0001 (19) 0.0285 (18) 0.0043 (15)
C28 0.0564 (19) 0.0407 (17) 0.0414 (17) −0.0062 (15) 0.0144 (14) 0.0009 (14)
N1 0.0623 (18) 0.0359 (14) 0.0433 (15) 0.0001 (13) 0.0085 (13) 0.0033 (12)
N2 0.086 (2) 0.0386 (14) 0.0359 (14) 0.0072 (14) 0.0062 (14) 0.0056 (12)
N3 0.090 (2) 0.0406 (16) 0.0440 (17) −0.0011 (15) 0.0131 (16) −0.0001 (14)
N4 0.082 (2) 0.0396 (15) 0.0363 (14) −0.0004 (14) 0.0131 (14) 0.0004 (12)
N5 0.0685 (18) 0.0377 (14) 0.0424 (14) 0.0028 (13) 0.0205 (13) 0.0037 (11)
N6 0.104 (2) 0.0340 (14) 0.0457 (16) 0.0022 (15) 0.0258 (16) 0.0065 (12)
N7 0.0753 (19) 0.0424 (16) 0.0406 (15) −0.0044 (14) 0.0153 (14) −0.0013 (13)
N8 0.093 (2) 0.0435 (17) 0.0388 (15) −0.0007 (16) 0.0215 (15) 0.0025 (13)
O1 0.083 (2) 0.0680 (18) 0.0646 (16) −0.0093 (15) 0.0160 (14) −0.0276 (14)
O2 0.0966 (19) 0.0432 (13) 0.0405 (13) −0.0050 (13) 0.0020 (12) 0.0025 (11)
O3 0.108 (2) 0.0544 (16) 0.0412 (13) 0.0161 (15) 0.0071 (13) 0.0039 (12)
O4 0.0903 (19) 0.0466 (13) 0.0413 (12) −0.0059 (13) 0.0210 (12) −0.0030 (11)
O5 0.107 (2) 0.0646 (17) 0.0525 (15) 0.0202 (16) 0.0257 (15) −0.0042 (13)
O6 0.133 (3) 0.0394 (13) 0.0811 (19) 0.0060 (16) 0.0668 (19) 0.0087 (14)
O7 0.0839 (18) 0.0523 (14) 0.0415 (12) 0.0089 (13) 0.0170 (12) 0.0003 (11)
O8 0.0798 (17) 0.0455 (14) 0.0527 (14) 0.0036 (13) 0.0189 (12) 0.0084 (11)
O1W 0.097 (3) 0.116 (3) 0.136 (4) 0.000 (2) 0.015 (2) 0.010 (3)

Geometric parameters (Å, º)

C1—O1 1.434 (5) C17—C18 1.336 (5)
C1—H1A 0.9600 C17—H17 0.9300
C1—H1B 0.9600 C18—C19 1.428 (5)
C1—H1C 0.9600 C18—H18 0.9300
C2—O1 1.351 (4) C19—C22 1.394 (5)
C2—C7 1.383 (5) C19—C20 1.412 (5)
C2—C3 1.390 (5) C20—O6 1.286 (4)
C3—C4 1.355 (5) C20—C21 1.420 (5)
C3—H3 0.9300 C21—H21 0.9300
C4—C5 1.409 (4) C22—N5 1.282 (4)
C4—H4 0.9300 C22—H22 0.9300
C5—C8 1.388 (5) C23—N5 1.454 (4)
C5—C6 1.426 (5) C23—C24 1.525 (4)
C6—O2 1.286 (4) C23—C25 1.535 (5)
C6—C7 1.405 (5) C23—H23 0.9800
C7—H7 0.9300 C24—O8 1.235 (4)
C8—N1 1.297 (4) C24—O7 1.253 (4)
C8—H8 0.9300 C25—C26 1.523 (5)
C9—N1 1.455 (4) C25—H25A 0.9700
C9—C11 1.535 (5) C25—H25B 0.9700
C9—C10 1.537 (4) C26—C27 1.507 (6)
C9—H9 0.9800 C26—H26A 0.9700
C10—O4 1.241 (4) C26—H26B 0.9700
C10—O3 1.245 (4) C27—N6 1.452 (4)
C11—C12 1.518 (5) C27—H27A 0.9700
C11—H11A 0.9700 C27—H27B 0.9700
C11—H11B 0.9700 C28—N6 1.300 (4)
C12—C13 1.512 (5) C28—N8 1.321 (4)
C12—H12A 0.9700 C28—N7 1.326 (4)
C12—H12B 0.9700 N1—H1 0.891 (10)
C13—N2 1.448 (4) N2—H2 0.8600
C13—H13A 0.9700 N3—H3A 0.894 (10)
C13—H13B 0.9700 N3—H3B 0.892 (10)
C14—N2 1.309 (4) N4—H4A 0.898 (10)
C14—N4 1.323 (4) N4—H4B 0.894 (10)
C14—N3 1.330 (4) N5—H5 0.896 (10)
C15—O5 1.418 (5) N6—H6 0.8600
C15—H15A 0.9600 N7—H7A 0.893 (10)
C15—H15B 0.9600 N7—H7B 0.896 (10)
C15—H15C 0.9600 N8—H8A 0.898 (10)
C16—O5 1.346 (4) N8—H8B 0.893 (10)
C16—C21 1.366 (5) O1W—H1W 0.940 (10)
C16—C17 1.393 (6) O1W—H2W 0.937 (10)
O1—C1—H1A 109.5 C19—C18—H18 119.4
O1—C1—H1B 109.5 C22—C19—C20 120.7 (3)
H1A—C1—H1B 109.5 C22—C19—C18 119.5 (3)
O1—C1—H1C 109.5 C20—C19—C18 119.7 (3)
H1A—C1—H1C 109.5 O6—C20—C19 121.4 (3)
H1B—C1—H1C 109.5 O6—C20—C21 121.5 (3)
O1—C2—C7 123.8 (4) C19—C20—C21 117.1 (3)
O1—C2—C3 114.9 (3) C16—C21—C20 120.9 (4)
C7—C2—C3 121.3 (3) C16—C21—H21 119.5
C4—C3—C2 118.8 (3) C20—C21—H21 119.5
C4—C3—H3 120.6 N5—C22—C19 125.1 (3)
C2—C3—H3 120.6 N5—C22—H22 117.5
C3—C4—C5 122.4 (3) C19—C22—H22 117.5
C3—C4—H4 118.8 N5—C23—C24 109.6 (3)
C5—C4—H4 118.8 N5—C23—C25 108.2 (3)
C8—C5—C4 119.6 (3) C24—C23—C25 113.1 (3)
C8—C5—C6 121.6 (3) N5—C23—H23 108.6
C4—C5—C6 118.8 (3) C24—C23—H23 108.6
O2—C6—C7 121.0 (3) C25—C23—H23 108.6
O2—C6—C5 121.1 (3) O8—C24—O7 127.0 (3)
C7—C6—C5 117.9 (3) O8—C24—C23 118.6 (3)
C2—C7—C6 120.8 (4) O7—C24—C23 114.5 (3)
C2—C7—H7 119.6 C26—C25—C23 114.6 (3)
C6—C7—H7 119.6 C26—C25—H25A 108.6
N1—C8—C5 125.3 (3) C23—C25—H25A 108.6
N1—C8—H8 117.3 C26—C25—H25B 108.6
C5—C8—H8 117.3 C23—C25—H25B 108.6
N1—C9—C11 108.8 (3) H25A—C25—H25B 107.6
N1—C9—C10 109.1 (3) C27—C26—C25 112.8 (3)
C11—C9—C10 112.3 (3) C27—C26—H26A 109.0
N1—C9—H9 108.8 C25—C26—H26A 109.0
C11—C9—H9 108.8 C27—C26—H26B 109.0
C10—C9—H9 108.8 C25—C26—H26B 109.0
O4—C10—O3 126.4 (3) H26A—C26—H26B 107.8
O4—C10—C9 115.6 (3) N6—C27—C26 114.0 (3)
O3—C10—C9 117.9 (3) N6—C27—H27A 108.8
C12—C11—C9 116.7 (3) C26—C27—H27A 108.8
C12—C11—H11A 108.1 N6—C27—H27B 108.8
C9—C11—H11A 108.1 C26—C27—H27B 108.8
C12—C11—H11B 108.1 H27A—C27—H27B 107.7
C9—C11—H11B 108.1 N6—C28—N8 121.3 (3)
H11A—C11—H11B 107.3 N6—C28—N7 120.1 (3)
C13—C12—C11 114.1 (3) N8—C28—N7 118.6 (3)
C13—C12—H12A 108.7 C8—N1—C9 125.7 (3)
C11—C12—H12A 108.7 C8—N1—H1 116 (2)
C13—C12—H12B 108.7 C9—N1—H1 118 (2)
C11—C12—H12B 108.7 C14—N2—C13 123.9 (3)
H12A—C12—H12B 107.6 C14—N2—H2 118.0
N2—C13—C12 111.3 (3) C13—N2—H2 118.0
N2—C13—H13A 109.4 C14—N3—H3A 118 (3)
C12—C13—H13A 109.4 C14—N3—H3B 119 (2)
N2—C13—H13B 109.4 H3A—N3—H3B 122 (4)
C12—C13—H13B 109.4 C14—N4—H4A 118 (2)
H13A—C13—H13B 108.0 C14—N4—H4B 125 (3)
N2—C14—N4 121.7 (3) H4A—N4—H4B 117 (3)
N2—C14—N3 119.8 (3) C22—N5—C23 124.8 (3)
N4—C14—N3 118.4 (3) C22—N5—H5 117 (2)
O5—C15—H15A 109.5 C23—N5—H5 118 (2)
O5—C15—H15B 109.5 C28—N6—C27 123.2 (3)
H15A—C15—H15B 109.5 C28—N6—H6 118.4
O5—C15—H15C 109.5 C27—N6—H6 118.4
H15A—C15—H15C 109.5 C28—N7—H7A 115 (2)
H15B—C15—H15C 109.5 C28—N7—H7B 115 (2)
O5—C16—C21 124.5 (4) H7A—N7—H7B 127 (3)
O5—C16—C17 114.1 (3) C28—N8—H8A 121 (2)
C21—C16—C17 121.4 (3) C28—N8—H8B 120 (2)
C18—C17—C16 119.6 (3) H8A—N8—H8B 118 (3)
C18—C17—H17 120.2 C2—O1—C1 118.2 (3)
C16—C17—H17 120.2 C16—O5—C15 118.8 (3)
C17—C18—C19 121.2 (3) H1W—O1W—H2W 110.4 (17)
C17—C18—H18 119.4
O1—C2—C3—C4 −178.2 (3) C18—C19—C20—C21 2.6 (5)
C7—C2—C3—C4 2.5 (5) O5—C16—C21—C20 179.4 (4)
C2—C3—C4—C5 −1.2 (5) C17—C16—C21—C20 −1.6 (6)
C3—C4—C5—C8 179.9 (3) O6—C20—C21—C16 179.2 (4)
C3—C4—C5—C6 −1.0 (5) C19—C20—C21—C16 −1.0 (6)
C8—C5—C6—O2 1.2 (5) C20—C19—C22—N5 0.0 (5)
C4—C5—C6—O2 −177.9 (3) C18—C19—C22—N5 176.9 (3)
C8—C5—C6—C7 −178.9 (3) N5—C23—C24—O8 −18.7 (4)
C4—C5—C6—C7 2.0 (4) C25—C23—C24—O8 102.2 (4)
O1—C2—C7—C6 179.3 (3) N5—C23—C24—O7 161.9 (3)
C3—C2—C7—C6 −1.5 (5) C25—C23—C24—O7 −77.3 (4)
O2—C6—C7—C2 179.1 (3) N5—C23—C25—C26 −178.7 (3)
C5—C6—C7—C2 −0.8 (5) C24—C23—C25—C26 59.7 (4)
C4—C5—C8—N1 178.1 (3) C23—C25—C26—C27 57.0 (4)
C6—C5—C8—N1 −1.1 (5) C25—C26—C27—N6 −179.2 (3)
N1—C9—C10—O4 167.8 (3) C5—C8—N1—C9 −174.4 (3)
C11—C9—C10—O4 −71.5 (4) C11—C9—N1—C8 60.9 (4)
N1—C9—C10—O3 −14.6 (4) C10—C9—N1—C8 −176.2 (3)
C11—C9—C10—O3 106.2 (4) N4—C14—N2—C13 6.0 (5)
N1—C9—C11—C12 178.7 (3) N3—C14—N2—C13 −175.9 (3)
C10—C9—C11—C12 57.7 (4) C12—C13—N2—C14 79.9 (4)
C9—C11—C12—C13 55.3 (4) C19—C22—N5—C23 −177.9 (3)
C11—C12—C13—N2 −179.3 (3) C24—C23—N5—C22 −155.8 (3)
O5—C16—C17—C18 −178.4 (3) C25—C23—N5—C22 80.4 (4)
C21—C16—C17—C18 2.5 (6) N8—C28—N6—C27 −1.6 (6)
C16—C17—C18—C19 −0.8 (6) N7—C28—N6—C27 178.4 (3)
C17—C18—C19—C22 −178.7 (3) C26—C27—N6—C28 83.0 (5)
C17—C18—C19—C20 −1.8 (5) C7—C2—O1—C1 −11.4 (5)
C22—C19—C20—O6 −0.7 (5) C3—C2—O1—C1 169.3 (3)
C18—C19—C20—O6 −177.6 (4) C21—C16—O5—C15 −9.9 (6)
C22—C19—C20—C21 179.5 (3) C17—C16—O5—C15 171.0 (4)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1···O2 0.89 (1) 1.94 (3) 2.638 (4) 134 (3)
N4—H4A···O4 0.90 (1) 2.06 (1) 2.935 (4) 165 (3)
N5—H5···O6 0.90 (1) 1.90 (3) 2.600 (4) 134 (3)
N8—H8A···O7 0.90 (1) 2.03 (1) 2.914 (4) 166 (3)
N2—H2···O2i 0.86 1.92 2.758 (4) 166
N3—H3A···O3i 0.89 (1) 2.58 (3) 3.333 (4) 142 (3)
N3—H3B···O4ii 0.89 (1) 1.93 (1) 2.817 (4) 175 (4)
N4—H4B···O3ii 0.89 (1) 2.03 (1) 2.912 (4) 171 (3)
N6—H6···O6iii 0.86 1.89 2.705 (4) 158
N7—H7A···O8iii 0.89 (1) 2.50 (3) 3.202 (4) 135 (3)
N7—H7B···O7iv 0.90 (1) 1.91 (1) 2.800 (4) 173 (3)
N8—H8B···O8iv 0.89 (1) 2.05 (2) 2.911 (4) 161 (3)
O1W—H1W···O2v 0.94 (1) 2.33 (6) 2.882 (5) 117 (4)
O1W—H2W···O3v 0.94 (1) 1.98 (2) 2.881 (5) 159 (6)
C15—H15C···O1Wi 0.96 2.56 3.451 (7) 155
C22—H22···O1W 0.93 2.53 3.359 (6) 149
C1—H1C···Cg1vi 0.96 2.96 3.669 (4) 132
C15—H15C···Cg2vii 0.96 2.98 3.762 (5) 139

Symmetry codes: (i) x, y−1, z; (ii) −x, y−1/2, −z; (iii) x, y+1, z; (iv) −x+1, y+1/2, −z+1; (v) x+1, y, z; (vi) −x, y−1/2, −z+1; (vii) −x+1, y+1/2, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZS2267).

References

  1. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  2. Bruker (2004). APEX2, SAINT, XPREP and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  4. Konig, A. von, Moll, F. & Rosenhahn, L. (1982). US Patent 4358531.
  5. Lewis, J., Matteucci, M., Chen, T. & Jiao, H. (2009). WO Patent 2009140553 A2.
  6. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  7. Moutet, J. C. & Ourari, A. (1997). Electrochim. Acta, 42, 2525–2531.
  8. Oueslati, A., Kefi, R., Ben Nasr, C. & Lefebvre, F. (2007). J. Mol. Struct. 871, 49–58.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  11. Srinivasan, K., Michaud, P. & Kochi, J. K. (1986). J. Am. Chem. Soc. 108, 2309–2320. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536813019727/zs2267sup1.cif

e-69-o1301-sup1.cif (38.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813019727/zs2267Isup2.hkl

e-69-o1301-Isup2.hkl (358.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES