Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Jul 24;69(Pt 8):o1315. doi: 10.1107/S1600536813019831

2-[1-(2-Hy­droxy-4-meth­oxy­phen­yl)ethyl­idene]-N-methyl­hydrazinecarbo­thio­amide

Brian J Anderson a, Michael B Freedman a, Sean P Millikan a, Jerry P Jasinski a,*
PMCID: PMC3793802  PMID: 24109389

Abstract

In the title compound, C11H15N3O2S, the dihedral angle between the mean planes of the benzene ring and hydrazinecarbo­thio­amide group is 9.2 (1)°. An intra­molecular O—H⋯N hydrogen bond is observed, serving to maintain an approximately planar conformation for the molecule. In the crystal, inversion dimers linked by C—H⋯O inter­actions occur. Further C—H⋯O contacts link dimers into (010) chains.

Related literature  

For the synthesis and structure of thio­semicarbazones as ligands, see: Lobana et al. (2009, 2012). For palladium complexes with thio­semicarbazone ligands, see: Chellan et al. (2010). For related structures, see: Anderson et al. (2012, 2013). For bond lengths, see: Allen et al. (1987).graphic file with name e-69-o1315-scheme1.jpg

Experimental  

Crystal data  

  • C11H15N3O2S

  • M r = 253.32

  • Monoclinic, Inline graphic

  • a = 10.9881 (8) Å

  • b = 9.1468 (6) Å

  • c = 12.5575 (9) Å

  • β = 109.400 (8)°

  • V = 1190.45 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 173 K

  • 0.42 × 0.38 × 0.14 mm

Data collection  

  • Agilent Xcalibur (Eos, Gemini) diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO and CrysAlis RED; Agilent, 2012) T min = 0.728, T max = 1.000

  • 13894 measured reflections

  • 4104 independent reflections

  • 3320 reflections with I > 2σ(I)

  • R int = 0.043

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.076

  • wR(F 2) = 0.231

  • S = 1.16

  • 4104 reflections

  • 158 parameters

  • H-atom parameters constrained

  • Δρmax = 1.21 e Å−3

  • Δρmin = −0.46 e Å−3

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Agilent, 2012); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536813019831/hg5331sup1.cif

e-69-o1315-sup1.cif (21.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813019831/hg5331Isup2.hkl

e-69-o1315-Isup2.hkl (225.1KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813019831/hg5331Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.82 1.85 2.566 (3) 145
C10—H10A⋯O2i 0.96 2.59 3.301 (4) 132
C10—H10C⋯O1ii 0.96 2.57 3.481 (4) 158

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

JPJ acknowledges the NSF–MRI program (grant No. CHE-1039027) for funds to purchase the X-ray diffractometer.

supplementary crystallographic information

Comment

Thiosemicarbazones are a versatile class of ligands that can adopt multiple modes of binding to a metal (Lobana, et al., 2009) and the synthesis and structure determination of these metal complexes is an active area of research. (Lobana, et al., 2012) Palladium complexes with thiosemicarbazone ligands have been shown to have a variety of biological activity including anti-fungal and anti-tumor activity. (Chellan, et al., 2010). We have previously reported the structure of two analogous novel thiosemicarbazones (Anderson, et al., 2012; Anderson, et al., 2013). Here, we report the synthesis and crystal structure of a novel thiosemicarbazone ligand, (I), C11H15N3O2S .

In (I), the dihedral angle between the mean planes of the benzene ring and hydrazinecarbothioamide group (N1/N2/C8/S1/N3) is 9.2 (1)° (Fig. 1). Bond lengths are in normal ranges (Allen et al., 1987). In the crystal, an intramolecular O—H···N hydrogen bond is observed serving to keep the molecule in a nearly planar conformation. Additional weak and C—H···O intermolecular interactions (Table 1) assist in linking the molecules into dimers along (010) and influence crystal packing (Fig. 2).

Experimental

A 50 mL round bottom flask was charged with 0.218 g (1.31 mmol) of 2'-hydroxy-4'-methoxyacetophenone, 0.138 g (1.31 mmol) of 4-methyl-3- thiosemicarbazide, dissolved in 20 mL of methanol. The resulting colorless solution was refluxed for 48 hours and then a drop of concentrated HCl was added and the solution was refluxed for an additional 48 hours. The resulting yellow solution was transferred to a 125 mL separatory funnel. Dichloromethane (10 mL) and water (10 mL) were added, and the organic layer was separated. The aqueous layer was extracted with an additional 10 mL of dichloromethane. The organic layers were combined, washed with brine (2 x 10 mL), dried with magnesium sulfate, and the solvent was removed in vacuo to give a yellow solid (Fig. 3). The solid was dissolved in hot acetonitrile, allowed to cool to room temperature and then stored at 273 K resulting in colorless crystals (58 mg, 18%) after 24 hours. M.p. 448-453 K.

Refinement

All of the H atoms were placed in their calculated positions and then refined using the riding model with atom—H lengths of 0.93Å (CH), 0.96Å (CH3), 0.86Å (NH) or 0.82Å (OH). Isotropic displacement parameters for these atoms were set to 1.2 (CH, NH) or 1.5 (CH3, OH) times Ueq of the parent atom. Idealised Me refined as rotating group: C9(H9A,H9B,H9C), C10(H10A,H10B,H10C), C11(H11A,H11B,H11C). Idealised tetrahedral OH refined as rotating group: O1(H1).

Figures

Fig. 1.

Fig. 1.

ORTEP drawing of (I) showing the atom labeling scheme and 30% probability displacement ellipsoids. Dashed lines indicate O1—H1···N1 intramolecular hydrogen bonds.

Fig. 2.

Fig. 2.

Molecular packing for (I) viewed along the b axis. Dashed lines indicate O—H···N intramolecular hydrogen bonds and weak C—H···O intermolecular interactions linking the molecules into dimers along (010).

Fig. 3.

Fig. 3.

Synthesis of (I).

Crystal data

C11H15N3O2S F(000) = 536
Mr = 253.32 Dx = 1.413 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.7107 Å
a = 10.9881 (8) Å Cell parameters from 4367 reflections
b = 9.1468 (6) Å θ = 3.0–32.9°
c = 12.5575 (9) Å µ = 0.27 mm1
β = 109.400 (8)° T = 173 K
V = 1190.45 (15) Å3 Irregular, colourless
Z = 4 0.42 × 0.38 × 0.14 mm

Data collection

Agilent Xcalibur (Eos, Gemini) diffractometer 4104 independent reflections
Radiation source: Enhance (Mo) X-ray Source 3320 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.043
Detector resolution: 16.0416 pixels mm-1 θmax = 33.0°, θmin = 3.0°
ω scans h = −15→16
Absorption correction: multi-scan (CrysAlis PRO and CrysAlis RED; Agilent, 2012) k = −12→13
Tmin = 0.728, Tmax = 1.000 l = −18→18
13894 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.076 H-atom parameters constrained
wR(F2) = 0.231 w = 1/[σ2(Fo2) + (0.0907P)2 + 2.429P] where P = (Fo2 + 2Fc2)/3
S = 1.16 (Δ/σ)max < 0.001
4104 reflections Δρmax = 1.21 e Å3
158 parameters Δρmin = −0.46 e Å3
0 restraints

Special details

Experimental. 1H NMR [(CD3)2CO]: 11.7 (br s, 1H, NH) 9.52 (br s, 1H, OH) 7.73 (br s, 1H, NH) 7.5 (d, J = 8.6, 1H Ar) 6.47 (d, J = 8.6 1H Ar) 6.42 (d, 1H Ar) 3.80 (s, 3H, CH3) 3.13 (d, J = 4.7, 3H, CH3) 2.43 (s, 3H, CH3)
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.21259 (6) 0.28834 (7) 0.36426 (6) 0.02286 (19)
O1 0.55069 (19) 0.2003 (2) 0.50127 (19) 0.0280 (4)
H1 0.4936 0.2530 0.4608 0.042*
O2 0.9881 (2) 0.0943 (3) 0.60376 (19) 0.0309 (5)
N1 0.4600 (2) 0.4175 (3) 0.36942 (19) 0.0220 (4)
N2 0.3540 (2) 0.5019 (3) 0.31878 (19) 0.0220 (4)
H2 0.3628 0.5869 0.2929 0.026*
N3 0.1393 (2) 0.5407 (3) 0.2551 (2) 0.0240 (4)
H3 0.1595 0.6225 0.2317 0.029*
C1 0.5729 (2) 0.4652 (3) 0.3762 (2) 0.0198 (4)
C2 0.6806 (2) 0.3678 (3) 0.4335 (2) 0.0201 (5)
C3 0.6655 (2) 0.2410 (3) 0.4935 (2) 0.0207 (5)
C4 0.7702 (3) 0.1533 (3) 0.5478 (2) 0.0245 (5)
H4 0.7585 0.0703 0.5862 0.029*
C5 0.8923 (3) 0.1875 (3) 0.5459 (2) 0.0232 (5)
C6 0.9109 (3) 0.3099 (3) 0.4871 (2) 0.0260 (5)
H6 0.9923 0.3327 0.4844 0.031*
C7 0.8055 (3) 0.3967 (3) 0.4329 (2) 0.0250 (5)
H7 0.8182 0.4786 0.3939 0.030*
C8 0.2350 (2) 0.4514 (3) 0.3095 (2) 0.0192 (4)
C9 0.0037 (3) 0.5110 (4) 0.2322 (3) 0.0299 (6)
H9A −0.0070 0.4535 0.2924 0.045*
H9B −0.0298 0.4582 0.1624 0.045*
H9C −0.0422 0.6016 0.2264 0.045*
C10 0.5946 (3) 0.6111 (3) 0.3322 (3) 0.0255 (5)
H10A 0.5542 0.6133 0.2517 0.038*
H10B 0.6856 0.6278 0.3508 0.038*
H10C 0.5580 0.6860 0.3658 0.038*
C11 1.1161 (3) 0.1303 (4) 0.6095 (3) 0.0349 (7)
H11A 1.1420 0.2195 0.6510 0.052*
H11B 1.1191 0.1425 0.5344 0.052*
H11C 1.1736 0.0529 0.6467 0.052*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0232 (3) 0.0190 (3) 0.0279 (3) −0.0010 (2) 0.0104 (2) 0.0013 (2)
O1 0.0214 (9) 0.0276 (10) 0.0383 (11) −0.0008 (8) 0.0143 (8) 0.0071 (8)
O2 0.0216 (9) 0.0354 (11) 0.0358 (11) 0.0056 (8) 0.0094 (8) 0.0128 (9)
N1 0.0192 (10) 0.0224 (10) 0.0245 (10) 0.0012 (8) 0.0072 (8) 0.0009 (8)
N2 0.0172 (9) 0.0207 (10) 0.0287 (11) −0.0001 (8) 0.0083 (8) 0.0027 (8)
N3 0.0197 (10) 0.0212 (10) 0.0320 (11) 0.0019 (8) 0.0099 (8) 0.0049 (8)
C1 0.0193 (11) 0.0200 (11) 0.0199 (10) −0.0012 (8) 0.0063 (8) −0.0006 (8)
C2 0.0193 (11) 0.0198 (10) 0.0212 (10) −0.0014 (9) 0.0068 (8) −0.0001 (8)
C3 0.0203 (11) 0.0217 (11) 0.0221 (11) −0.0022 (9) 0.0098 (9) −0.0007 (9)
C4 0.0262 (12) 0.0228 (12) 0.0266 (12) −0.0002 (10) 0.0115 (10) 0.0047 (9)
C5 0.0209 (11) 0.0251 (12) 0.0239 (11) 0.0009 (9) 0.0076 (9) 0.0021 (9)
C6 0.0197 (11) 0.0277 (13) 0.0314 (13) −0.0024 (10) 0.0096 (10) 0.0042 (10)
C7 0.0205 (11) 0.0247 (12) 0.0308 (13) −0.0024 (9) 0.0101 (10) 0.0044 (10)
C8 0.0200 (11) 0.0191 (10) 0.0200 (10) −0.0002 (8) 0.0086 (8) −0.0020 (8)
C9 0.0203 (12) 0.0316 (14) 0.0383 (15) 0.0048 (10) 0.0103 (11) 0.0067 (12)
C10 0.0200 (11) 0.0207 (11) 0.0348 (14) −0.0013 (9) 0.0080 (10) 0.0026 (10)
C11 0.0204 (12) 0.0417 (17) 0.0424 (17) 0.0044 (12) 0.0104 (11) 0.0084 (14)

Geometric parameters (Å, º)

S1—C8 1.695 (3) C3—C4 1.383 (4)
O1—H1 0.8200 C4—H4 0.9300
O1—C3 1.350 (3) C4—C5 1.386 (4)
O2—C5 1.362 (3) C5—C6 1.393 (4)
O2—C11 1.423 (4) C6—H6 0.9300
N1—N2 1.366 (3) C6—C7 1.383 (4)
N1—C1 1.290 (3) C7—H7 0.9300
N2—H2 0.8600 C9—H9A 0.9600
N2—C8 1.354 (3) C9—H9B 0.9600
N3—H3 0.8600 C9—H9C 0.9600
N3—C8 1.328 (3) C10—H10A 0.9600
N3—C9 1.446 (4) C10—H10B 0.9600
C1—C2 1.465 (4) C10—H10C 0.9600
C1—C10 1.494 (4) C11—H11A 0.9600
C2—C3 1.422 (4) C11—H11B 0.9600
C2—C7 1.400 (4) C11—H11C 0.9600
C3—O1—H1 109.5 C7—C6—H6 120.8
C5—O2—C11 117.3 (2) C2—C7—H7 118.3
C1—N1—N2 119.4 (2) C6—C7—C2 123.4 (2)
N1—N2—H2 120.1 C6—C7—H7 118.3
C8—N2—N1 119.8 (2) N2—C8—S1 122.13 (19)
C8—N2—H2 120.1 N3—C8—S1 123.55 (19)
C8—N3—H3 117.4 N3—C8—N2 114.3 (2)
C8—N3—C9 125.1 (2) N3—C9—H9A 109.5
C9—N3—H3 117.4 N3—C9—H9B 109.5
N1—C1—C2 115.4 (2) N3—C9—H9C 109.5
N1—C1—C10 123.1 (2) H9A—C9—H9B 109.5
C2—C1—C10 121.5 (2) H9A—C9—H9C 109.5
C3—C2—C1 122.5 (2) H9B—C9—H9C 109.5
C7—C2—C1 121.1 (2) C1—C10—H10A 109.5
C7—C2—C3 116.4 (2) C1—C10—H10B 109.5
O1—C3—C2 122.7 (2) C1—C10—H10C 109.5
O1—C3—C4 116.6 (2) H10A—C10—H10B 109.5
C4—C3—C2 120.7 (2) H10A—C10—H10C 109.5
C3—C4—H4 119.6 H10B—C10—H10C 109.5
C3—C4—C5 120.8 (2) O2—C11—H11A 109.5
C5—C4—H4 119.6 O2—C11—H11B 109.5
O2—C5—C4 115.5 (2) O2—C11—H11C 109.5
O2—C5—C6 124.2 (2) H11A—C11—H11B 109.5
C4—C5—C6 120.3 (2) H11A—C11—H11C 109.5
C5—C6—H6 120.8 H11B—C11—H11C 109.5
C7—C6—C5 118.5 (2)
O1—C3—C4—C5 −179.1 (3) C3—C2—C7—C6 −0.4 (4)
O2—C5—C6—C7 −179.2 (3) C3—C4—C5—O2 179.1 (2)
N1—N2—C8—S1 2.8 (3) C3—C4—C5—C6 −1.2 (4)
N1—N2—C8—N3 −177.6 (2) C4—C5—C6—C7 1.0 (4)
N1—C1—C2—C3 −9.8 (4) C5—C6—C7—C2 −0.2 (4)
N1—C1—C2—C7 171.0 (2) C7—C2—C3—O1 179.8 (2)
N2—N1—C1—C2 179.1 (2) C7—C2—C3—C4 0.3 (4)
N2—N1—C1—C10 0.7 (4) C9—N3—C8—S1 −1.7 (4)
C1—N1—N2—C8 178.8 (2) C9—N3—C8—N2 178.7 (3)
C1—C2—C3—O1 0.6 (4) C10—C1—C2—C3 168.6 (2)
C1—C2—C3—C4 −179.0 (2) C10—C1—C2—C7 −10.6 (4)
C1—C2—C7—C6 178.9 (3) C11—O2—C5—C4 −176.4 (3)
C2—C3—C4—C5 0.5 (4) C11—O2—C5—C6 3.8 (4)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O1—H1···N1 0.82 1.85 2.566 (3) 145
C10—H10A···O2i 0.96 2.59 3.301 (4) 132
C10—H10C···O1ii 0.96 2.57 3.481 (4) 158

Symmetry codes: (i) x−1/2, −y+1/2, z−1/2; (ii) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG5331).

References

  1. Agilent (2012). CrysAlis PRO and CrysAlis RED Agilent Technologies, Yarnton, Oxfordshire, England.
  2. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  3. Anderson, B. J., Keeler, A. M., O’Rourke, K. A., Krauss, S. T. & Jasinski, J. P. (2013). Acta Cryst. E69, o11. [DOI] [PMC free article] [PubMed]
  4. Anderson, B. J., Kennedy, C. J. & Jasinski, J. P. (2012). Acta Cryst. E68, o2982. [DOI] [PMC free article] [PubMed]
  5. Chellan, P., Shunmoogam-Gounden, N., Hendricks, D. T., Gut, J., Rosenthal, P. J., Lategan, C., Smith, P. J., Chibale, K. & Smith, G. S. (2010). Eur. J. Inorg. Chem. pp. 3520–3528.
  6. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  7. Lobana, T. S., Kumari, P., Bawa, G., Hundal, G., Butcher, R. J., Fernandez, F. J., Jasinski, J. P. & Golen, J. A. (2012). Z. Anorg. Allg. Chem. 638, 804–810.
  8. Lobana, T. S., Sharma, R., Bawa, G. & Khanna, S. (2009). Coord. Chem. Rev. 253, 977–1055.
  9. Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536813019831/hg5331sup1.cif

e-69-o1315-sup1.cif (21.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813019831/hg5331Isup2.hkl

e-69-o1315-Isup2.hkl (225.1KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813019831/hg5331Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES