Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Jul 27;69(Pt 8):o1317. doi: 10.1107/S1600536813019922

2-Chloro-3-[(2-oxo-2H-chromen-6-yl)amino]­naphthalene-1,4-dione

Mikaelly O B Sousa a, Gleiciani Q Silveira a, Javier A G Gomez a,*
PMCID: PMC3793804  PMID: 24109391

Abstract

In the title compound, C19H10ClNO4, the dihedral angle between the naphtho­quinone and coumarin rings is 48.99 (6)°. In the crystal, mol­ecules are linked by strong N—H⋯O hydrogen bonds into chains with graph-set motif C(6) along [101]. The packing also features π–π stacking inter­actions between naphtho­quinone and coumarin rings [centroid-to-centroid distances = 3.7679 (12) and 3.6180 (13) Å].

Related literature  

For related compounds see: Rózsa et al. (1989); Ito et al. (1993); Ishikawa et al. (1995); Padwal et al. (2011). For reference structural data, see: Ibis & Deniz (2012); Resende & Gomez (2012). For graph-set notation of hydrogen bonds, see: Bernstein et al. (1995).graphic file with name e-69-o1317-scheme1.jpg

Experimental  

Crystal data  

  • C19H10ClNO4

  • M r = 351.73

  • Monoclinic, Inline graphic

  • a = 10.9371 (5) Å

  • b = 10.4462 (5) Å

  • c = 13.5104 (7) Å

  • β = 108.533 (5)°

  • V = 1463.53 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 150 K

  • 0.23 × 0.13 × 0.07 mm

Data collection  

  • Oxford Xcalibur Gemini Ultra diffractometer with Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) T min = 0.947, T max = 1

  • 15281 measured reflections

  • 3527 independent reflections

  • 2714 reflections with I > 2σ(I)

  • R int = 0.055

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.036

  • wR(F 2) = 0.065

  • S = 0.91

  • 3527 reflections

  • 226 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.21 e Å−3

  • Absolute structure: Flack (1983), 1217 Friedel pairs

  • Absolute structure parameter: −0.07 (5)

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536813019922/bx2446sup1.cif

e-69-o1317-sup1.cif (19KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813019922/bx2446Isup2.hkl

e-69-o1317-Isup2.hkl (173KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813019922/bx2446Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2i 0.86 2.21 3.015 (2) 157

Symmetry code: (i) Inline graphic.

Acknowledgments

This work was supported by the Brazilian agencies Proppi–UFF, FAPERJ, Scholarship Postgraduate Students Agreement Program – PEC-PG, CAPES/CNPq – Brazil and CAPES. The authors thank the X-ray diffraction laboratory LabCri-UFMG for the data collection, Professor Jackson A. L. C. Resende (IQ-UFF), and Professor M. D. Vargas (IQ-UFF) for her help and encouragement.

supplementary crystallographic information

Comment

There are very few examples in the literature of coumarin–naphthoquinone conjugates, most of them (direct C—C bond) are from natural sources (Rózsa et al., 1989; Ito et al., 1993; Ishikawa et al., 1995; Padwal et al., 2011) and only one synthetic, the coumarin–naphthoquinone hybrid linked through sulfur spacer attached at 7-position of the coumarin ring and 2-position of the naphthoquinone [2-(7-sulphanyl-4-methyl-coumarinyl)-3-(1-ethoxy)-1,4-naphthoquinone; Ibis & Deniz, 2012]. The title compound (I) is the product of the reaction of 2,3-dicloro-1,4-naphtoquionone with 6-aminocoumarin. The average C—C, C—O, C═O and C—N bond distances are in agreement with those observed in tert-butyl N-{3-[(3-chloro-1,4-dioxo-1,4-dihydronaphthalen2-yl)amino]propyl}carbamate (Resende & Gomez, 2012). The angle between the naphthoquinone and coumarin planes is 48.99 (6)°. The molecular structure is stabilized by one intramolecular N—H···O hydrogen bond. In the crystal, molecules are linked by strong N—H···O hydrogen bonds into chains with graph-set notation C(6) along [101] (Bernstein et al., 1995). The packing also features π–π stacking interactions between naphthoquinone and coumarin rings [centroid–centroid distances = 3.7679 (12) and 3.6180 (13) Å]. The dihedral angle between naphthoquinone and coumarin rings is 48.99 (6)°.

Experimental

2,3-Dichloro-1,4-naphthoquinone (681 mg, 3 mmol) was added to a solution of 6-aminocoumarin (579.6 mg, 3.6 mmol) in DMF (10 ml). The mixture was stirred at 60–70°C for 72 h. The solvent was evaporated under reduced pressure and the crude product was purified through recrystallization in hexane, resulting in a red solid. Yield: 833.8 mg, 79%. Single crystals suitable for a study of X-ray diffraction of compound (I) were obtained at 4°C by slow evaporation of an acetonitrile–dichloromethane (1:1) solution. m.p. 301°C. Found: C, 64.12; H, 2.91; N, 4.14. Calc. for C19H10ClNO4: C, 64.51; H, 3.42; N, 3.96%. 1H NMR (300 MHz, d6-DMSO): δ 8.16 (d, J = 7.5 Hz, 2H), 8.13 (d, J = 9.6 Hz, 1H), 8.00 (t, J = 7.5 Hz, 1H), 7.94 (t, J = 7.5 Hz, 1H), 7.58–7.52 (m, 2H), 7.48 (d, J = 8.7 Hz, 1H), 6.62 (d, J = 9.6 Hz, 1H). 13 C NMR - APT (d6-DMSO, 75 MHz): δ 180.0, 176.8, 160.0, 150.4, 144.0, 143.3, 135.5, 134.8, 133.4, 131.9, 130.3, 128.0, 126.7, 126.2, 122.7, 118.2, 116.7, 116.0, 114.7. IR (KBr): νC═O (quin.) = 1672, νC═O (ester) = 1720, νC—O (ester) = 1568, 1290, νN—H = 3294, νC—H (arom.) = 3080. UV–Vis [CH3CN; λ/nm (log ε)]: 277 (4.10), 333 (3.28), 469 (3.10).

Refinement

All C-bound H atoms were placed in calculated idealized positions. The N-bound H atom was placed in the calculated idealized position. All H atoms were refined with fixed individual displacement parameters [Uiso(H) = 1.2Ueq using a riding model.

Figures

Fig. 1.

Fig. 1.

ORTEP representation (Farrugia, 2012) of the molecular structure of compound (I) with the numbering and displacement ellipsoids (at 30% probability level).

Fig. 2.

Fig. 2.

Packing diagram of (I), showing the formation of the C(6) chain along [101]. Hydrogen-bonds are shown by dashed lines.

Crystal data

C19H10ClNO4 F(000) = 720
Mr = 351.73 Dx = 1.596 Mg m3
Monoclinic, Cc Mo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2yc Cell parameters from 5237 reflections
a = 10.9371 (5) Å θ = 2.0–29.5°
b = 10.4462 (5) Å µ = 0.29 mm1
c = 13.5104 (7) Å T = 150 K
β = 108.533 (5)° Prism, violet
V = 1463.53 (12) Å3 0.23 × 0.13 × 0.07 mm
Z = 4

Data collection

Oxford Xcalibur Gemini Ultra diffractometer with Atlas detector 3527 independent reflections
Graphite monochromator 2714 reflections with I > 2σ(I)
Detector resolution: 10.4186 pixels mm-1 Rint = 0.055
ω scans θmax = 28.5°, θmin = 2.8°
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) h = −14→14
Tmin = 0.947, Tmax = 1 k = −13→13
15281 measured reflections l = −18→18

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036 H-atom parameters constrained
wR(F2) = 0.065 w = 1/[σ2(Fo2) + (0.029P)2] where P = (Fo2 + 2Fc2)/3
S = 0.91 (Δ/σ)max < 0.001
3527 reflections Δρmax = 0.23 e Å3
226 parameters Δρmin = −0.21 e Å3
2 restraints Absolute structure: Flack (1983), 1217 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: −0.07 (5)

Special details

Experimental. CrysAlisPro, Oxford Diffraction Ltd., Version 1.171.33.55 (release 05-01-2010 CrysAlis171 .NET) (compiled Jan 5 2010,16:28:46) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl 0.31971 (5) 0.30204 (5) 0.61162 (4) 0.02411 (12)
O4 0.57743 (16) −0.02583 (15) 0.22630 (13) 0.0366 (4)
O3 0.39509 (13) 0.03816 (14) 0.24617 (11) 0.0246 (4)
O1 −0.11020 (14) 0.09274 (14) 0.55900 (12) 0.0292 (4)
O2 0.31861 (14) 0.29316 (15) 0.82346 (11) 0.0279 (4)
N1 0.07529 (16) 0.14446 (17) 0.48249 (13) 0.0208 (4)
H1 −0.0048 0.1431 0.4453 0.025*
C2 0.20172 (19) 0.23128 (19) 0.65296 (15) 0.0182 (5)
C3 0.09915 (19) 0.17092 (18) 0.58553 (15) 0.0179 (5)
C14 0.3192 (2) 0.0628 (2) 0.30908 (16) 0.0197 (5)
C9 0.11248 (18) 0.2050 (2) 0.80240 (15) 0.0182 (4)
C1 0.2201 (2) 0.2472 (2) 0.76414 (17) 0.0187 (4)
C11 0.16331 (19) 0.11893 (19) 0.42803 (15) 0.0183 (4)
C10 −0.00065 (19) 0.1522 (2) 0.73331 (16) 0.0192 (5)
C13 0.2008 (2) 0.1182 (2) 0.26179 (16) 0.0214 (5)
H13 0.173 0.1363 0.1891 0.026*
C4 −0.0132 (2) 0.13481 (18) 0.62218 (16) 0.0191 (5)
C12 0.1236 (2) 0.14658 (19) 0.32122 (16) 0.0211 (5)
H12 0.042 0.1856 0.2895 0.025*
C15 0.36188 (19) 0.03463 (19) 0.41469 (17) 0.0195 (5)
C16 0.28168 (19) 0.06194 (19) 0.47438 (16) 0.0202 (5)
H16 0.3085 0.0414 0.5466 0.024*
C19 0.5182 (2) −0.0122 (2) 0.28635 (19) 0.0269 (5)
C18 0.5609 (2) −0.0425 (2) 0.39665 (18) 0.0258 (5)
H18 0.6438 −0.0795 0.4265 0.031*
C8 0.1236 (2) 0.2211 (2) 0.90669 (17) 0.0240 (5)
H8 0.1993 0.258 0.9536 0.029*
C5 −0.1001 (2) 0.1138 (2) 0.76989 (17) 0.0243 (5)
H5 −0.1765 0.0775 0.7235 0.029*
C6 −0.0869 (2) 0.1289 (2) 0.87452 (18) 0.0265 (5)
H6 −0.1543 0.1017 0.9 0.032*
C7 0.0230 (2) 0.1829 (2) 0.94223 (17) 0.0264 (5)
H7 0.0301 0.1942 1.0136 0.032*
C17 0.4889 (2) −0.0209 (2) 0.45813 (18) 0.0249 (5)
H17 0.5209 −0.0419 0.5302 0.03*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl 0.0214 (2) 0.0303 (3) 0.0225 (2) −0.0092 (3) 0.0095 (2) −0.0010 (3)
O4 0.0313 (10) 0.0461 (11) 0.0399 (10) 0.0050 (8) 0.0221 (8) −0.0034 (8)
O3 0.0222 (8) 0.0287 (9) 0.0246 (9) 0.0013 (7) 0.0101 (7) −0.0018 (6)
O1 0.0234 (9) 0.0360 (10) 0.0286 (9) −0.0082 (7) 0.0091 (7) −0.0020 (7)
O2 0.0187 (8) 0.0391 (10) 0.0252 (8) −0.0062 (7) 0.0060 (7) −0.0032 (7)
N1 0.0147 (9) 0.0263 (10) 0.0214 (10) −0.0009 (7) 0.0055 (8) −0.0011 (7)
C2 0.0175 (11) 0.0185 (12) 0.0225 (12) −0.0010 (8) 0.0120 (9) 0.0029 (8)
C3 0.0188 (11) 0.0156 (11) 0.0196 (11) 0.0036 (9) 0.0065 (9) 0.0045 (8)
C14 0.0191 (11) 0.0205 (11) 0.0206 (11) −0.0041 (9) 0.0079 (9) −0.0025 (9)
C9 0.0186 (11) 0.0159 (10) 0.0226 (11) 0.0040 (9) 0.0099 (9) 0.0033 (9)
C1 0.0152 (10) 0.0172 (11) 0.0231 (11) 0.0033 (8) 0.0053 (9) 0.0011 (8)
C11 0.0190 (10) 0.0176 (11) 0.0199 (11) −0.0042 (9) 0.0085 (9) −0.0047 (9)
C10 0.0170 (11) 0.0149 (11) 0.0279 (12) 0.0057 (8) 0.0103 (9) 0.0041 (9)
C13 0.0230 (11) 0.0235 (12) 0.0165 (11) −0.0028 (9) 0.0045 (9) −0.0022 (9)
C4 0.0177 (11) 0.0140 (11) 0.0253 (12) 0.0014 (9) 0.0066 (10) 0.0015 (9)
C12 0.0166 (10) 0.0204 (12) 0.0235 (12) −0.0001 (9) 0.0027 (9) −0.0007 (9)
C15 0.0160 (11) 0.0161 (11) 0.0261 (12) −0.0014 (8) 0.0065 (9) −0.0005 (8)
C16 0.0210 (11) 0.0207 (12) 0.0186 (11) 0.0007 (9) 0.0060 (9) −0.0004 (8)
C19 0.0231 (12) 0.0208 (12) 0.0390 (14) 0.0007 (10) 0.0127 (11) −0.0014 (10)
C18 0.0183 (12) 0.0252 (13) 0.0328 (13) 0.0053 (9) 0.0067 (10) 0.0037 (10)
C8 0.0224 (12) 0.0268 (13) 0.0231 (12) 0.0055 (9) 0.0076 (10) 0.0029 (9)
C5 0.0201 (11) 0.0201 (12) 0.0360 (14) 0.0017 (9) 0.0135 (10) 0.0020 (10)
C6 0.0232 (12) 0.0298 (14) 0.0338 (14) 0.0067 (10) 0.0194 (11) 0.0070 (10)
C7 0.0270 (12) 0.0339 (15) 0.0230 (12) 0.0098 (11) 0.0146 (10) 0.0059 (10)
C17 0.0245 (13) 0.0222 (12) 0.0262 (12) 0.0014 (10) 0.0054 (11) 0.0028 (10)

Geometric parameters (Å, º)

Cl—C2 1.7268 (19) C10—C5 1.389 (3)
O4—C19 1.197 (2) C10—C4 1.475 (3)
O3—C19 1.385 (3) C13—C12 1.370 (3)
O3—C14 1.387 (2) C13—H13 0.95
O1—C4 1.213 (2) C12—H12 0.95
O2—C1 1.219 (3) C15—C16 1.397 (3)
N1—C3 1.361 (2) C15—C17 1.446 (3)
N1—C11 1.411 (2) C16—H16 0.95
N1—H1 0.86 C19—C18 1.448 (3)
C2—C3 1.355 (3) C18—C17 1.333 (3)
C2—C1 1.460 (3) C18—H18 0.95
C3—C4 1.511 (3) C8—C7 1.391 (3)
C14—C13 1.376 (3) C8—H8 0.95
C14—C15 1.385 (3) C5—C6 1.384 (3)
C9—C8 1.386 (3) C5—H5 0.95
C9—C10 1.404 (3) C6—C7 1.379 (3)
C9—C1 1.494 (3) C6—H6 0.95
C11—C16 1.381 (3) C7—H7 0.95
C11—C12 1.399 (3) C17—H17 0.95
C19—O3—C14 121.75 (17) C13—C12—C11 120.85 (19)
C3—N1—C11 129.15 (18) C13—C12—H12 119.6
C3—N1—H1 115.4 C11—C12—H12 119.6
C11—N1—H1 115.4 C14—C15—C16 118.94 (18)
C3—C2—C1 123.94 (18) C14—C15—C17 117.96 (18)
C3—C2—Cl 121.72 (15) C16—C15—C17 123.1 (2)
C1—C2—Cl 114.29 (15) C11—C16—C15 119.77 (19)
C2—C3—N1 129.12 (18) C11—C16—H16 120.1
C2—C3—C4 118.78 (17) C15—C16—H16 120.1
N1—C3—C4 111.90 (17) O4—C19—O3 116.6 (2)
C13—C14—C15 121.78 (18) O4—C19—C18 127.2 (2)
C13—C14—O3 116.84 (18) O3—C19—C18 116.22 (18)
C15—C14—O3 121.37 (18) C17—C18—C19 122.9 (2)
C8—C9—C10 119.83 (18) C17—C18—H18 118.6
C8—C9—C1 119.46 (18) C19—C18—H18 118.6
C10—C9—C1 120.69 (17) C9—C8—C7 119.5 (2)
O2—C1—C2 121.67 (19) C9—C8—H8 120.2
O2—C1—C9 121.19 (19) C7—C8—H8 120.2
C2—C1—C9 117.14 (18) C6—C5—C10 119.4 (2)
C16—C11—C12 119.73 (18) C6—C5—H5 120.3
C16—C11—N1 122.81 (18) C10—C5—H5 120.3
C12—C11—N1 117.36 (18) C7—C6—C5 120.7 (2)
C5—C10—C9 120.07 (19) C7—C6—H6 119.7
C5—C10—C4 119.79 (19) C5—C6—H6 119.7
C9—C10—C4 120.13 (18) C6—C7—C8 120.4 (2)
C12—C13—C14 118.92 (19) C6—C7—H7 119.8
C12—C13—H13 120.5 C8—C7—H7 119.8
C14—C13—H13 120.5 C18—C17—C15 119.8 (2)
O1—C4—C10 122.55 (18) C18—C17—H17 120.1
O1—C4—C3 118.71 (18) C15—C17—H17 120.1
C10—C4—C3 118.74 (18)
C1—C2—C3—N1 −176.13 (19) N1—C3—C4—O1 −2.7 (3)
Cl—C2—C3—N1 6.5 (3) C2—C3—C4—C10 −7.3 (3)
C1—C2—C3—C4 9.5 (3) N1—C3—C4—C10 177.40 (17)
Cl—C2—C3—C4 −167.80 (14) C14—C13—C12—C11 −0.6 (3)
C11—N1—C3—C2 30.9 (3) C16—C11—C12—C13 −0.2 (3)
C11—N1—C3—C4 −154.41 (19) N1—C11—C12—C13 −176.49 (18)
C19—O3—C14—C13 177.18 (19) C13—C14—C15—C16 0.7 (3)
C19—O3—C14—C15 −1.9 (3) O3—C14—C15—C16 179.77 (18)
C3—C2—C1—O2 174.1 (2) C13—C14—C15—C17 −178.7 (2)
Cl—C2—C1—O2 −8.4 (3) O3—C14—C15—C17 0.4 (3)
C3—C2—C1—C9 −6.0 (3) C12—C11—C16—C15 1.2 (3)
Cl—C2—C1—C9 171.51 (14) N1—C11—C16—C15 177.35 (18)
C8—C9—C1—O2 1.6 (3) C14—C15—C16—C11 −1.5 (3)
C10—C9—C1—O2 179.98 (19) C17—C15—C16—C11 177.8 (2)
C8—C9—C1—C2 −178.30 (18) C14—O3—C19—O4 −177.49 (19)
C10—C9—C1—C2 0.1 (3) C14—O3—C19—C18 2.5 (3)
C3—N1—C11—C16 29.8 (3) O4—C19—C18—C17 178.2 (2)
C3—N1—C11—C12 −154.0 (2) O3—C19—C18—C17 −1.8 (3)
C8—C9—C10—C5 −1.4 (3) C10—C9—C8—C7 1.0 (3)
C1—C9—C10—C5 −179.75 (18) C1—C9—C8—C7 179.39 (19)
C8—C9—C10—C4 179.97 (18) C9—C10—C5—C6 0.5 (3)
C1—C9—C10—C4 1.6 (3) C4—C10—C5—C6 179.15 (19)
C15—C14—C13—C12 0.4 (3) C10—C5—C6—C7 0.8 (3)
O3—C14—C13—C12 −178.74 (18) C5—C6—C7—C8 −1.2 (3)
C5—C10—C4—O1 3.3 (3) C9—C8—C7—C6 0.3 (3)
C9—C10—C4—O1 −178.1 (2) C19—C18—C17—C15 0.4 (3)
C5—C10—C4—C3 −176.81 (17) C14—C15—C17—C18 0.4 (3)
C9—C10—C4—C3 1.9 (3) C16—C15—C17—C18 −179.0 (2)
C2—C3—C4—O1 172.59 (19)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1···O2i 0.86 2.21 3.015 (2) 157

Symmetry code: (i) x−1/2, −y+1/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BX2446).

References

  1. Agilent (2011). CrysAlis PRO, Agilent Technologies Ltd, Yarnton, Oxfordshire, England.
  2. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  3. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  4. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  5. Ibis, C. & Deniz, N. G. (2012). J. Chem. Sci. 124, 657–667.
  6. Ishikawa, T., Kotake, K. & Ishii, H. (1995). Chem. Pharm. Bull. 43, 1039–1041. [DOI] [PubMed]
  7. Ito, C., Ono, T., Tanaka, E., Takemura, Y., Nakata, T., Uchida, H., Ju-ichi, M., Omura, M. & Furukawa, H. (1993). Chem. Pharm. Bull. 41, 205–207.
  8. Padwal, J., Lewis, W. & Moody, C. J. (2011). Org. Biomol. Chem. 9, 3484–3493. [DOI] [PubMed]
  9. Resende, J. A. L. C. & Gomez, J. A. (2012). Acta Cryst. E68, o2361. [DOI] [PMC free article] [PubMed]
  10. Rózsa, Z., Mester, I., Reisch, R. & Szendrei, K. (1989). Planta Med. 55, 68–69. [DOI] [PubMed]
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536813019922/bx2446sup1.cif

e-69-o1317-sup1.cif (19KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813019922/bx2446Isup2.hkl

e-69-o1317-Isup2.hkl (173KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813019922/bx2446Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES