Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Jul 27;69(Pt 8):o1319. doi: 10.1107/S1600536813020217

(2E)-3-(6-Chloro-2-meth­oxy­quinolin-3-yl)-1-(2-methyl-4-phenyl­quinolin-3-yl)prop-2-en-1-one acetone monosolvate

R Prasath a,, S Sarveswari b, Seik Weng Ng c,d, Edward R T Tiekink c,*
PMCID: PMC3793806  PMID: 24109393

Abstract

In the title solvate, C29H21ClN2O2·C3H6O, a prop-2-en-1-one bridge links two quinolinyl residues; the latter are almost perpendicular [dihedral angle = 78.27 (6)°]. The dihedral angle between the quinonyl ring system and its pendant phenyl group is 59.78 (8)°. A small twist in the bridging prop-2-en-1-one group is noted [O=C—C=C torsion angle = −10.6 (3)°]. In the crystal, a three-dimensional architecture arises as a result of C—H⋯O and π–π stacking [centroid–centroid distances = 3.5504 (12)–3.6623 (12) Å].

Related literature  

For background details and the biological applications of quinolinyl derivatives, see: Joshi et al. (2011); Prasath et al. (2013a ). For a related structure, see: Prasath et al. (2013b ).graphic file with name e-69-o1319-scheme1.jpg

Experimental  

Crystal data  

  • C29H21ClN2O2·C3H6O

  • M r = 523.01

  • Monoclinic, Inline graphic

  • a = 17.1714 (3) Å

  • b = 10.7099 (2) Å

  • c = 14.5248 (2) Å

  • β = 100.021 (2)°

  • V = 2630.42 (8) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 1.58 mm−1

  • T = 100 K

  • 0.30 × 0.25 × 0.20 mm

Data collection  

  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2013) T min = 0.665, T max = 1.000

  • 11367 measured reflections

  • 5408 independent reflections

  • 4574 reflections with I > 2σ(I)

  • R int = 0.032

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.058

  • wR(F 2) = 0.167

  • S = 1.03

  • 5408 reflections

  • 346 parameters

  • H-atom parameters constrained

  • Δρmax = 1.47 e Å−3

  • Δρmin = −0.46 e Å−3

Data collection: CrysAlis PRO (Agilent, 2013); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) general, I. DOI: 10.1107/S1600536813020217/hg5334sup1.cif

e-69-o1319-sup1.cif (25.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813020217/hg5334Isup2.hkl

e-69-o1319-Isup2.hkl (259.5KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813020217/hg5334Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C26—H26⋯O2i 0.95 2.47 3.319 (3) 149
C30—H30A⋯O1i 0.98 2.52 3.373 (4) 146
C28—H28⋯O3 0.95 2.57 3.467 (3) 158

Symmetry code: (i) Inline graphic.

Acknowledgments

RP gratefully acknowledges the Council of Scientific and Industrial Research (CSIR), India, for a Senior Research Fellowship (09/919/(0014)/2012 EMR-I). We also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR-MOHE/SC/03).

supplementary crystallographic information

Comment

The the title compound, (I), was investigated in connection with on-going studies of quinolinyl chalcones (Prasath et al., 2013a), motivated by their potential anti-bacterial, anti-fungal, anti-malarial and anti-cancer activity (Joshi et al., 2011).

The molecular structure of the quinolinyl derivative, (I), Fig. 1, comprises two quinolinyl residues connected by the ends of a prop-2-en-1-one bridge, in an almost perpendicular relationship; the dihedral angle between the quinolinyl residues is 78.27 (6)°. The phenyl ring is inclined with respect to the quinolinyl residue to which it is attached, forming a dihedral angle of 59.78 (8)°. The conformation about the ethylene bond [C18═C19 = 1.336 (3) Å] is E. A small twist in the bridging prop-2-en-1-one group is manifested in the O1—C17—C18—C19 torsion angle of -10.6 (3)°. An distinct conformation was reported recently for a related structure, namely (2E)-3-(6-chloro-2-methoxyquinolin-3-yl)-1-(2,4-dimethylquinolin-3 - y)prop-2-en-1-one (Prasath et al., 2013b) where the nitrogen atoms are approximately syn as opposed to approximately anti in (I).

In the crystal packing, the quinolinyl and acetone molecules are connected by C—H···O interactions, Table 1. Additional C—H···O contacts and a number of π—π interactions, involving pyridyl, a quinolinyl-C6 ring and the phenyl group, connect molecules into a three-dimensional architecture [centroid···centroid distances = 3.5504 (12), 3.5747 (12) and 3.6623 (12) Å], Fig. 2.

Experimental

A mixture of 3-acetyl-2-methyl-4-phenylquinoline (260 mg, 0.001 M) and 2,6-dichloroquinoline-3-carbaldehyde (230 mg, 0.001 M) in methanol (20 ml) containing potassium hydroxide (0.2 g) was stirred at room temperature for 12 h. The reaction mixture was then neutralized with dilute acetic acid and the resultant solid was filtered, dried and purified by column chromatography using ethyl acetate - hexane (3:1) mixture to afford compound. Re-crystallization was by slow evaporation of an acetone solution of (I), which yielded blocks in 62% yield; M.pt: 366–368 K.

Refinement

Carbon-bound H-atoms were placed in calculated positions [C—H = 0.95–0.98 Å, Uiso(H) = 1.2–1.5Ueq(C)] and were included in the refinement in the riding model approximation. The maximum and minimum residual electron density peaks of 1.47 and 0.46 e Å-3, respectively, were located 0.85 Å and 0.68 Å from the O2 and Cl1 atoms, respectively.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.

Fig. 2.

Fig. 2.

View in projection down the c axis of the unit-cell contents of (I). The π—π and C—H···O interactions are shown as purple and orange dashed lines, respectively.

Crystal data

C29H21ClN2O2·C3H6O F(000) = 1096
Mr = 523.01 Dx = 1.321 Mg m3
Monoclinic, P21/c Cu Kα radiation, λ = 1.54184 Å
Hall symbol: -P 2ybc Cell parameters from 4229 reflections
a = 17.1714 (3) Å θ = 2.6–76.5°
b = 10.7099 (2) Å µ = 1.58 mm1
c = 14.5248 (2) Å T = 100 K
β = 100.021 (2)° Prism, pale-yellow
V = 2630.42 (8) Å3 0.30 × 0.25 × 0.20 mm
Z = 4

Data collection

Agilent SuperNova Dual diffractometer with an Atlas detector 5408 independent reflections
Radiation source: SuperNova (Cu) X-ray Source 4574 reflections with I > 2σ(I)
Mirror monochromator Rint = 0.032
Detector resolution: 10.4041 pixels mm-1 θmax = 76.7°, θmin = 2.6°
ω scan h = −21→21
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2013) k = −9→13
Tmin = 0.665, Tmax = 1.000 l = −18→11
11367 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.167 H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0953P)2 + 1.726P] where P = (Fo2 + 2Fc2)/3
5408 reflections (Δ/σ)max < 0.001
346 parameters Δρmax = 1.47 e Å3
0 restraints Δρmin = −0.46 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.62921 (3) 0.12909 (5) 0.32316 (4) 0.03232 (17)
O1 0.22537 (9) 0.34889 (15) 0.74016 (10) 0.0264 (3)
O2 0.47465 (9) 0.10414 (17) 0.80988 (11) 0.0324 (4)
N1 0.12879 (10) 0.59002 (17) 0.50819 (13) 0.0258 (4)
N2 0.55712 (10) 0.06750 (17) 0.70334 (12) 0.0245 (4)
C1 0.08058 (12) 0.5228 (2) 0.44105 (14) 0.0235 (4)
C2 0.03155 (13) 0.5910 (2) 0.36971 (15) 0.0295 (5)
H2 0.0332 0.6797 0.3702 0.035*
C3 −0.01806 (14) 0.5301 (2) 0.30037 (15) 0.0338 (5)
H3 −0.0501 0.5767 0.2525 0.041*
C4 −0.02195 (13) 0.3989 (2) 0.29950 (15) 0.0314 (5)
H4 −0.0567 0.3575 0.2510 0.038*
C5 0.02415 (12) 0.3303 (2) 0.36832 (14) 0.0264 (4)
H5 0.0204 0.2418 0.3677 0.032*
C6 0.07738 (11) 0.3911 (2) 0.44037 (13) 0.0216 (4)
C7 0.12817 (11) 0.32582 (19) 0.51344 (13) 0.0201 (4)
C8 0.17507 (11) 0.39553 (19) 0.58093 (13) 0.0210 (4)
C9 0.17372 (12) 0.5289 (2) 0.57624 (14) 0.0241 (4)
C10 0.22557 (14) 0.6057 (2) 0.64860 (17) 0.0332 (5)
H10A 0.2229 0.6936 0.6293 0.050*
H10B 0.2803 0.5763 0.6551 0.050*
H10C 0.2074 0.5976 0.7087 0.050*
C11 0.12677 (11) 0.18704 (19) 0.51703 (13) 0.0211 (4)
C12 0.14436 (12) 0.1150 (2) 0.44272 (14) 0.0242 (4)
H12 0.1597 0.1550 0.3903 0.029*
C13 0.13946 (13) −0.0141 (2) 0.44520 (16) 0.0293 (5)
H13 0.1517 −0.0619 0.3946 0.035*
C14 0.11663 (13) −0.0742 (2) 0.52142 (17) 0.0317 (5)
H14 0.1125 −0.1627 0.5225 0.038*
C15 0.10015 (13) −0.0036 (2) 0.59537 (16) 0.0305 (5)
H15 0.0852 −0.0440 0.6479 0.037*
C16 0.10515 (12) 0.1257 (2) 0.59373 (14) 0.0250 (4)
H16 0.0938 0.1729 0.6452 0.030*
C17 0.23238 (11) 0.33553 (18) 0.65850 (13) 0.0208 (4)
C18 0.29959 (11) 0.27093 (19) 0.62832 (13) 0.0217 (4)
H18 0.2965 0.2518 0.5639 0.026*
C19 0.36459 (11) 0.23825 (19) 0.68814 (14) 0.0223 (4)
H19 0.3649 0.2491 0.7531 0.027*
C20 0.43552 (11) 0.18660 (19) 0.65883 (13) 0.0218 (4)
C21 0.49258 (12) 0.11715 (19) 0.72277 (14) 0.0231 (4)
C22 0.57217 (11) 0.08240 (19) 0.61423 (14) 0.0221 (4)
C23 0.64121 (12) 0.0285 (2) 0.59056 (15) 0.0266 (4)
H23 0.6762 −0.0175 0.6360 0.032*
C24 0.65784 (12) 0.0425 (2) 0.50195 (16) 0.0273 (4)
H24 0.7041 0.0059 0.4861 0.033*
C25 0.60641 (12) 0.1109 (2) 0.43496 (15) 0.0244 (4)
C26 0.53820 (12) 0.16319 (19) 0.45448 (14) 0.0229 (4)
H26 0.5035 0.2075 0.4076 0.027*
C27 0.52045 (11) 0.15016 (18) 0.54522 (14) 0.0204 (4)
C28 0.45154 (11) 0.20257 (19) 0.57037 (14) 0.0215 (4)
H28 0.4161 0.2491 0.5257 0.026*
C29 0.52882 (18) 0.0347 (3) 0.87429 (17) 0.0424 (6)
H29A 0.5101 0.0305 0.9342 0.064*
H29B 0.5807 0.0753 0.8832 0.064*
H29C 0.5332 −0.0500 0.8501 0.064*
O3 0.33767 (14) 0.4389 (2) 0.45197 (14) 0.0573 (6)
C30 0.23862 (15) 0.4489 (3) 0.31684 (17) 0.0373 (6)
H30A 0.2371 0.3579 0.3235 0.056*
H30B 0.2551 0.4700 0.2574 0.056*
H30C 0.1859 0.4835 0.3178 0.056*
C31 0.29599 (14) 0.5025 (2) 0.39548 (15) 0.0331 (5)
C32 0.29821 (18) 0.6428 (3) 0.40126 (19) 0.0450 (6)
H32A 0.3467 0.6692 0.4427 0.068*
H32B 0.2521 0.6728 0.4262 0.068*
H32C 0.2973 0.6777 0.3387 0.068*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0329 (3) 0.0336 (3) 0.0345 (3) −0.0039 (2) 0.0173 (2) −0.0023 (2)
O1 0.0261 (7) 0.0297 (8) 0.0242 (7) 0.0027 (6) 0.0063 (6) −0.0013 (6)
O2 0.0278 (8) 0.0422 (10) 0.0265 (7) 0.0063 (7) 0.0026 (6) −0.0116 (7)
N1 0.0244 (9) 0.0217 (9) 0.0326 (9) 0.0024 (7) 0.0087 (7) 0.0035 (7)
N2 0.0223 (8) 0.0263 (9) 0.0231 (8) 0.0029 (7) −0.0008 (6) −0.0031 (7)
C1 0.0213 (9) 0.0268 (11) 0.0245 (9) 0.0063 (8) 0.0098 (8) 0.0045 (8)
C2 0.0300 (11) 0.0297 (11) 0.0310 (11) 0.0103 (9) 0.0111 (9) 0.0089 (9)
C3 0.0296 (11) 0.0444 (14) 0.0279 (11) 0.0145 (10) 0.0063 (9) 0.0108 (10)
C4 0.0242 (10) 0.0431 (14) 0.0261 (10) 0.0082 (9) 0.0015 (8) 0.0005 (9)
C5 0.0235 (10) 0.0299 (11) 0.0261 (10) 0.0042 (8) 0.0054 (8) 0.0003 (8)
C6 0.0179 (9) 0.0264 (10) 0.0219 (9) 0.0040 (7) 0.0077 (7) 0.0031 (8)
C7 0.0148 (8) 0.0252 (10) 0.0216 (9) 0.0019 (7) 0.0064 (7) 0.0016 (7)
C8 0.0174 (9) 0.0247 (10) 0.0223 (9) 0.0019 (7) 0.0076 (7) 0.0015 (7)
C9 0.0201 (9) 0.0241 (10) 0.0294 (10) 0.0019 (8) 0.0077 (8) 0.0000 (8)
C10 0.0317 (11) 0.0225 (11) 0.0431 (13) −0.0013 (9) −0.0003 (10) −0.0022 (9)
C11 0.0166 (8) 0.0224 (10) 0.0236 (9) 0.0024 (7) 0.0014 (7) 0.0009 (7)
C12 0.0195 (9) 0.0292 (11) 0.0229 (9) 0.0028 (8) 0.0008 (7) −0.0024 (8)
C13 0.0229 (10) 0.0287 (11) 0.0330 (11) 0.0050 (8) −0.0046 (8) −0.0090 (9)
C14 0.0270 (10) 0.0205 (10) 0.0433 (12) 0.0009 (8) −0.0062 (9) −0.0008 (9)
C15 0.0251 (10) 0.0287 (11) 0.0358 (11) −0.0027 (8) 0.0005 (9) 0.0065 (9)
C16 0.0218 (9) 0.0275 (11) 0.0250 (10) −0.0002 (8) 0.0025 (7) 0.0014 (8)
C17 0.0184 (9) 0.0201 (9) 0.0238 (9) −0.0013 (7) 0.0035 (7) −0.0010 (7)
C18 0.0199 (9) 0.0231 (10) 0.0227 (9) 0.0012 (7) 0.0052 (7) −0.0035 (7)
C19 0.0209 (9) 0.0242 (10) 0.0217 (9) 0.0002 (7) 0.0034 (7) −0.0025 (7)
C20 0.0178 (9) 0.0225 (10) 0.0242 (9) −0.0005 (7) 0.0011 (7) −0.0042 (8)
C21 0.0247 (10) 0.0232 (10) 0.0202 (9) −0.0008 (8) 0.0009 (7) −0.0032 (7)
C22 0.0185 (9) 0.0192 (9) 0.0276 (10) −0.0018 (7) 0.0007 (7) −0.0035 (8)
C23 0.0177 (9) 0.0264 (10) 0.0341 (11) 0.0010 (8) −0.0001 (8) −0.0045 (9)
C24 0.0174 (9) 0.0273 (11) 0.0371 (11) −0.0012 (8) 0.0047 (8) −0.0076 (9)
C25 0.0218 (9) 0.0240 (10) 0.0294 (10) −0.0055 (8) 0.0097 (8) −0.0040 (8)
C26 0.0219 (9) 0.0199 (10) 0.0268 (10) −0.0022 (7) 0.0039 (7) −0.0002 (8)
C27 0.0169 (9) 0.0179 (9) 0.0261 (9) −0.0012 (7) 0.0028 (7) −0.0021 (7)
C28 0.0175 (9) 0.0208 (9) 0.0255 (9) −0.0006 (7) 0.0019 (7) −0.0015 (7)
C29 0.0550 (16) 0.0437 (15) 0.0290 (12) 0.0158 (12) 0.0087 (11) 0.0058 (10)
O3 0.0579 (13) 0.0665 (15) 0.0453 (11) 0.0049 (11) 0.0028 (10) 0.0181 (10)
C30 0.0363 (12) 0.0427 (14) 0.0359 (12) −0.0130 (10) 0.0146 (10) −0.0117 (10)
C31 0.0324 (12) 0.0415 (14) 0.0269 (10) −0.0060 (10) 0.0098 (9) 0.0035 (9)
C32 0.0560 (17) 0.0404 (15) 0.0407 (13) −0.0156 (12) 0.0142 (12) −0.0066 (11)

Geometric parameters (Å, º)

Cl1—C25 1.746 (2) C14—H14 0.9500
O1—C17 1.221 (2) C15—C16 1.388 (3)
O2—C21 1.360 (3) C15—H15 0.9500
O2—C29 1.411 (3) C16—H16 0.9500
N1—C9 1.317 (3) C17—C18 1.476 (3)
N1—C1 1.369 (3) C18—C19 1.336 (3)
N2—C21 1.304 (3) C18—H18 0.9500
N2—C22 1.373 (3) C19—C20 1.467 (3)
C1—C6 1.411 (3) C19—H19 0.9500
C1—C2 1.419 (3) C20—C28 1.371 (3)
C2—C3 1.366 (3) C20—C21 1.435 (3)
C2—H2 0.9500 C22—C23 1.414 (3)
C3—C4 1.407 (4) C22—C27 1.418 (3)
C3—H3 0.9500 C23—C24 1.374 (3)
C4—C5 1.375 (3) C23—H23 0.9500
C4—H4 0.9500 C24—C25 1.401 (3)
C5—C6 1.422 (3) C24—H24 0.9500
C5—H5 0.9500 C25—C26 1.372 (3)
C6—C7 1.433 (3) C26—C27 1.410 (3)
C7—C8 1.375 (3) C26—H26 0.9500
C7—C11 1.488 (3) C27—C28 1.414 (3)
C8—C9 1.431 (3) C28—H28 0.9500
C8—C17 1.505 (3) C29—H29A 0.9800
C9—C10 1.499 (3) C29—H29B 0.9800
C10—H10A 0.9800 C29—H29C 0.9800
C10—H10B 0.9800 O3—C31 1.202 (3)
C10—H10C 0.9800 C30—C31 1.488 (3)
C11—C16 1.398 (3) C30—H30A 0.9800
C11—C12 1.401 (3) C30—H30B 0.9800
C12—C13 1.386 (3) C30—H30C 0.9800
C12—H12 0.9500 C31—C32 1.505 (4)
C13—C14 1.395 (3) C32—H32A 0.9800
C13—H13 0.9500 C32—H32B 0.9800
C14—C15 1.383 (3) C32—H32C 0.9800
C21—O2—C29 116.16 (17) C18—C17—C8 114.89 (16)
C9—N1—C1 118.42 (19) C19—C18—C17 122.50 (18)
C21—N2—C22 117.61 (17) C19—C18—H18 118.7
N1—C1—C6 123.29 (18) C17—C18—H18 118.7
N1—C1—C2 117.2 (2) C18—C19—C20 123.50 (18)
C6—C1—C2 119.5 (2) C18—C19—H19 118.3
C3—C2—C1 120.5 (2) C20—C19—H19 118.3
C3—C2—H2 119.8 C28—C20—C21 116.46 (18)
C1—C2—H2 119.8 C28—C20—C19 122.50 (18)
C2—C3—C4 120.4 (2) C21—C20—C19 121.03 (18)
C2—C3—H3 119.8 N2—C21—O2 119.87 (18)
C4—C3—H3 119.8 N2—C21—C20 125.56 (18)
C5—C4—C3 120.5 (2) O2—C21—C20 114.56 (18)
C5—C4—H4 119.8 N2—C22—C23 119.04 (18)
C3—C4—H4 119.8 N2—C22—C27 121.91 (18)
C4—C5—C6 120.3 (2) C23—C22—C27 119.06 (19)
C4—C5—H5 119.8 C24—C23—C22 120.2 (2)
C6—C5—H5 119.8 C24—C23—H23 119.9
C1—C6—C5 118.83 (18) C22—C23—H23 119.9
C1—C6—C7 117.66 (18) C23—C24—C25 119.92 (19)
C5—C6—C7 123.51 (19) C23—C24—H24 120.0
C8—C7—C6 117.93 (19) C25—C24—H24 120.0
C8—C7—C11 121.90 (17) C26—C25—C24 121.83 (19)
C6—C7—C11 120.12 (17) C26—C25—Cl1 118.97 (17)
C7—C8—C9 120.37 (18) C24—C25—Cl1 119.20 (16)
C7—C8—C17 121.82 (18) C25—C26—C27 118.94 (19)
C9—C8—C17 117.72 (18) C25—C26—H26 120.5
N1—C9—C8 122.29 (19) C27—C26—H26 120.5
N1—C9—C10 116.9 (2) C26—C27—C28 121.92 (18)
C8—C9—C10 120.79 (19) C26—C27—C22 120.04 (18)
C9—C10—H10A 109.5 C28—C27—C22 118.04 (18)
C9—C10—H10B 109.5 C20—C28—C27 120.41 (18)
H10A—C10—H10B 109.5 C20—C28—H28 119.8
C9—C10—H10C 109.5 C27—C28—H28 119.8
H10A—C10—H10C 109.5 O2—C29—H29A 109.5
H10B—C10—H10C 109.5 O2—C29—H29B 109.5
C16—C11—C12 118.5 (2) H29A—C29—H29B 109.5
C16—C11—C7 120.37 (18) O2—C29—H29C 109.5
C12—C11—C7 121.04 (18) H29A—C29—H29C 109.5
C13—C12—C11 120.4 (2) H29B—C29—H29C 109.5
C13—C12—H12 119.8 C31—C30—H30A 109.5
C11—C12—H12 119.8 C31—C30—H30B 109.5
C12—C13—C14 120.5 (2) H30A—C30—H30B 109.5
C12—C13—H13 119.7 C31—C30—H30C 109.5
C14—C13—H13 119.7 H30A—C30—H30C 109.5
C15—C14—C13 119.2 (2) H30B—C30—H30C 109.5
C15—C14—H14 120.4 O3—C31—C30 122.8 (3)
C13—C14—H14 120.4 O3—C31—C32 121.4 (2)
C14—C15—C16 120.7 (2) C30—C31—C32 115.8 (2)
C14—C15—H15 119.6 C31—C32—H32A 109.5
C16—C15—H15 119.6 C31—C32—H32B 109.5
C15—C16—C11 120.6 (2) H32A—C32—H32B 109.5
C15—C16—H16 119.7 C31—C32—H32C 109.5
C11—C16—H16 119.7 H32A—C32—H32C 109.5
O1—C17—C18 123.90 (18) H32B—C32—H32C 109.5
O1—C17—C8 120.99 (18)
C9—N1—C1—C6 −0.9 (3) C7—C11—C16—C15 176.94 (18)
C9—N1—C1—C2 178.66 (18) C7—C8—C17—O1 −117.8 (2)
N1—C1—C2—C3 179.97 (19) C9—C8—C17—O1 65.6 (3)
C6—C1—C2—C3 −0.5 (3) C7—C8—C17—C18 67.3 (2)
C1—C2—C3—C4 0.8 (3) C9—C8—C17—C18 −109.3 (2)
C2—C3—C4—C5 −0.1 (3) O1—C17—C18—C19 −10.6 (3)
C3—C4—C5—C6 −1.1 (3) C8—C17—C18—C19 164.11 (19)
N1—C1—C6—C5 178.86 (18) C17—C18—C19—C20 −173.03 (19)
C2—C1—C6—C5 −0.7 (3) C18—C19—C20—C28 20.8 (3)
N1—C1—C6—C7 −0.8 (3) C18—C19—C20—C21 −159.9 (2)
C2—C1—C6—C7 179.69 (18) C22—N2—C21—O2 179.46 (18)
C4—C5—C6—C1 1.5 (3) C22—N2—C21—C20 −0.1 (3)
C4—C5—C6—C7 −178.94 (19) C29—O2—C21—N2 −0.5 (3)
C1—C6—C7—C8 1.8 (3) C29—O2—C21—C20 179.0 (2)
C5—C6—C7—C8 −177.81 (18) C28—C20—C21—N2 −0.8 (3)
C1—C6—C7—C11 179.30 (17) C19—C20—C21—N2 179.8 (2)
C5—C6—C7—C11 −0.3 (3) C28—C20—C21—O2 179.62 (18)
C6—C7—C8—C9 −1.3 (3) C19—C20—C21—O2 0.3 (3)
C11—C7—C8—C9 −178.73 (17) C21—N2—C22—C23 −179.30 (19)
C6—C7—C8—C17 −177.82 (17) C21—N2—C22—C27 0.6 (3)
C11—C7—C8—C17 4.7 (3) N2—C22—C23—C24 −179.71 (19)
C1—N1—C9—C8 1.5 (3) C27—C22—C23—C24 0.3 (3)
C1—N1—C9—C10 −179.85 (19) C22—C23—C24—C25 0.3 (3)
C7—C8—C9—N1 −0.4 (3) C23—C24—C25—C26 −1.3 (3)
C17—C8—C9—N1 176.27 (18) C23—C24—C25—Cl1 179.27 (16)
C7—C8—C9—C10 −179.01 (19) C24—C25—C26—C27 1.6 (3)
C17—C8—C9—C10 −2.3 (3) Cl1—C25—C26—C27 −179.00 (15)
C8—C7—C11—C16 59.1 (3) C25—C26—C27—C28 179.44 (18)
C6—C7—C11—C16 −118.3 (2) C25—C26—C27—C22 −0.9 (3)
C8—C7—C11—C12 −123.1 (2) N2—C22—C27—C26 179.99 (18)
C6—C7—C11—C12 59.5 (3) C23—C22—C27—C26 −0.1 (3)
C16—C11—C12—C13 0.7 (3) N2—C22—C27—C28 −0.3 (3)
C7—C11—C12—C13 −177.16 (18) C23—C22—C27—C28 179.64 (18)
C11—C12—C13—C14 0.3 (3) C21—C20—C28—C27 1.1 (3)
C12—C13—C14—C15 −1.0 (3) C19—C20—C28—C27 −179.53 (18)
C13—C14—C15—C16 0.8 (3) C26—C27—C28—C20 179.06 (19)
C14—C15—C16—C11 0.2 (3) C22—C27—C28—C20 −0.6 (3)
C12—C11—C16—C15 −0.9 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C26—H26···O2i 0.95 2.47 3.319 (3) 149
C30—H30A···O1i 0.98 2.52 3.373 (4) 146
C28—H28···O3 0.95 2.57 3.467 (3) 158

Symmetry code: (i) x, −y+1/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG5334).

References

  1. Agilent (2013). CrysAlis PRO Agilent Technologies Inc., Santa Clara, CA, USA.
  2. Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  3. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  4. Joshi, R. S., Mandhane, P. G., Khan, W. & Gill, C. H. (2011). J. Heterocycl. Chem. 48, 872–876.
  5. Prasath, R., Bhavana, P., Ng, S. W. & Tiekink, E. R. T. (2013a). J. Organomet. Chem. 726, 62–70.
  6. Prasath, R., Sarveswari, S., Ng, S. W. & Tiekink, E. R. T. (2013b). Acta Cryst. E69, o1274. [DOI] [PMC free article] [PubMed]
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) general, I. DOI: 10.1107/S1600536813020217/hg5334sup1.cif

e-69-o1319-sup1.cif (25.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813020217/hg5334Isup2.hkl

e-69-o1319-Isup2.hkl (259.5KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813020217/hg5334Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES