Abstract
As a second-order nonlinear optical process, sum-frequency generation is highly surface-specific and accordingly has been developed into a very powerful and versatile surface spectroscopic tool. It has found many unique applications in different disciplines and thus provided many exciting new research opportunities in surface and surface-related science. Selected examples are discussed here to illustrate the power of the technique.
Full text
PDF







Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aizawa T, Ando T, Kamo M, Sato Y. High-resolution electron-energy-loss spectroscopic study of epitaxially grown diamond (111) and (100) surfaces. Phys Rev B Condens Matter. 1993 Dec 15;48(24):18348–18351. doi: 10.1103/physrevb.48.18348. [DOI] [PubMed] [Google Scholar]
- Benjamin I., I Vibrational spectrum of water at the liquid/vapor interface. Phys Rev Lett. 1994 Oct 10;73(15):2083–2086. doi: 10.1103/PhysRevLett.73.2083. [DOI] [PubMed] [Google Scholar]
- Chin RP, Huang JY, Shen YR, Chuang TJ, Seki H, Buck M. Vibrational spectra of hydrogen on diamond C(111)-(1 x 1). Phys Rev B Condens Matter. 1992 Jan 15;45(3):1522–1524. doi: 10.1103/physrevb.45.1522. [DOI] [PubMed] [Google Scholar]
- Chin RP, Huang JY, Shen YR, Chuang TJ, Seki H. Interaction of atomic hydrogen with the diamond C(111) surface studied by infrared-visible sum-frequency-generation spectroscopy. Phys Rev B Condens Matter. 1995 Aug 15;52(8):5985–5995. doi: 10.1103/physrevb.52.5985. [DOI] [PubMed] [Google Scholar]
- Daum W, Krause H, Reichel U, Ibach H. Identification of strained silicon layers at Si-SiO2 interfaces and clean Si surfaces by nonlinear optical spectroscopy. Phys Rev Lett. 1993 Aug 23;71(8):1234–1237. doi: 10.1103/PhysRevLett.71.1234. [DOI] [PubMed] [Google Scholar]
- Du Q., Freysz E., Shen Y. R. Surface vibrational spectroscopic studies of hydrogen bonding and hydrophobicity. Science. 1994 May 6;264(5160):826–828. doi: 10.1126/science.264.5160.826. [DOI] [PubMed] [Google Scholar]
- Du Q, Freysz E, Shen YR. Vibrational spectra of water molecules at quartz/water interfaces. Phys Rev Lett. 1994 Jan 10;72(2):238–241. doi: 10.1103/PhysRevLett.72.238. [DOI] [PubMed] [Google Scholar]
- Du Q, Superfine R, Freysz E, Shen YR. Vibrational spectroscopy of water at the vapor/water interface. Phys Rev Lett. 1993 Apr 12;70(15):2313–2316. doi: 10.1103/PhysRevLett.70.2313. [DOI] [PubMed] [Google Scholar]
- Gavish M., Popovitz-Biro R., Lahav M., Leiserowitz L. Ice nucleation by alcohols arranged in monolayers at the surface of water drops. Science. 1990 Nov 16;250(4983):973–975. doi: 10.1126/science.250.4983.973. [DOI] [PubMed] [Google Scholar]
- Guyot-Sionnest P. Coherent processes at surfaces: Free-induction decay and photon echo of the Si-H stretching vibration for H/Si(111). Phys Rev Lett. 1991 Mar 18;66(11):1489–1492. doi: 10.1103/PhysRevLett.66.1489. [DOI] [PubMed] [Google Scholar]
- Guyot-Sionnest P, Hunt JH, Shen YR. Sum-frequency vibrational spectroscopy of a Langmuir film: Study of molecular orientation of a two-dimensional system. Phys Rev Lett. 1987 Oct 5;59(14):1597–1600. doi: 10.1103/PhysRevLett.59.1597. [DOI] [PubMed] [Google Scholar]
- Guyot-Sionnest P, Tadjeddine A, Liebsch A. Electronic distribution and nonlinear optical response at the metal-electrolyte interface. Phys Rev Lett. 1990 Apr 2;64(14):1678–1681. doi: 10.1103/PhysRevLett.64.1678. [DOI] [PubMed] [Google Scholar]
- Guyot-Sionnest P. Two-phonon bound state for the hydrogen vibration on the H/Si(111) surface. Phys Rev Lett. 1991 Oct 21;67(17):2323–2326. doi: 10.1103/PhysRevLett.67.2323. [DOI] [PubMed] [Google Scholar]
- Harris AL, Rothberg L, Dubois LH, Levinos NJ, Dhar L. Molecular vibrational energy relaxation at a metal surface: Methyl thiolate on Ag(111). Phys Rev Lett. 1990 Apr 23;64(17):2086–2089. doi: 10.1103/PhysRevLett.64.2086. [DOI] [PubMed] [Google Scholar]
- Heinz TF, Himpsel FJ, Palange E, Burstein E. Electronic transitions at the CaF2/Si(111) interface probed by resonant three-wave mixing spectroscopy. Phys Rev Lett. 1989 Aug 7;63(6):644–647. doi: 10.1103/PhysRevLett.63.644. [DOI] [PubMed] [Google Scholar]
- Lee S, Apai G. Surface phonons and CH vibrational modes of diamond (100) and (111) surfaces. Phys Rev B Condens Matter. 1993 Jul 15;48(4):2684–2693. doi: 10.1103/physrevb.48.2684. [DOI] [PubMed] [Google Scholar]
- Mann S., Archibald D. D., Didymus J. M., Douglas T., Heywood B. R., Meldrum F. C., Reeves N. J. Crystallization at Inorganic-organic Interfaces: Biominerals and Biomimetic Synthesis. Science. 1993 Sep 3;261(5126):1286–1292. doi: 10.1126/science.261.5126.1286. [DOI] [PubMed] [Google Scholar]
- Qi J, Angerer W, Yeganeh MS, Yodh AG, Theis WM. Observation of midgap interface states in buried metal/GaAs junctions. Phys Rev Lett. 1995 Oct 23;75(17):3174–3177. doi: 10.1103/PhysRevLett.75.3174. [DOI] [PubMed] [Google Scholar]
- Superfine R, Huang JY, Shen YR. Nonlinear optical studies of the pure liquid/vapor interface: Vibrational spectra and polar ordering. Phys Rev Lett. 1991 Feb 25;66(8):1066–1069. doi: 10.1103/PhysRevLett.66.1066. [DOI] [PubMed] [Google Scholar]
- Wu X. Z., Ocko B. M., Sirota E. B., Sinha S. K., Deutsch M., Cao B. H., Kim M. W. Surface tension measurements of surface freezing in liquid normal alkanes. Science. 1993 Aug 20;261(5124):1018–1021. doi: 10.1126/science.261.5124.1018. [DOI] [PubMed] [Google Scholar]
- Wu XZ, Sirota EB, Sinha SK, Ocko BM, Deutsch M. Surface crystallization of liquid normal-alkanes. Phys Rev Lett. 1993 Feb 15;70(7):958–961. doi: 10.1103/PhysRevLett.70.958. [DOI] [PubMed] [Google Scholar]
- Yeganeh MS, Qi J, Yodh AG, Tamargo MC. Influence of heterointerface atomic structure and defects on second-harmonic generation. Phys Rev Lett. 1992 Dec 14;69(24):3579–3582. doi: 10.1103/PhysRevLett.69.3579. [DOI] [PubMed] [Google Scholar]
- Yeganeh MS, Qi J, Yodh AG, Tamargo MC. Interface quantum well states observed by three-wave mixing in ZnSe/GaAs heterostructures. Phys Rev Lett. 1992 Jun 22;68(25):3761–3764. doi: 10.1103/PhysRevLett.68.3761. [DOI] [PubMed] [Google Scholar]
- Zhu X, Louie SG. Anharmonicity of the hydrogen-carbon stretch mode on diamond (111)-1 x 1. Phys Rev B Condens Matter. 1992 Feb 15;45(7):3940–3943. doi: 10.1103/physrevb.45.3940. [DOI] [PubMed] [Google Scholar]