Abstract
Despite the fact that Papilio glaucus and Papilio polyxenes share no single hostplant species, both species feed to varying extents on hostplants that contain furanocoumarins. P. glaucus contains two nearly identical genes, CYP6B4v2 and CYP6B5v1, and P. polyxenes contains two related genes, CYP6B1v3 and CYP6B3v2. Except for CYP6B3v2, the substrate specificity of which has not yet been defined, each of the encoded cytochrome P450 monooxygenases (P450s) metabolizes an array of linear furanocoumarins. All four genes are transcriptionally induced in larvae by exposure to the furanocoumarin xanthotoxin; several are also induced by other furanocoumarins. Comparisons of the organizational structures of these genes indicate that all have the same intron/exon arrangement. Sequences in the promoter regions of the P. glaucus CYP6B4v2/CYP6B5v1 genes and the P. polyxenes CYP6B3v2 gene are similar but not identical to the -146 to -97 region of CYP6B1v3 gene, which contains a xanthotoxin-responsive element (XRE-xan) important for basal and xanthotoxin-inducible transcription of CYP6B1v3. Complements of the xenobiotic-responsive element (XRE-AhR) in the dioxin-inducible human and rat CYP1A1 genes also exist in all four promoters, suggesting that these genes may be regulated by dioxin. Antioxidant-responsive elements (AREs) in mouse and rat glutathione S-transferase genes and the Barbie box element (Bar) in the bacterial CYP102 gene exist in the CYP6B1v3, CYP6B4v2, and CYP6B5v1 promoters. Similarities in the protein sequences, intron positions, and xanthotoxin- and xenobiotic-responsive promoter elements indicate that these insect CYP6B genes are derived from a common ancestral gene. Evolutionary comparisons between these P450 genes are the first available for a group of insect genes transcriptionally regulated by hostplant allelochemicals and provide insights into the process by which insects evolve specialized feeding habits.
Full text
PDF





Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Burger H. J., Schuetz E. G., Schuetz J. D., Guzelian P. S. Divergent effects of cycloheximide on the induction of class II and class III cytochrome P450 mRNAs in cultures of adult rat hepatocytes. Arch Biochem Biophys. 1990 Sep;281(2):204–211. doi: 10.1016/0003-9861(90)90433-y. [DOI] [PubMed] [Google Scholar]
- Cherbas L., Cherbas P. The arthropod initiator: the capsite consensus plays an important role in transcription. Insect Biochem Mol Biol. 1993 Jan;23(1):81–90. doi: 10.1016/0965-1748(93)90085-7. [DOI] [PubMed] [Google Scholar]
- Cohen M. B., Feyereisen R. A cluster of cytochrome P450 genes of the CYP6 family in the house fly. DNA Cell Biol. 1995 Jan;14(1):73–82. doi: 10.1089/dna.1995.14.73. [DOI] [PubMed] [Google Scholar]
- Cohen M. B., Koener J. F., Feyereisen R. Structure and chromosomal localization of CYP6A1, a cytochrome P450-encoding gene from the house fly. Gene. 1994 Sep 2;146(2):267–272. doi: 10.1016/0378-1119(94)90304-2. [DOI] [PubMed] [Google Scholar]
- Cohen M. B., Schuler M. A., Berenbaum M. R. A host-inducible cytochrome P-450 from a host-specific caterpillar: molecular cloning and evolution. Proc Natl Acad Sci U S A. 1992 Nov 15;89(22):10920–10924. doi: 10.1073/pnas.89.22.10920. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Denison M. S., Fisher J. M., Whitlock J. P., Jr The DNA recognition site for the dioxin-Ah receptor complex. Nucleotide sequence and functional analysis. J Biol Chem. 1988 Nov 25;263(33):17221–17224. [PubMed] [Google Scholar]
- Denison M. S., Whitlock J. P., Jr Xenobiotic-inducible transcription of cytochrome P450 genes. J Biol Chem. 1995 Aug 4;270(31):18175–18178. doi: 10.1074/jbc.270.31.18175. [DOI] [PubMed] [Google Scholar]
- Frolov M. V., Alatortsev V. E. Cluster of cytochrome P450 genes on the X chromosome of Drosophila melanogaster. DNA Cell Biol. 1994 Jun;13(6):663–668. doi: 10.1089/dna.1994.13.663. [DOI] [PubMed] [Google Scholar]
- Gonzalez F. J., Nebert D. W. Evolution of the P450 gene superfamily: animal-plant 'warfare', molecular drive and human genetic differences in drug oxidation. Trends Genet. 1990 Jun;6(6):182–186. doi: 10.1016/0168-9525(90)90174-5. [DOI] [PubMed] [Google Scholar]
- Gotoh O. Substrate recognition sites in cytochrome P450 family 2 (CYP2) proteins inferred from comparative analyses of amino acid and coding nucleotide sequences. J Biol Chem. 1992 Jan 5;267(1):83–90. [PubMed] [Google Scholar]
- Hayes J. D., Pulford D. J. The glutathione S-transferase supergene family: regulation of GST and the contribution of the isoenzymes to cancer chemoprotection and drug resistance. Crit Rev Biochem Mol Biol. 1995;30(6):445–600. doi: 10.3109/10409239509083491. [DOI] [PubMed] [Google Scholar]
- He J. S., Fulco A. J. A barbiturate-regulated protein binding to a common sequence in the cytochrome P450 genes of rodents and bacteria. J Biol Chem. 1991 Apr 25;266(12):7864–7869. [PubMed] [Google Scholar]
- Heim M. H., Meyer U. A. Evolution of a highly polymorphic human cytochrome P450 gene cluster: CYP2D6. Genomics. 1992 Sep;14(1):49–58. doi: 10.1016/s0888-7543(05)80282-4. [DOI] [PubMed] [Google Scholar]
- Hoffman S. M., Fernandez-Salguero P., Gonzalez F. J., Mohrenweiser H. W. Organization and evolution of the cytochrome P450 CYP2A-2B-2F subfamily gene cluster on human chromosome 19. J Mol Evol. 1995 Dec;41(6):894–900. doi: 10.1007/BF00173169. [DOI] [PubMed] [Google Scholar]
- Hung C. F., Harrison T. L., Berenbaum M. R., Schuler M. A. CYP6B3: a second furanocoumarin-inducible cytochrome P450 expressed in Papilio polyxenes. Insect Mol Biol. 1995 Aug;4(3):149–160. doi: 10.1111/j.1365-2583.1995.tb00020.x. [DOI] [PubMed] [Google Scholar]
- Kocarek T. A., Schuetz E. G., Guzelian P. S. Differentiated induction of cytochrome P450b/e and P450p mRNAs by dose of phenobarbital in primary cultures of adult rat hepatocytes. Mol Pharmacol. 1990 Oct;38(4):440–444. [PubMed] [Google Scholar]
- Liang Q., He J. S., Fulco A. J. The role of Barbie box sequences as cis-acting elements involved in the barbiturate-mediated induction of cytochromes P450BM-1 and P450BM-3 in Bacillus megaterium. J Biol Chem. 1995 Mar 3;270(9):4438–4450. doi: 10.1074/jbc.270.9.4438. [DOI] [PubMed] [Google Scholar]
- Ma R., Cohen M. B., Berenbaum M. R., Schuler M. A. Black swallowtail (Papilio polyxenes) alleles encode cytochrome P450s that selectively metabolize linear furanocoumarins. Arch Biochem Biophys. 1994 May 1;310(2):332–340. doi: 10.1006/abbi.1994.1175. [DOI] [PubMed] [Google Scholar]
- Matsunaga E., Umeno M., Gonzalez F. J. The rat P450 IID subfamily: complete sequences of four closely linked genes and evidence that gene conversions maintained sequence homogeneity at the heme-binding region of the cytochrome P450 active site. J Mol Evol. 1990 Feb;30(2):155–169. doi: 10.1007/BF02099942. [DOI] [PubMed] [Google Scholar]
- Nelson D. R., Kamataki T., Waxman D. J., Guengerich F. P., Estabrook R. W., Feyereisen R., Gonzalez F. J., Coon M. J., Gunsalus I. C., Gotoh O. The P450 superfamily: update on new sequences, gene mapping, accession numbers, early trivial names of enzymes, and nomenclature. DNA Cell Biol. 1993 Jan-Feb;12(1):1–51. doi: 10.1089/dna.1993.12.1. [DOI] [PubMed] [Google Scholar]
- Nelson D. R., Koymans L., Kamataki T., Stegeman J. J., Feyereisen R., Waxman D. J., Waterman M. R., Gotoh O., Coon M. J., Estabrook R. W. P450 superfamily: update on new sequences, gene mapping, accession numbers and nomenclature. Pharmacogenetics. 1996 Feb;6(1):1–42. doi: 10.1097/00008571-199602000-00002. [DOI] [PubMed] [Google Scholar]
- Ohta T. Multigene families and the evolution of complexity. J Mol Evol. 1991 Jul;33(1):34–41. doi: 10.1007/BF02100193. [DOI] [PubMed] [Google Scholar]
- Prapaipong H., Berenbaum M. R., Schuler M. A. Transcriptional regulation of the Papilio polyxenes CYP6B1 gene. Nucleic Acids Res. 1994 Aug 11;22(15):3210–3217. doi: 10.1093/nar/22.15.3210. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rushmore T. H., Morton M. R., Pickett C. B. The antioxidant responsive element. Activation by oxidative stress and identification of the DNA consensus sequence required for functional activity. J Biol Chem. 1991 Jun 25;266(18):11632–11639. [PubMed] [Google Scholar]
- Seghezzi W., Meili C., Ruffiner R., Kuenzi R., Sanglard D., Fiechter A. Identification and characterization of additional members of the cytochrome P450 multigene family CYP52 of Candida tropicalis. DNA Cell Biol. 1992 Dec;11(10):767–780. doi: 10.1089/dna.1992.11.767. [DOI] [PubMed] [Google Scholar]
- Sorger P. K. Heat shock factor and the heat shock response. Cell. 1991 May 3;65(3):363–366. doi: 10.1016/0092-8674(91)90452-5. [DOI] [PubMed] [Google Scholar]
- Stuart G. W., Searle P. F., Palmiter R. D. Identification of multiple metal regulatory elements in mouse metallothionein-I promoter by assaying synthetic sequences. 1985 Oct 31-Nov 6Nature. 317(6040):828–831. doi: 10.1038/317828a0. [DOI] [PubMed] [Google Scholar]
- Tomita T., Scott J. G. cDNA and deduced protein sequence of CYP6D1: the putative gene for a cytochrome P450 responsible for pyrethroid resistance in house fly. Insect Biochem Mol Biol. 1995 Feb;25(2):275–283. doi: 10.1016/0965-1748(94)00066-q. [DOI] [PubMed] [Google Scholar]
- Waters L. C., Zelhof A. C., Shaw B. J., Ch'ang L. Y. Possible involvement of the long terminal repeat of transposable element 17.6 in regulating expression of an insecticide resistance-associated P450 gene in Drosophila. Proc Natl Acad Sci U S A. 1992 Jun 1;89(11):4855–4859. doi: 10.1073/pnas.89.11.4855. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yao E. F., Denison M. S. DNA sequence determinants for binding of transformed Ah receptor to a dioxin-responsive enhancer. Biochemistry. 1992 Jun 2;31(21):5060–5067. doi: 10.1021/bi00136a019. [DOI] [PubMed] [Google Scholar]