Skip to main content
Applied Microbiology logoLink to Applied Microbiology
. 1973 Jul;26(1):78–85. doi: 10.1128/am.26.1.78-85.1973

Characterization of Mild Thermal Stress in Pseudomonas fluorescens and Its Repair

Rodney J H Gray 1,2, Lloyd D Witter 1,2, Z John Ordal 1,2
PMCID: PMC379721  PMID: 4199340

Abstract

The exposure of exponentially growing Pseudomonas fluorescens P7 cells to heating at 36 C for 2 h in a defined medium, followed by cooling to 25 C and further incubation at this, the optimal growth temperature, resulted in the apparent death of approximately 99% of the cells, as determined by their inability to form colonies on Trypticase soy agar. Continued incubation at 25 C resulted in an extremely rapid increase in the Trypticase soy agar count, demonstrating that the phenomenon observed was not death but rather injury. Presumptive evidence of heat-stimulated ribonucleic acid (RNA) degradation and membrane damage was provided by the observed loss of 260-nm absorbing materials. Confirmation of RNA degradation was obtained by colorimetric analysis. Ribosomal RNA from normal and injured cells, which was electrophoretically separated on polyacrylamide gels, revealed that the 23S and 16S species were only partially destroyed. Inhibitor studies demonstrated, however, that RNA synthesis was necessary for recovery. The unusual accumulation of 17S RNA during recovery pointed to the presence of a heat-induced lesion in the RNA maturation process. A thermally induced membrane lesion is also discussed.

Full text

PDF
78

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allwood M. C., Russell A. D. Mechanism of Thermal Injury in Staphylococcus aureus: I. Relationship Between Viability and Leakage. Appl Microbiol. 1967 Nov;15(6):1266–1269. doi: 10.1128/am.15.6.1266-1269.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Beuchat L. R., Lechowich R. V. Effect of salt concentration in the recovery medium on heat-injured Streptococcus faecalis. Appl Microbiol. 1968 May;16(5):772–776. doi: 10.1128/am.16.5.772-776.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bluhm L., Ordal Z. J. Effect of sublethal heat on the metabolic activity of Staphylococcus aureus. J Bacteriol. 1969 Jan;97(1):140–150. doi: 10.1128/jb.97.1.140-150.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Clark C. W., Ordal Z. J. Thermal injury and recovery of Salmonella typhimurium and its effect on enumeration procedures. Appl Microbiol. 1969 Sep;18(3):332–336. doi: 10.1128/am.18.3.332-336.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Clark C. W., Witter L. D., Ordal Z. J. Thermal injury and recovery of Streptococcus faecalis. Appl Microbiol. 1968 Nov;16(11):1764–1769. doi: 10.1128/am.16.11.1764-1769.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dabbah R., Moats W. A., Mattick J. F. Factors affecting resistance to heat and recovery of heat-injuried bacteria. J Dairy Sci. 1969 May;52(5):608–614. doi: 10.3168/jds.s0022-0302(69)86615-4. [DOI] [PubMed] [Google Scholar]
  7. Evison L. M., Rose A. H. A comparative study on the biochemical bases of the maximum temperatures for growth of three psychrophilic micro-organisms. J Gen Microbiol. 1965 Sep;40(3):349–364. doi: 10.1099/00221287-40-3-349. [DOI] [PubMed] [Google Scholar]
  8. HAGEN P. O., KUSHNER D. J., GIBBONS N. E. TEMPERATURE-INDUCED DEATH AND LYSIS IN A PSYCHROPHILIC BACTERIUM. Can J Microbiol. 1964 Dec;10:813–822. doi: 10.1139/m64-106. [DOI] [PubMed] [Google Scholar]
  9. HAGEN P. O., ROSE A. H. Studies on the biochemical basis of the low maximum temperature in a psychrophilic cryptococcus. J Gen Microbiol. 1962 Jan;27:89–99. doi: 10.1099/00221287-27-1-89. [DOI] [PubMed] [Google Scholar]
  10. Haight R. D., Morita R. Y. Thermally induced leakage from Vibrio marinus, an obligately psychrophilic marine bacterium. J Bacteriol. 1966 Nov;92(5):1388–1393. doi: 10.1128/jb.92.5.1388-1393.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Iandolo J. J., Ordal Z. J. Repair of thermal injury of Staphylococcus aureus. J Bacteriol. 1966 Jan;91(1):134–142. doi: 10.1128/jb.91.1.134-142.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Malcolm N. L. Molecular determinants of obligate psychrophily. Nature. 1969 Mar 15;221(5185):1031–1033. [PubMed] [Google Scholar]
  13. Miller L. L., Ordal Z. J. Thermal injury and recovery of Bacillus subtilis. Appl Microbiol. 1972 Dec;24(6):878–884. doi: 10.1128/am.24.6.878-884.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Nash C. H., Sinclair N. A. Thermal injury and death in an obligately psychrophilic yeast, Candida nivalis. Can J Microbiol. 1968 Jun;14(6):691–697. doi: 10.1139/m68-115. [DOI] [PubMed] [Google Scholar]
  15. Pierson M. D., Tomlins R. I., Ordal Z. J. Biosynthesis during recovery of heat-injured Salmonella typhimurium. J Bacteriol. 1971 Mar;105(3):1234–1236. doi: 10.1128/jb.105.3.1234-1236.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Rosenthal L. J., Martin S. E., Pariza M. W., Iandolo J. J. Ribosome synthesis in thermally shocked cells of Staphylococcus aureus. J Bacteriol. 1972 Jan;109(1):243–249. doi: 10.1128/jb.109.1.243-249.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. STILES M. E., WITTER L. D. THERMAL INACTIVATION, HEAT INJURY, AND RECOVERY OF STAPHYLOCOCCUS AUREUS. J Dairy Sci. 1965 Jun;48:677–681. doi: 10.3168/jds.s0022-0302(65)88321-7. [DOI] [PubMed] [Google Scholar]
  18. Sogin S. J., Ordal Z. J. Regeneration of ribosomes and ribosomal ribonucleic acid during repair of thermal injury to Staphylococcus. J Bacteriol. 1967 Oct;94(4):1082–1087. doi: 10.1128/jb.94.4.1082-1087.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Sypherd P. S., Fansler B. S. Structural transitions in ribonucleic acid during ribosome development. J Bacteriol. 1967 Mar;93(3):920–929. doi: 10.1128/jb.93.3.920-929.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Tomlins R. I., Ordal Z. J. Precursor ribosomal ribonucleic acid and ribosome accumulation in vivo during the recovery of Salmonella typhimurium from thermal injury. J Bacteriol. 1971 Jul;107(1):134–142. doi: 10.1128/jb.107.1.134-142.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Tomlins R. I., Ordal Z. J. Requirements of Salmonella typhimurium for recovery from thermal injury. J Bacteriol. 1971 Feb;105(2):512–518. doi: 10.1128/jb.105.2.512-518.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES