Skip to main content
Applied Microbiology logoLink to Applied Microbiology
. 1973 Aug;26(2):176–184. doi: 10.1128/am.26.2.176-184.1973

Degradation of Methoxylated Benzoic Acids by a Nocardia from a Lignin-Rich Environment: Significance to Lignin Degradation and Effect of Chloro Substituents

R L Crawford 1,2, Elizabeth McCoy 1,2, J M Harkin 1,2, T K Kirk 1,2, J R Obst 1,2
PMCID: PMC379747  PMID: 4743871

Abstract

Strain A81 of Nocardia corallina hydroxylates or demethylates p-anisic acid to p-hydroxybenzoic acid and isovanillic acid. It demethylates veratric acid to a mixture of vanillic and isovanillic acids. These are both demethylated to protocatechuic acid, which undergoes ring cleavage to afford β-carboxy-cis-cis-muconic acid. The intermediacy of protocatechuic acid in the catabolic pathway of veratric acid was confirmed by blocking ring cleavage with an additional substituent in the ring: 5-chlorovanillic acid was demethylated to 5-chloro-protocatechuic acid, which accumulated. Chloro substituents in the ring of other methoxylated benzoic acids also arrested their normal metabolism by the Nocardia: an ortho-chloro substituent thwarted both demethylation and ring-opening. ortho-Hydroxylation of p-methoxybenzoic acid to isovanillic acid was unaffected by a chlorine ortho to the methoxyl group. Washed whole cells of veratric acid-grown N. corallina A81 produced no detected structural changes in an isolated lignin. The implications of this observation are discussed.

Full text

PDF
176

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cain R. B., Tranter E. K., Darrah J. A. The utilization of some halogenated aromatic acids by Nocardia. Oxidation and metabolism. Biochem J. 1968 Jan;106(1):211–227. doi: 10.1042/bj1060211. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Cartwright N. J., Holdom K. S., Broadbent D. A. Bacterial attack on phenolic ethers. Dealkylation of higher ethers and further observations on O-demethylases. Microbios. 1971 Mar;3(10):113–130. [PubMed] [Google Scholar]
  3. Dagley S. Catabolism of aromatic compounds by micro-organisms. Adv Microb Physiol. 1971;6(0):1–46. doi: 10.1016/s0065-2911(08)60066-1. [DOI] [PubMed] [Google Scholar]
  4. Evans W. C., Smith B. S., Fernley H. N., Davies J. I. Bacterial metabolism of 2,4-dichlorophenoxyacetate. Biochem J. 1971 May;122(4):543–551. doi: 10.1042/bj1220543. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Gibson D. T., Koch J. R., Schuld C. L., Kallio R. E. Oxidative degradation of aromatic hydrocarbons by microorganisms. II. Metabolism of halogenated aromatic hydrocarbons. Biochemistry. 1968 Nov;7(11):3795–3802. doi: 10.1021/bi00851a003. [DOI] [PubMed] [Google Scholar]
  6. Horvath R. S., Alexander M. Cometabolism: a technique for the accumulation of biochemical products. Can J Microbiol. 1970 Nov;16(11):1131–1132. doi: 10.1139/m70-189. [DOI] [PubMed] [Google Scholar]
  7. Horvath R. S. Co-metabolism of methyl- and chloro-substituted catechols by an Achromobacter sp. possessing a new meta-cleaving oxygenase. Biochem J. 1970 Oct;119(5):871–876. doi: 10.1042/bj1190871. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Horvath R. S. Microbial co-metabolism and the degradation of organic compounds in nature. Bacteriol Rev. 1972 Jun;36(2):146–155. doi: 10.1128/br.36.2.146-155.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. ICHIHARA A., ADACHI K., HOSOKAWA K., TAKEDA Y. The enzymatic hydroxylation of aromatic carboxylic acids; substrate specificities of anthranilate and benzoate oxidases. J Biol Chem. 1962 Jul;237:2296–2302. [PubMed] [Google Scholar]
  10. Kirk T. K., Harkin J. M., Cowling E. B. Degradation of the lignin model compound syringylglycol-beta-guaiacyl ether by Polyporus versicolor and Stereum frustalatum. Biochim Biophys Acta. 1968 Aug 6;165(1):145–163. doi: 10.1016/0304-4165(68)90199-2. [DOI] [PubMed] [Google Scholar]
  11. Kirk T. K., Harkin J. M., Cowling E. B. Oxidation of guaiacyl- and veratryl-glycerol-beta-gualacyl ether by Polyporus versicolor and Stereum frustulatum. Biochim Biophys Acta. 1968 Aug 6;165(1):134–144. doi: 10.1016/0304-4165(68)90198-0. [DOI] [PubMed] [Google Scholar]
  12. Lechevalier M. P., Horan A. C., Lechevalier H. Lipid composition in the classification of nocardiae and mycobacteria. J Bacteriol. 1971 Jan;105(1):313–318. doi: 10.1128/jb.105.1.313-318.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Ornston L. N., Stanier R. Y. The conversion of catechol and protocatechuate to beta-ketoadipate by Pseudomonas putida. J Biol Chem. 1966 Aug 25;241(16):3776–3786. [PubMed] [Google Scholar]
  14. Ribbons D. W. Stoicheiometry of O-demethylase activity in Pseudomonas aeruginosa. FEBS Lett. 1970 May 25;8(2):101–104. doi: 10.1016/0014-5793(70)80235-6. [DOI] [PubMed] [Google Scholar]
  15. Stanier R. Y., Palleroni N. J., Doudoroff M. The aerobic pseudomonads: a taxonomic study. J Gen Microbiol. 1966 May;43(2):159–271. doi: 10.1099/00221287-43-2-159. [DOI] [PubMed] [Google Scholar]
  16. Taylor B. F., Currie M., Hoare D. S. Aromatic ring cleavage by a Thiobacillus. J Bacteriol. 1969 Feb;97(2):959–960. doi: 10.1128/jb.97.2.959-960.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Toms A., Wood J. M. The degradation of trans-ferulic acid by Pseudomonas acidovorans. Biochemistry. 1970 Jan 20;9(2):337–343. doi: 10.1021/bi00804a021. [DOI] [PubMed] [Google Scholar]
  18. Updegraff D. M. Utilization of cellulose from waste paper by Myrothecium verrucaria. Biotechnol Bioeng. 1971 Jan;13(1):77–97. doi: 10.1002/bit.260130106. [DOI] [PubMed] [Google Scholar]

Articles from Applied Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES