Skip to main content
Applied Microbiology logoLink to Applied Microbiology
. 1973 Sep;26(3):321–326. doi: 10.1128/am.26.3.321-326.1973

Biodegradation of Phenylmercuric Acetate by Mercury-Resistant Bacteria

J D Nelson 1,2, W Blair 1,2, F E Brinckman 1,2, R R Colwell 1,2, W P Iverson 1,2
PMCID: PMC379783  PMID: 4584577

Abstract

Selected cultures of mercury-resistant bacteria degrade the fungicide-slimicide phenylmercuric acetate. By means of a closed system incorporating a flameless atomic absorption spectrophotometer and a vapor phase chromatograph, it was demonstrated that elemental mercury vapor and benzene were products of phenylmercuric acetate degradation.

Full text

PDF
321

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Dressman R. C. A new method for the gas chromatographic separation and detection of dialkylmercury compounds--application to river water analysis. J Chromatogr Sci. 1972 Jul;10(7):472–475. doi: 10.1093/chromsci/10.7.472. [DOI] [PubMed] [Google Scholar]
  2. Jensen S., Jernelöv A. Biological methylation of mercury in aquatic organisms. Nature. 1969 Aug 16;223(5207):753–754. doi: 10.1038/223753a0. [DOI] [PubMed] [Google Scholar]
  3. Komura I., Izaki K. Mechanism of mercuric chloride resistance in microorganisms. I. Vaporization of a mercury compound from mercuric chloride by multiple drug resistant strains of Escherichia coli. J Biochem. 1971 Dec;70(6):885–893. doi: 10.1093/oxfordjournals.jbchem.a129718. [DOI] [PubMed] [Google Scholar]
  4. Landner L. Biochemical model for the biological methylation of mercury suggested from methylation studies in vivo with Neurospora crassa. Nature. 1971 Apr 16;230(5294):452–454. doi: 10.1038/230452a0. [DOI] [PubMed] [Google Scholar]
  5. MAGOS L., TUFFERY A. A., CLARKSON T. W. VOLATILIZATION OF MERCURY BY BACTERIA. Br J Ind Med. 1964 Oct;21:294–298. doi: 10.1136/oem.21.4.294. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Matsumura F., Gotoh Y., Boush G. M. Phenylmercuric acetate: metabolic conversion by microorganisms. Science. 1971 Jul 2;173(3991):49–51. doi: 10.1126/science.173.3991.49. [DOI] [PubMed] [Google Scholar]
  7. Spangler W. J., Spigarelli J. L., Rose J. M., Miller H. M. Methylmercury: bacterial degradation in lake sediments. Science. 1973 Apr 13;180(4082):192–193. doi: 10.1126/science.180.4082.192. [DOI] [PubMed] [Google Scholar]
  8. Summers A. O., Lewis E. Volatilization of mercuric chloride by mercury-resistant plasmid-bearing strains of Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa. J Bacteriol. 1973 Feb;113(2):1070–1072. doi: 10.1128/jb.113.2.1070-1072.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Summers A. O., Silver S. Mercury resistance in a plasmid-bearing strain of Escherichia coli. J Bacteriol. 1972 Dec;112(3):1228–1236. doi: 10.1128/jb.112.3.1228-1236.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Tonomura K., Kanzaki F. The reductive decomposition of organic mercurials by cell-free extract of a mercury-resistant pseudomonad. Biochim Biophys Acta. 1969 Jun 17;184(1):227–229. doi: 10.1016/0304-4165(69)90124-x. [DOI] [PubMed] [Google Scholar]
  11. Wood J. M., Kennedy F. S., Rosen C. G. Synthesis of methyl-mercury compounds by extracts of a methanogenic bacterium. Nature. 1968 Oct 12;220(5163):173–174. doi: 10.1038/220173a0. [DOI] [PubMed] [Google Scholar]

Articles from Applied Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES