Abstract
Lipolytic bacteria were isolated from two stations on Brewery Creek, an arm of the Ottawa River, during the winter of 1971-72. Total counts were approximately sevenfold higher at the more polluted downstream station, whereas lipolytic counts were about 100-fold higher. At this station, significantly more lipolytic bacteria grew on plates incubated at 20 C than at 4 C, suggesting that the population was comprised of both mesophiles and psychrophiles. However, at the upstream station, approximately the same number were obtained at both temperatures. A total of 434 isolates, mainly from the downstream station, were tentatively classified. The major groups were Pseudomonas, Acinetobacter-Moraxella, and Aeromonas. Though the total number of lipolytic bacteria was fairly constant throughout the winter, the relative abundance of the acinetobacters dropped from approximately 90% in November to less than 10% in March, and then increased. The aeromonads and pseudomonads showed the opposite trend. Most of the bacteria, though isolated at 4 C, also grew at 30 C. Lipolysis, however, was generally strongest at 20 C or below.
Full text
PDF







Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ALFORD J. A. Effect of incubation temperature on biochemical tests in the genera Pseudomonas and Achromobacter. J Bacteriol. 1960 Apr;79:591–593. doi: 10.1128/jb.79.4.591-593.1960. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Baumann P., Doudoroff M., Stanier R. Y. Study of the Moraxella group. I. Genus Moraxella and the Neisseria catarrhalis group. J Bacteriol. 1968 Jan;95(1):58–73. doi: 10.1128/jb.95.1.58-73.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Breuil C., Gounot A. M. Recherches préliminaires sur les bactéries lipolytiques psychrophiles des sols et des eaux. Can J Microbiol. 1972 Sep;18(9):1445–1451. [PubMed] [Google Scholar]
- Chakrabarty A. N., Adhya S., Pramanik M. K. The hydrolysis of Tween 80 by vibrios and aeromonads. J Appl Bacteriol. 1970 Jun;33(2):397–402. doi: 10.1111/j.1365-2672.1970.tb02212.x. [DOI] [PubMed] [Google Scholar]
- DAVIS B. R., EWING W. H. LIPOLYTIC, PECTOLYTIC, AND ALGINOLYTIC ACTIVITIES OF ENTEROBACTERIACEAE. J Bacteriol. 1964 Jul;88:16–19. doi: 10.1128/jb.88.1.16-19.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dempster J. F. Distribution of psychrophilic micro-organisms in different dairy environments. J Appl Bacteriol. 1968 Sep;31(3):290–301. doi: 10.1111/j.1365-2672.1968.tb00370.x. [DOI] [PubMed] [Google Scholar]
- Druce R. G., Thomas S. B. An ecological study of the psychrotrophic bacteria of soil, water, grass and hay. J Appl Bacteriol. 1970 Jun;33(2):420–435. doi: 10.1111/j.1365-2672.1970.tb02215.x. [DOI] [PubMed] [Google Scholar]
- Gilardi G. L. Characterization of the oxidase-negative, gram-negative coccobacilli (the Achromobacter-acinetobacter group). Antonie Van Leeuwenhoek. 1969;35(4):421–429. doi: 10.1007/BF02219161. [DOI] [PubMed] [Google Scholar]
- HUGH R., LEIFSON E. The taxonomic significance of fermentative versus oxidative metabolism of carbohydrates by various gram negative bacteria. J Bacteriol. 1953 Jul;66(1):24–26. doi: 10.1128/jb.66.1.24-26.1953. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KING E. O., WARD M. K., RANEY D. E. Two simple media for the demonstration of pyocyanin and fluorescin. J Lab Clin Med. 1954 Aug;44(2):301–307. [PubMed] [Google Scholar]
- KORSH L. E. Direct quantitative microscopic determination of bacteria on membrane filters in the sanitary inspection of water reservoirs. J Hyg Epidemiol Microbiol Immunol. 1961;5:349–356. [PubMed] [Google Scholar]
- Lentsner A. A., Toom M. A., Tammaru K. I. Opredelenie lipoliticheskoi aktivnosti mikrobov. Lab Delo. 1967;11:688–691. [PubMed] [Google Scholar]
- Nelson J. D., Shelton S. Cultural, biochemical, and immunological properties of Mima, Herellea, and Flavobacterium species. Appl Microbiol. 1965 Sep;13(5):801–807. doi: 10.1128/am.13.5.801-807.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Niven C. F., Smiley K. L., Sherman J. M. The Hydrolysis of Arginine by Streptococci. J Bacteriol. 1942 Jun;43(6):651–660. doi: 10.1128/jb.43.6.651-660.1942. [DOI] [PMC free article] [PubMed] [Google Scholar]
- PETERSON A. C., GUNDERSON M. F. Some characteristics of proteolytic enzymes from Pseudomonas fluorescens. Appl Microbiol. 1960 Mar;8:98–104. doi: 10.1128/am.8.2.98-104.1960. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SIERRA G. A simple method for the detection of lipolytic activity of micro-organisms and some observations on the influence of the contact between cells and fatty substrates. Antonie Van Leeuwenhoek. 1957;23(1):15–22. doi: 10.1007/BF02545855. [DOI] [PubMed] [Google Scholar]
- Stanier R. Y., Palleroni N. J., Doudoroff M. The aerobic pseudomonads: a taxonomic study. J Gen Microbiol. 1966 May;43(2):159–271. doi: 10.1099/00221287-43-2-159. [DOI] [PubMed] [Google Scholar]
- Thornley M. J. A taxonomic study of Acinetobacter and related genera. J Gen Microbiol. 1967 Nov;49(2):211–257. doi: 10.1099/00221287-49-2-211. [DOI] [PubMed] [Google Scholar]
- Warskow A. L., Juni E. Nutritional requirements of Acinetobacter strains isolated from soil, water, and sewage. J Bacteriol. 1972 Nov;112(2):1014–1016. doi: 10.1128/jb.112.2.1014-1016.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
