Skip to main content
Applied Microbiology logoLink to Applied Microbiology
. 1973 Nov;26(5):733–740. doi: 10.1128/am.26.5.733-740.1973

Lipolytic Bacteria in the Ottawa River

Christian R Blaise 1, John B Armstrong 1
PMCID: PMC379892  PMID: 4762394

Abstract

Lipolytic bacteria were isolated from two stations on Brewery Creek, an arm of the Ottawa River, during the winter of 1971-72. Total counts were approximately sevenfold higher at the more polluted downstream station, whereas lipolytic counts were about 100-fold higher. At this station, significantly more lipolytic bacteria grew on plates incubated at 20 C than at 4 C, suggesting that the population was comprised of both mesophiles and psychrophiles. However, at the upstream station, approximately the same number were obtained at both temperatures. A total of 434 isolates, mainly from the downstream station, were tentatively classified. The major groups were Pseudomonas, Acinetobacter-Moraxella, and Aeromonas. Though the total number of lipolytic bacteria was fairly constant throughout the winter, the relative abundance of the acinetobacters dropped from approximately 90% in November to less than 10% in March, and then increased. The aeromonads and pseudomonads showed the opposite trend. Most of the bacteria, though isolated at 4 C, also grew at 30 C. Lipolysis, however, was generally strongest at 20 C or below.

Full text

PDF
733

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ALFORD J. A. Effect of incubation temperature on biochemical tests in the genera Pseudomonas and Achromobacter. J Bacteriol. 1960 Apr;79:591–593. doi: 10.1128/jb.79.4.591-593.1960. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Baumann P., Doudoroff M., Stanier R. Y. Study of the Moraxella group. I. Genus Moraxella and the Neisseria catarrhalis group. J Bacteriol. 1968 Jan;95(1):58–73. doi: 10.1128/jb.95.1.58-73.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Breuil C., Gounot A. M. Recherches préliminaires sur les bactéries lipolytiques psychrophiles des sols et des eaux. Can J Microbiol. 1972 Sep;18(9):1445–1451. [PubMed] [Google Scholar]
  4. Chakrabarty A. N., Adhya S., Pramanik M. K. The hydrolysis of Tween 80 by vibrios and aeromonads. J Appl Bacteriol. 1970 Jun;33(2):397–402. doi: 10.1111/j.1365-2672.1970.tb02212.x. [DOI] [PubMed] [Google Scholar]
  5. DAVIS B. R., EWING W. H. LIPOLYTIC, PECTOLYTIC, AND ALGINOLYTIC ACTIVITIES OF ENTEROBACTERIACEAE. J Bacteriol. 1964 Jul;88:16–19. doi: 10.1128/jb.88.1.16-19.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dempster J. F. Distribution of psychrophilic micro-organisms in different dairy environments. J Appl Bacteriol. 1968 Sep;31(3):290–301. doi: 10.1111/j.1365-2672.1968.tb00370.x. [DOI] [PubMed] [Google Scholar]
  7. Druce R. G., Thomas S. B. An ecological study of the psychrotrophic bacteria of soil, water, grass and hay. J Appl Bacteriol. 1970 Jun;33(2):420–435. doi: 10.1111/j.1365-2672.1970.tb02215.x. [DOI] [PubMed] [Google Scholar]
  8. Gilardi G. L. Characterization of the oxidase-negative, gram-negative coccobacilli (the Achromobacter-acinetobacter group). Antonie Van Leeuwenhoek. 1969;35(4):421–429. doi: 10.1007/BF02219161. [DOI] [PubMed] [Google Scholar]
  9. HUGH R., LEIFSON E. The taxonomic significance of fermentative versus oxidative metabolism of carbohydrates by various gram negative bacteria. J Bacteriol. 1953 Jul;66(1):24–26. doi: 10.1128/jb.66.1.24-26.1953. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. KING E. O., WARD M. K., RANEY D. E. Two simple media for the demonstration of pyocyanin and fluorescin. J Lab Clin Med. 1954 Aug;44(2):301–307. [PubMed] [Google Scholar]
  11. KORSH L. E. Direct quantitative microscopic determination of bacteria on membrane filters in the sanitary inspection of water reservoirs. J Hyg Epidemiol Microbiol Immunol. 1961;5:349–356. [PubMed] [Google Scholar]
  12. Lentsner A. A., Toom M. A., Tammaru K. I. Opredelenie lipoliticheskoi aktivnosti mikrobov. Lab Delo. 1967;11:688–691. [PubMed] [Google Scholar]
  13. Nelson J. D., Shelton S. Cultural, biochemical, and immunological properties of Mima, Herellea, and Flavobacterium species. Appl Microbiol. 1965 Sep;13(5):801–807. doi: 10.1128/am.13.5.801-807.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Niven C. F., Smiley K. L., Sherman J. M. The Hydrolysis of Arginine by Streptococci. J Bacteriol. 1942 Jun;43(6):651–660. doi: 10.1128/jb.43.6.651-660.1942. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. PETERSON A. C., GUNDERSON M. F. Some characteristics of proteolytic enzymes from Pseudomonas fluorescens. Appl Microbiol. 1960 Mar;8:98–104. doi: 10.1128/am.8.2.98-104.1960. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. SIERRA G. A simple method for the detection of lipolytic activity of micro-organisms and some observations on the influence of the contact between cells and fatty substrates. Antonie Van Leeuwenhoek. 1957;23(1):15–22. doi: 10.1007/BF02545855. [DOI] [PubMed] [Google Scholar]
  17. Stanier R. Y., Palleroni N. J., Doudoroff M. The aerobic pseudomonads: a taxonomic study. J Gen Microbiol. 1966 May;43(2):159–271. doi: 10.1099/00221287-43-2-159. [DOI] [PubMed] [Google Scholar]
  18. Thornley M. J. A taxonomic study of Acinetobacter and related genera. J Gen Microbiol. 1967 Nov;49(2):211–257. doi: 10.1099/00221287-49-2-211. [DOI] [PubMed] [Google Scholar]
  19. Warskow A. L., Juni E. Nutritional requirements of Acinetobacter strains isolated from soil, water, and sewage. J Bacteriol. 1972 Nov;112(2):1014–1016. doi: 10.1128/jb.112.2.1014-1016.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES