Skip to main content
Applied Microbiology logoLink to Applied Microbiology
. 1974 Jan;27(1):59–65. doi: 10.1128/am.27.1.59-65.1974

Inactivation of Encephalomyocarditis Virus in Aerosols: Fate of Virus Protein and Ribonucleic Acid

J C De Jong 1, M Harmsen 1, T Trouwborst 1, K C Winkler 1
PMCID: PMC379968  PMID: 4358862

Abstract

After aerosolization at relative humidities of 50% or lower, encephalomyocarditis virus is rapidly inactivated. In this process the protein coat of the virion is damaged. This appears as a loss of hemagglutination activity and loss of affinity for hemagglutination inhibiting antibodies. The ribonucleic acid of the virus retains its infectivity but it becomes susceptible to ribonuclease. It sediments in sucrose gradients when centrifuged at high speed with the same velocity as free infectious ribonucleic acid extracted with phenol from intact encephalomyocarditis virus.

Full text

PDF
59

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akers T. G., Hatch M. T. Survival of a picornavirus and its infectious ribonucleic acid after aerosolization. Appl Microbiol. 1968 Nov;16(11):1811–1813. doi: 10.1128/am.16.11.1811-1813.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. BURNESS A. T., VIZOSO A. D., CLOTHIER F. W. Sedimentation coefficients of encephalomyocarditis virus and its ribonucleic acid. Nature. 1963 Mar 23;197:1177–1178. doi: 10.1038/1971177a0. [DOI] [PubMed] [Google Scholar]
  3. Benbough J. E. Some factors affecting the survival of airborne viruses. J Gen Virol. 1971 Mar;10(3):209–220. doi: 10.1099/0022-1317-10-3-209. [DOI] [PubMed] [Google Scholar]
  4. Bogaerts W. J., Durville-van der Oord Immunization of mice against encephalomyocarditis virus. I. Purification, concentration, and inactivation of encephalomyocarditis virus. Infect Immun. 1972 Oct;6(4):508–512. doi: 10.1128/iai.6.4.508-512.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Brand C. M., Skehel J. J. Crystalline antigen from the influenza virus envelope. Nat New Biol. 1972 Aug 2;238(83):145–147. doi: 10.1038/newbio238145a0. [DOI] [PubMed] [Google Scholar]
  6. Breindl M. The structure of heated poliovirus particles. J Gen Virol. 1971 Jun;11(3):147–156. doi: 10.1099/0022-1317-11-3-147. [DOI] [PubMed] [Google Scholar]
  7. Burness A. T. Purification of Encephalomyocarditis virus. J Gen Virol. 1969 Sep;5(2):291–303. doi: 10.1099/0022-1317-5-2-291. [DOI] [PubMed] [Google Scholar]
  8. Dubovi E. J. Biological activity of the nucleic acids extracted from two aerosolized bacterial viruses. Appl Microbiol. 1971 Apr;21(4):761–762. doi: 10.1128/am.21.4.761-762.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. HEMMES J. H., WINKLER K. C., KOOL S. M. Virus survival as a seasonal factor in influenza and polimyelitis. Nature. 1960 Oct 29;188:430–431. doi: 10.1038/188430a0. [DOI] [PubMed] [Google Scholar]
  10. Hatch M. T., Warren J. C. Enhanced recovery of airborne T3 coliphage and Pasteurella pestis bacteriophage by means of a presampling humidification technique. Appl Microbiol. 1969 May;17(5):685–689. doi: 10.1128/am.17.5.685-689.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Himuma Y., Katagiri S., Aikawa S. Immune responses to H particles of poliovirus. Virology. 1970 Mar;40(3):773–776. doi: 10.1016/0042-6822(70)90228-x. [DOI] [PubMed] [Google Scholar]
  12. Hinuma Y., Katagiri S., Fukuda M., Fukushi K., Watanabe Y. Kinetic studies on the thermal degradation of purified poliovirus. Biken J. 1965 Sep;8(3):143–153. [PubMed] [Google Scholar]
  13. KOCH G. Influence of assay conditions on infectivity of heated poliovirus. Virology. 1960 Dec;12:601–603. doi: 10.1016/0042-6822(60)90183-5. [DOI] [PubMed] [Google Scholar]
  14. Katagiri S., Hinuma Y., Ishida N. Biophysical properties of poliovirus particles irradiated with ultraviolet light. Virology. 1967 Jun;32(2):337–343. doi: 10.1016/0042-6822(67)90282-6. [DOI] [PubMed] [Google Scholar]
  15. LE BOUVIER G. L. The modification of poliovirus antigens by heat and ultraviolet light. Lancet. 1955 Nov 12;269(6898):1013–1016. doi: 10.1016/s0140-6736(55)93435-8. [DOI] [PubMed] [Google Scholar]
  16. MARTIN E. M., MALEC J., SVED S., WORK T. S. Studies on protein and nucleic acid metabolism in virus-infected mammalian cells. 1. Encephalomyocarditis virus in Krebs II mouse-ascites-tumour cells. Biochem J. 1961 Sep;80:585–597. doi: 10.1042/bj0800585. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. May K. R. Multistage liquid impinger. Bacteriol Rev. 1966 Sep;30(3):559–570. doi: 10.1128/br.30.3.559-570.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. McGregor S., Mayer H. D. Biophysical studies on rhinovirus and poliovirus. I. Morphology of viral ribonucleoprotein. J Virol. 1968 Feb;2(2):149–154. doi: 10.1128/jvi.2.2.149-154.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Tovell D. R., Colter J. S. Observations on the assay of infectious viral ribonucleic acid: effects of DMSO and DEAE-dextran. Virology. 1967 May;32(1):84–92. doi: 10.1016/0042-6822(67)90255-3. [DOI] [PubMed] [Google Scholar]
  20. Trouwborst T., de Jong J. C. Mechanism of the inactivation of the bacteriophage T 1 in aerosols. Appl Microbiol. 1972 May;23(5):938–941. doi: 10.1128/am.23.5.938-941.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES