Abstract
Fluorescent antibodies (FA) prepared for Nitrobacter agilis and N. winogradskyi were highly reactive in homologous staining. Low-level cross-reactions between the two species were removed by adsorption. All 15 pure-culture isolates of Nitrobacter tested reacted strongly with either N. agilis FA or N. winogradskyi FA. All pure-culture isolates from soils were determined to be N. winogradskyi; those from Mammoth Cave sediments and a cattle waste oxidation ditch were N. agilis. No cross-reaction was found in extensive tests that included five isolates of Nitrosomonas europaea and 668 heterotrophic aerobic and anaerobic bacteria isolated from soil, sewage, and cave sites. The FA preparations were used to detect Nitrobacter species in Mammoth Cave sediments, in a cattle waste oxidation ditch, and in surface waters and sediments of a river and to observe that N. winogradskyi can outgrow N. agilis in enrichment culture.
Full text
PDF





Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bohlool B. B., Schmidt E. L. Nonspecific staining: its control in immunofluorescence examination of soil. Science. 1968 Nov 29;162(3857):1012–1014. doi: 10.1126/science.162.3857.1012. [DOI] [PubMed] [Google Scholar]
- Larkin J. M. Peptonized milk as an enumeration medium for soil bacteria. Appl Microbiol. 1972 May;23(5):1031–1032. doi: 10.1128/am.23.5.1031-1032.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pan P. H. Lack of distinction between Nitrobacter agilis and Nitrobacter winografskyi. J Bacteriol. 1971 Dec;108(3):1416–1418. doi: 10.1128/jb.108.3.1416-1418.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schmidt E. L., Bakole R. O., Bohlool B. B. Fluorescent-antibody approach to study of rhizobia in soil. J Bacteriol. 1968 Jun;95(6):1987–1992. doi: 10.1128/jb.95.6.1987-1992.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Watson S. W., Mandel M. Comparison of the morphology and deoxyribonucleic acid composition of 27 strains of nitrifying bacteria. J Bacteriol. 1971 Aug;107(2):563–569. doi: 10.1128/jb.107.2.563-569.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]






