Skip to main content
Applied Microbiology logoLink to Applied Microbiology
. 1974 Apr;27(4):713–723. doi: 10.1128/am.27.4.713-723.1974

Stomach Fermentation in East African Colobus Monkeys in Their Natural State

Kyoko Ohwaki 1,2,3,4, R E Hungate 1,2,3,4, Leonard Lotter 1,2,3,4,1, R R Hofmann 1,2,3,4,2, Geoffrey Maloiy 1,2,3,4,3
PMCID: PMC380123  PMID: 4207763

Abstract

The microbial fermentation in the stomachs of two monkeys, Colobus polykomos, collected in Kenya, was studied. The gas accumulated within the stomach contained H2 but no CH4. Volatile fatty acid concentrations were high, but accumulated acid prevented determination of the fermentation rate in untreated, incubated stomach contents. Upon addition of bicarbonate, a very rapid rate could be demonstrated. Some D- and L-lactate were in the stomach contents. Starchy seeds or fruits rather than leaves appeared to have been consumed. Microscopically, the most prominent microorganisms seen were large, very refringent cocci, possibly Sarcina ventriculi, and various smaller cocci and rods. The 28 cultured strains of bacteria included 14 Staphylococcus, 2 Streptococcus, 10 Propionibacterium, and 2 Peptostreptococcus. The culture count constituted 10 to 20% of the direct count. No protozoa or cellulolytic bacteria were found.

Full text

PDF
713

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BALDWIN R. L., WOOD W. A., EMERY R. S. Conversion of lactate-C14 to propionate by the rumen microflora. J Bacteriol. 1962 Apr;83:907–913. doi: 10.1128/jb.83.4.907-913.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bauchop T., Martucci R. W. Ruminant-like digestion of the langur monkey. Science. 1968 Aug 16;161(3842):698–700. doi: 10.1126/science.161.3842.698. [DOI] [PubMed] [Google Scholar]
  3. CANALE-PAROLA E., BORASKY R., WOLFE R. S. Studies on Sarcina ventriculi. III. Localization of cellulose. J Bacteriol. 1961 Feb;81:311–318. doi: 10.1128/jb.81.2.311-318.1961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. CARROLL E. J., HUNGATE R. E. The magnitude of the microbial fermentation in the bovine rumen. Appl Microbiol. 1954 Jul;2(4):205–214. doi: 10.1128/am.2.4.205-214.1954. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Donnelly C. B., Leslie J. E., Black L. A., Lewis K. H. Serological identification of enterotoxigenic staphylococci from cheese. Appl Microbiol. 1967 Nov;15(6):1382–1387. doi: 10.1128/am.15.6.1382-1387.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. EL-SHAZLY K., HUNGATE R. E. FERMENTATION CAPACITY AS A MEASURE OF NET GROWTH OF RUMEN MICROORGANISMS. Appl Microbiol. 1965 Jan;13:62–69. doi: 10.1128/am.13.1.62-69.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. GUTIERREZ J. Numbers and characteristics of lactate-utilizing organisms in the rumen of cattle. J Bacteriol. 1953 Aug;66(2):123–128. doi: 10.1128/jb.66.2.123-128.1953. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. HUNGATE R. E., PHILLIPS G. D., McGREGOR A., HUNGATE D. P., BUECHNER H. K. Microbial fermentation in certain mammals. Science. 1959 Oct 30;130(3383):1192–1194. doi: 10.1126/science.130.3383.1192. [DOI] [PubMed] [Google Scholar]
  9. HUNGATE R. E. The anaerobic mesophilic cellulolytic bacteria. Bacteriol Rev. 1950 Mar;14(1):1–49. doi: 10.1128/br.14.1.1-49.1950. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Klesius P. H., Schuhardt V. T. Use of lysostaphin in the isolation of highly polymerized deoxyribonucleic acid and in the taxonomy of aerobic Micrococcaceae. J Bacteriol. 1968 Mar;95(3):739–743. doi: 10.1128/jb.95.3.739-743.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES